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ABSTRACT
This paper analyzes a previously overlooked attack surface that al-
lows unprivileged adversaries to impact supposedly secure floating-
point computations in Intel SGX enclaves through the Application
Binary Interface (ABI). In a comprehensive study across 7 widely
used industry-standard and research enclave shielding runtimes, we
show that control and state registers of the x87 Floating-Point Unit
(FPU) and Intel Streaming SIMD Extensions (SSE) are not always
properly sanitized on enclave entry. First, we abuse the adversary’s
control over precision and rounding modes as a novel “ABI-level
fault injection” primitive to silently corrupt enclaved floating-point
operations, enabling a new class of stealthy, integrity-only attacks
that disturb the result of SGX enclave computations. Our analysis
reveals that this threat is especially relevant for applications that
use the older x87 FPU, which is still being used under certain con-
ditions for high-precision operations by modern compilers like gcc.
We exemplify the potential impact of ABI-level quality-degradation
attacks in a case study of an enclaved machine learning service
and in a larger analysis on the SPEC benchmark programs. Second,
we explore the impact on enclave confidentiality by showing that
the adversary’s control over floating-point exception masks can be
abused as an innovative controlled channel to detect FPU usage and
to recover enclaved multiplication operands in certain scenarios.
Our findings, affecting 5 out of the 7 studied runtimes, demonstrate
the fallacy and challenges of implementing high-assurance trusted
execution environments on contemporary x86 hardware. We re-
sponsibly disclosed our findings to the vendors and were assigned
two CVEs, leading to patches in the Intel SGX-SDK, Microsoft
OpenEnclave, the Rust compiler’s SGX target, and Go-TEE.

CCS CONCEPTS
• Security and privacy → Systems security; Operating sys-
tems security; Side-channel analysis and countermeasures.
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1 INTRODUCTION
In recent years, several Trusted Execution Environments (TEEs) [28]
have been developed as a new security paradigm to provide a
hardware-backed approach of securing software. Their promise
is that applications can be run in so called enclaves to be isolated
and protected from the surrounding, potentially untrusted Oper-
ating System (OS). This allows to radically reduce the size of the
Trusted Computing Base (TCB) to the point where only the enclave
application itself and the underlying processor need to be trusted.
TEEs hence offer the compelling potential of securely offloading
sensitive computations to untrusted remote platforms [2, 18, 29].
However, the isolation guarantees provided by any TEE only hold
in so far as the trusted in-enclave software properly scrutinizes
the untrusted interface that is exposed to the potentially hostile
environment. In the context of Intel SGX [10], a state-of-the-art
TEE widely available on recent Intel processors, the last years have
seen a considerable effort by academia and industry to develop
shielding runtimes that aid secure enclave development by trans-
parently protecting application binaries inside the TEE. Besides the
canonical open-source SGX-SDK [9] reference implementation by
Intel, several other mature enclave runtimes have been developed,
including Microsoft’s OpenEnclave [30], Fortanix’s Rust-EDP [13],
Graphene-SGX [38], and SGX-LKL [35].

Attacks on enclave shielding runtimes. A recent systematic
vulnerability assessment [43] of enclave runtimes has shown that
shielding requirements are not sufficiently understood in today’s
TEE runtimes. Particularly, it was shown that popular SGX shielding
systems suffered from a wide range of often subtle, yet crucial inter-
face sanitization oversights. From this analysis, we conclude that
the complex enclave shielding responsibility can be broken down
into two successive tiers of interface sanitizations, as illustrated
in Figure 1. In a first tier, immediately after entering the enclave
protection domain, the trusted runtime should sanitize low-level
machine state and establish a trustworthy ABI. This bootstrapping
phase is typically implemented in a minimal assembly stub that
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Figure 1: Enclaved application binaries are transparently
shielded by sanitizing untrusted ABI and API-level state.

sets up a trusted stack and initializes selected CPU registers before
calling second-stage code written in a higher-level language. At
this point, the trusted shielding runtime is responsible to provide
a secure Application Programming Interface (API) abstraction by
sanitizing untrusted arguments, such as pointers, before finally
handing over control to the shielded application binary written by
the enclave developer. Any sanitization oversight in either of the
phases of the trusted runtime, or in the application tier itself, may
nullify all of the enclave’s pursued security objectives.

This is especially apparent for a long line of confused-deputy
enclave attacks [5, 22, 34, 43] that abuse untrusted pointer pass-
ing in the shared address space to trick a victim enclave program
into inadvertently dereferencing secure memory locations chosen
by the attacker. Such API-level pointer sanitization vulnerabilities
have been traditionally widely studied, both in the context of con-
ventional user-to-kernel exploits [7] and more recently also TEE
scenarios [5, 22, 27, 34, 43]. However, as these vulnerabilities fully
manifest at the programmer-visible API level, principled solutions
have been developed to thwart this category of pointer poisoning
attacks, e.g., by means of developer annotations and automatic
code generation as in Intel’s edger8r [9], a secure type system as
in Fortanix’s Rust-EDP [13], or by automatically scrutinizing the
enclave API through symbolic execution [22] and even formal in-
terface verification efforts [45, 46]. Furthermore, prior work exists
to analyze enclave code via symbolic execution in order to reason
about API-level attack surfaces [8]. Another example for insuffi-
cient API-level sanitization is the lack of scrubbing of uninitialized
structure padding reported by [24], causing leakage of confidental
data from enclave memory.

ABI-level attacks. We argue that ABI-level vulnerabilities, on
the other hand, are generally more subtle and harder to reason
about as they do not manifest at the program level, but instead
exploit implicit assumptions made by the compiler regarding the
integrity of the low-level machine state, which may not always
hold in the enclave’s hostile environment. Due to their low-level
nature, this class of ABI-level vulnerabilities hence falls explicitly
out of the scope of established language-level security mechanisms
like memory-safe type systems. Prior work [11, 43] has for instance
exploited improper stack pointer initialization or insufficient sani-
tization of x86 flags to induce severe memory-safety issues in oth-
erwise perfectly secure applications. It remains unclear, however,
whether other ABI-level attack surfaces exist, to what extent they
endanger the enclave protection model, and if they are limited to
triggering evident memory-safety misbehavior or could also induce
more indirect and stealthier errors in enclaved computations.

In this paper, we analyze a subtle and previously overlooked
ABI-level attack surface arising from enclave interactions with
the processor’s underlying x87 FPU and SSE vector extensions.
Specifically, we show that insufficient FPU and SSE control reg-
ister initialization at the enclave boundary allows to adversely
impact the integrity, and to a certain extend even the confiden-
tiality, of enclaved floating-point operations executing under the
protection of a TEE. Our analysis of this attack surface in popular
Intel SGX shielding runtimes revealed re-occurring ABI-level saniti-
zation oversights in 5 different runtimes, including widely deployed
production-quality implementations such as Intel’s SGX-SDK [9],
Microsoft’s OpenEnclave [30], and Fortanix’s Rust-EDP [13]. This
lack of secure FPU initialization allows unprivileged adversaries to
influence the rounding and possibly even the precision of enclaved
floating-point operations, introduce indefinite values, and mask
or unmask selected floating-point exception types. Interestingly,
in contrast to prior research [11, 43] on ABI-level attacks which
induce direct memory corruptions in the victim program, uninitial-
ized FPU and SSE configuration registers pose a significantly less
straightforward threat and necessitate more insightful exploitation
methodologies. Our work therefore contributes novel attack tech-
niques that abuse the adversary’s control over FPU state from two
complementary angles.

First, we explore the use of rounding and precision control poi-
soning as an “ABI-level fault-injection” primitive to silently corrupt
supposedly secure enclaved floating-point operations. In several
case studies, we show that such subtle floating-point corruptions
can break the overall security objective of enclaved applications
that operate as a service in an untrusted cloud environment, with-
out ever breaking confidentiality. This threat is especially relevant
for legacy applications that employ the x87 FPU, which can be
maliciously downgraded from 64-bit double-extended precision
to a mere 24-bit single precision mode. We illustrate that such at-
tacks on the x87 FPU can lead to persistent misclassification in
an exemplary enclaved image recognition neural network, as well
as subtle, yet visible quality-degradation artifacts in 3D rendering
algorithms. To the best of our knowledge, these case studies for
the first time explore a new and stealthy class of integrity-only
attacks that purposefully disturb the end result of outsourced en-
clave computations without ever breaching confidentiality, thus
potentially defeating even severely reduced “transparent enclave
execution” paradigms [37]. This perspective represents a notable
change in direction compared to prior TEE attack research, which
has so far only focused on abusing enclaved execution integrity
flaws as a stepping stone to ultimately breach confidentiality, e.g.,
through memory-safety misbehavior [3, 23, 43], undervolting [33],
or incorrect transient-execution paths [6, 41, 42]. By contrast, our
work shows that, even when the processed data is not considered
secretive and the enclave binary is free from any application-level
vulnerabilities, current widely used shielding systems cannot al-
ways safeguard the correctness of outsourced computation results.

Controlled-channel attacks. In a second and complementary
angle, we explore the impact of ABI poisoning on the confidentiality
of enclaved floating-point operations by showing that attacker-
induced FPU or SSE exceptions can be abused as an innovative
new type of controlled-channel attack [48]. Using this technique,
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we show that attackers can deterministically detect the occurrence
of x87 instructions in secret-dependent code paths and may even
partially reconstruct SSE operand values in straight-line code.

Specifically, in caseswhere an enclavemultiplies a user-controlled
input with a secret learned parameter, such as the weights in a
neural network, attackers may partially reconstruct the secret mul-
tiplier by forcefully enabling floating-point exceptions before enter-
ing the victim enclave and abusing the mere occurrence or absence
of a subsequent “denormal operand” exception for a carefully cho-
sen input as an unconventional side channel. This technique is
closely related to a powerful class of controlled-channel attacks
that have previously abused side-channel leakage from x86 CPU
exception events to spy on memory addresses accessed by a victim
Intel SGX enclave through either page faults [48], segmentation
faults [17], or alignment-check exceptions [43]. Our ABI-level at-
tacks, on the other hand, directly reconstruct full data operand
values for selected floating-point operations, and, hence, for the
first time extend the threat of controlled-channel attacks beyond
leaking address-related metadata for memory operations.

Our contributions. In summary, we make the following main
contributions:

• A novel ABI-level fault-injection attack that allows unprivileged
adversaries to influence the precision, rounding, and exception
behavior of x87 or SSE floating-point operations in at least 5
popular Intel SGX enclave shielding runtimes.

• An innovative controlled channel that abuses floating-point ex-
ceptions to recover enclaved multiplication operands.

• An exploration of a new class of quality-degradation attacks
that stealthily compromise the integrity of supposedly secure
outsourced enclave computation results.

• A demonstration of practical FPU attacks in an end-to-end ma-
chine learning case study enclave and a larger analysis of attacker-
induced floating-point errors on the SPEC suite.

Finally, we formulate recommendations for principled ABI san-
itization and we argue that this attack surface is non-trivial to
patch. Specifically, our analysis revealed insufficient FPU sanitiza-
tion patches in two production-quality runtimes [13, 30] that were
explicitly aware of this attack surface. We show that, despite the
initial patches for these runtimes, it was still possible for ABI-level
unprivileged attackers to silently override the outcome of trusted
in-enclave x87 computations with indefinite NaN outcomes.

Responsible disclosure. The main security vulnerabilities ex-
ploited in this work have been assigned CVE-2020-0561 by Intel,
for the sanitization oversight in the Intel SGX-SDK, and CVE-2020-
15107 by Microsoft, for the remaining attack surface after the initial
mitigation attempt in OpenEnclave. While the initial mitigation
attempt in OpenEnclave served as inspiration for our work, both
the issue in the Intel SGX-SDK and the remediation of insufficient
patches were then responsibly disclosed through the proper chan-
nels for the affected production runtimes. Intel, Microsoft, Fortanix,
and Go-TEE acknowledged the issue and applied our recommended
patches in the enclave entry code for the SGX-SDK v2.8, Open-
Enclave v0.10.0, and the Rust compiler v1.46.0, respectively. We

provide our case studies and proof-of-concept exploits as open-
source artifact for other researchers to independently evaluate and
build upon our findings1.

2 BACKGROUND
This section introduces the necessary background on SGX enclaves
and Intel processor support for floating-point computations through
the x87 FPU and SSE vector extensions, respectively.

2.1 Intel SGX
Intel Software Guard Extensions (SGX) [10, 20], are a set of hard-
ware instructions that allow to create trusted regions of code called
enclaves that are shielded from the surrounding, potentially un-
trusted Operating System (OS). The SGX promise is that enclave
applications can access almost all capabilities of the user-mode x86
instruction set, while at the same time being provided with strong
hardware-backed memory isolation and the capability of attesting
code to remote parties. SGX protects enclave memory from outside
access and provides instructions to enter and exit enclave mode.
When encountering exceptions or interrupts during enclaved exe-
cution, the CPU securely saves and scrubs the full extended register
set inside the enclave, to be later restored when the enclave is re-
sumed. However on initial enclave entry into registered call gates,
named ecalls, the cleansing and sanitization of registers is the
responsibility of the software. Due to this challenge, multiple en-
clave shielding runtimes (cf. Figure 1) have emerged that take over
this sanitization on enclave entry, bring the processor into a clean
state, and then forward execution to the intended application bi-
nary inside the enclave. This not only lowers application developer
effort to adopt enclaved execution but also streamlines the miti-
gation of vulnerabilities on ABI-level. While a 64-bit operation is
the norm for SGX enclaves, a 32-bit compatibility mode is officially
supported.

2.2 x87 FPU
The x87 FPU [20] provides an environment to perform floating-
point and other math operations. For this, the x87 FPU has eight
80-bit data registers that are used internally as a register stack
during computation of FPU instructions. The 80 bits in the registers
are designed to ensure a high precision inside the FPU to minimize
floating-point errors of data that is returned back from the data
registers to memory. With 1 bit used for the sign and 14 bits used
for the exponent, one 80-bit register utilizes 64 bits to store the
significand of a floating-point variable which Intel calls double-
extended precision. The internal data registers of the x87 FPU by
default utilize the full 64 bits of the significand during computations.
In addition, the x87 FPU also contains a control register that can be
set with the FPU Control Word as shown in Figure 2. This control
register allows to specify two additional precision formats, namely
double precision with 53 bits used for the significand and single
precision with only 24 bits for the significand. These additional
precision modes enable compatibility with the IEEE Standard 754
and legacy programs or older programming languages.

Besides limited precision, another important aspect of floating-
point operations is the rounding mode. Whenever a floating-point
1https://github.com/fritzalder/faulty-point-unit
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Precision Control
00b = Single prec (24 bits)
01b = Reserved
10b = Double prec (53 bits)
11b = Extended prec (64 bits)

Rounding Control
00b = To nearest
01b = Down
10b = Up
11b = Toward Zero

RC PC

091015 13 123
exception

masks

456712 1114 8

Figure 2: Layout of the x87 FPU control word.

number can not be represented exactly with the given precision, the
FPU needs to make a decision whether to choose the next higher
or next lower possible representation. By default the x87 FPU will
round to the nearest value, but developers can choose to override
this in the control word and enforce rounding up, rounding down,
or rounding toward zero. Naturally, the impact of the rounding
mode is greater for computations in single-precision mode than
for computations in double-extended precision as rounding errors
accumulate faster and the distance between two floating-point
numbers that can be represented with the given precision is larger.

Figure 2 shows those fields of the FPU control word that con-
trol the behavior of FPU operations in red. These are the Precision
Control (PC) bits 8 and 9, and the Rounding Control (RC) bits 10
and 11. Fields that control the masking of floating-point exceptions
are shown in orange in the figure. Bits 0 to 5 can be used to mask
any of the 6 floating-point exceptions that may be triggered by the
x87 FPU. Notable examples of exceptions the FPU might encounter
include underflow when a result becomes subnormal, also referred
to as “denormal”, and overflow when the result can no longer be
represented in the respective floating-point type. Exceptions are
masked by default, instructing the FPU to continue with some safe
default values. However, in case programmers want to be notified
about these events, individual exception types can be unmasked by
clearing the respective bits in the FPU control word, e.g., through
the C library function feenableexcept(). When encountering an
unmasked exception, the FPU will stop operation and program-
mers can register a custom SIGFPE signal handler through the OS.
Lastly, the remaining non-relevant bits in the FPU control word are
marked gray. These are bits 6,7, and 13-15 which are reserved and
bit 12 which exists for compatibility reasons and is not meaningful
anymore for current versions of the x87 FPU.

Importantly, since the x87 FPU control word defines global pro-
gram behavior, it is expected by the ABI to be initialized to a pre-
defined sane state 0x37f that should be preserved across function
calls, except for procedures that have the explicit intention of glob-
ally changing the FPU configuration [12, 26]. Furthermore, on Intel
processors supporting MMX technology [20], the eight x87 floating-
point registers can also be utilized as general-purpose MMX vector
registers. However, since theMMX registers are internally aliased to
the x87 FPU register stack, care should be taken when mixing MMX
and x87 instructions. Specifically, any MMX instruction marks the
entire x87 stack as in-use and developers are required to issue a
special emms instruction to clear the register stack before executing
any subsequent x87 operation. Failure to do so may produce un-
expected results, and compiler ABIs hence demand that “the CPU
shall be in x87 mode upon entry to a function” [26].

RC exception
masks

091015 13 123
exception

flags

456712 1114 81631

Rounding Control
Figure 3: Layout of the MXCSR control/status register.

2.3 Streaming SIMD Extensions (SSE)
In order to further speed up floating-point arithmetics, recent Intel
processors include vector extensions that operate independently of
the x87 FPU and allow for high performance of parallelized calcula-
tions. The line of Streaming SIMD Extensions (SSE) [20] supports
parallel floating-point operations on 128-bit vector registers holding
either four 32-bit single-precision or two 64-bit extended-precision
floating-point numbers. In contrast to the x87 FPU which calcu-
lates intermediate results with 80 bits of precision, SSE processes
a vector of operands in parallel with a fixed (but lower) precision
that cannot anymore be dynamically degraded by the developer.

Similar to the x87 control word, SSE offers a global MXCSR control
register to configure the rounding mode and exception behavior,
as shown in Figure 3. The SSE rounding control bits 13-14 (red)
and floating-point exception mask bits 7-12 (orange) work identi-
cal to those described earlier for the x87 FPU. In addition, MXCSR
provides status flags 0-5 (green) that indicate whether one of the
six floating-point exceptions occurred and configuration bits to
specify the behavior when encountering subnormal numbers and
underflow conditions. Specifically, bit 15 is called the Flush-To-Zero
bit and can be used to enter a mode that flushes the result to zero
whenever an underflow is encountered which slightly reduces pre-
cision of the calculations for the benefit of increased performance.
Bit 6 can be used to enter the Denormals-Are-Zeroes mode that
treats all subnormal numbers as zeroes. Neither of these two modes
is compatible with the IEEE Standard 754 and both of them are
disabled by default [20]. Again similar to the x87 control word, the
configuration bits in the global MXCSR register are expected by the
ABI to be initialized to a predefined state 0x3f80 and preserved
across function calls [12, 26].

The performance gain of parallelized SSE vector floating-point
operations is leveraged bymost modern compilers. For example gcc,
the GNU Compiler Collection, defaults to the SSE when compiling
for 64-bit targets [14]. Similarly, Microsoft Visual C++ defaults to
the SSE for modern 64-bit applications [31]. For compatibility with
32-bit and legacy systems, both compilers also provide options to
compile applications without the SSE and with all math operations
purely executed by the x87 FPU. In gcc, this compiler option is
called -mfpmath=387. At the same time, the x87 FPU remains fully
supported also for modern 64-bit applications and default compila-
tion options. One notable example is the C data type long double
which is defined as “at least as large as the float type, and it may be
larger” [14]. Some compilers as such aim to use the maximum avail-
able precision for this data type, whichmeans utilizing the full 80-bit
precision of the x87 FPU instead of the 64-bit precision provided by
the SSE. For example, gcc will default to x87 instructions whenever
a long double variable is involved and will regularly switch data
between the FPU and SSE data register stacks if the SSE was utilized
by a support library such as libm. Furthermore, gcc provides an
experimental compilation option called -mfpmath=both to utilize a
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combination of SSE and x87 FPU for increased performance beyond
just using it for long double variables [14]. Overall, the x87 FPU,
while not being the default compilation target for all platforms any-
more, is still relevant for calculations that require the high precision
of long double variables or for legacy applications.

3 POISONING FPU STATE REGISTERS
This section first elaborates on the assumed attacker capabilities and
system model. Thereafter, we analyze the different attack avenues
that may arise in case of insufficient ABI-level sanitization, and we
provide a toy example that illustrates their impact on the integrity
of exemplary enclave computations. Finally, we conclude with a
systematic vulnerability assessment of this attack surface across 7
widely used SGX shielding runtimes.

3.1 Attacker and system model
We assume the standard Intel SGX threat model [10] where only
the processor and the software executing inside the enclave are
to be trusted. Notably, while Intel SGX explicitly excludes the OS
from the trusted computing base and aims to protect even against
adversaries who have gained root access to the target platform [44],
we demonstrate our exploits with a considerably weaker attacker
model. Particularly, we only assume user-space code execution in
the untrusted host application so as to invoke the enclave with
custom ABI-level register settings and to optionally install signal
handlers via the OS interface. This falls within the capabilities of
any unprivileged user who has access to the enclave binary.

Following widespread industry practice [2, 4, 13, 15, 19, 30, 35,
39], we assume the use of a shielding runtime that intervenes on
enclave entry and exit to transparently protect the enclaved ap-
plication binary from its untrusted environment. Specifically, we
consider the explicit security objective of the shielding runtime to
be to (i) make sure that an enclaved application behaves exactly
like on a trusted OS, and (ii) prevent any avoidable information
leakage beyond what is allowed through explicit interaction with
the application. As an example of the first requirement, previous
research has shown that the shielding runtime should clear the
direction flag in the x86 status register on enclave entry to avoid
unexpected memory corruption for string operations [43]. As an
example of the second requirement, runtimes should scrub low-
level CPU registers that do not form part of the calling convention
before exiting the enclave to avoid leaking intermediary state [43].

We assume that the Intel SGX TEE is properly patched against
microarchitectural vulnerabilities [6, 41, 42], such that the shielding
system can provide enclaved computation results to remote parties
as if they were executed on a trusted OS. In this respect, we con-
sider it to be the objective of the shielding runtime to transparently
protect any ABI-compliant x86 application binary. The latter can
include legacy libraries and can be generated by an arbitrary com-
piler, as long as ABI-level calling conventions [12] are respected,
that can hence make use of the full power of the x86 instruction
set permitted inside SGX enclaves. In some of our case studies,
only when explicitly mentioned, we may emphasize this point by
instrumenting the compiler to make increased use of the x87 FPU in-
stead of more modern SSE features by means of the -mfpmath=387

gcc compiler flag. It should be stressed, however, that the result-
ing application binaries remain fully legit ABI-compliant x86 code
that may for instance also have been generated by older or more
specialized compilers [14].

3.2 ABI poisoning attacks
While trusted code can be relied on to respect ABI calling con-
ventions [12, 26], this does not hold anymore for ecall functions
exposed to the untrusted world. The shielding runtime hence has
the crucial responsibility to bridge this trust semantics gap by sani-
tizing the ABI on enclave entry. Before showing in Section 3.3 that
this requirement is not sufficiently understood in today’s widely
used SGX shielding runtimes, we first elaborate below on what are
the exact security implications of insufficient initialization of x87
and SSE registers, respectively.

Poisoning x87 FPU state. When the shielding system does not
cleanse the x87 control word, attackers may execute the unprivi-
leged fldcw instruction before entering the enclave to control all
bits described in Section 2.2 and Figure 2. In fact, executing this
instruction at any point before entering the enclave suffices to suc-
cessfully implement the attack as long as the x87 control word
does not get modified in-between. Since programs rarely modify
the x87 control word as long as they are not performing floating
point operations, the attack may often be performed in advance
instead of right before the actual ecall. In the following, we assume
however that the attacker loads the desired x87 control word as the
last instruction before switching into the enclave which ensures
that the x87 control register is in the desired state. The immediately
obvious impactful fields the attacker can target are bits 8-9 to de-
grade the precision and bits 10-11 to alter the rounding mode for
enclaved x87 floating-point operations. We will show in Sections 5
and 6 that the impact of a maliciously downgraded x87 precision
can be especially devastating in larger applications. Additionally,
by selectively unmasking floating-point exceptions and registering
a signal handler, attackers may be informed of certain, possibly
secret-dependent, FPU events that would otherwise pass unnoticed.

Furthermore, when the shielding runtime does not explicitly
initialize the x87 register stack, it may be incorrectly left in MMX
mode. For this, it suffices that the attacker executes any MMX oper-
ation that is not followed by an emms instruction before entering the
enclave. Since an ABI-compliant enclave application expects the
CPU to be in x87 mode with all registers available, any following
attempt to load data into an x87 register will cause an unexpected
FPU register stack overflow event, as the CPU still is incorrectly in
MMX mode with all eight floating-point registers marked as in-use.
The exact behavior in this case will depend on the corresponding
exception mask bit in the FPU control word. In the default case
where exceptions are masked, the processor will silently replace
the intended x87 destination register with an indefinite value (NaN)
and continue execution. We experimentally confirmed that such
attacker-injected unintended NaN values are silently propagated
further, which is a clear violation of computational integrity and
may further cause unexpected or incorrect behavior depending on
the victim application.

Alternatively, in the case where exception bits in the x87 control
word are craftily unmasked before enclave entry, the attacker will
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be notified by means of an FPU exception signal whenever the
enclave loads an x87 register. This technique is somewhat similar to
prior controlled-channel attacks on Intel SGX, which have abused
memory contention through page-fault exceptions [48] to spy on
enclave-private page accesses. Essentially, by adversely filling the
FPU register stack with MMX instructions before enclave entry,
the attacker causes unexpected contention that can be used as side
channel to learn subsequent use of the FPU by the enclave. We
experimentally verified that this technique can be abused as an
innovative controlled channel to deterministically recognize x87
instructions in a secret-dependent code path. We note that privi-
leged attackers could further improve the temporal resolution of
this novel FPU controlled channel by relying on the SGX-Step [44]
enclave execution control framework to exactly pinpoint on which
instruction the exception has been raised. SGX-Step leverages care-
fully scheduled timer device interrupts and has been shown to de-
terministically advance production enclaves exactly one instruction
at a time [32, 44]. FPU poisoning adversaries can, hence, precisely
establish the relative instruction offset of enclaved x87 operations
by merely counting the number of SGX-Step interrupts before de-
tecting the FPU exception signal.

We finally note that the above x87 FPU poisoning attacks can
even impact programs that were never explicitly compiled as x87
FPU programs. Section 2.3 indeed explained that some compilers,
including gcc, still utilize the x87 FPU in certain scenarios such as
for long double data types.

Poisoning SSE state. Compared to the x87 FPU, the more recent
SSE floating-point extensions include less configuration bits and
hence also expose a smaller ABI-level attack surface. However, we
found that when the shielding system does not sanitize the control
bits in the MXCSR register, attackers may execute the unprivileged
ldmxcsr instruction before entering the enclave to control all bits
described in Section 2.3 and Figure 3. Similar to the FPU attacks
described above, this allows the attacker to maliciously alter the
in-enclave rounding mode through bits 13-14 and to arbitrarily
unmask floating-point exceptions through bits 7-12. Unlike the x87
FPU, the precision of SSE floating-point operations is fixed and can
hence not be overridden by the attacker.

We demonstrate below that poisoning the SSE rounding mode
may adversely impact the integrity (i.e., the expected outcome) of
certain in-enclave floating-point computations. Section 4 further-
more introduces a case study which exploits the adversary’s control
over the denormal-operand SSE exception mask as an innovative
controlled channel to reconstruct secret in-enclave multiplication
operands.

A toy example. We exemplify the threat of ABI-level poisoning
attacks on the integrity of enclaved floating-point computations by
means of two types of math operations: one complex operation that
relies on the standard math library included in the Intel SGX-SDK,
and one example of a simple multiplication of two floating-point
numbers. The complex example is an approximation of the number
π by calculating arccos(-1) with the acosl function provided by
math.h and the second example is a calculation of 2.1∗3.4. To
achieve a maximum precision, the code utilizes variables of the
long double type, which the compiler translates to predominantly
x87 FPU instructions. For completeness, both the minimal C code
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the resulting assembly instructions can be viewed in Appendix A.
The enclave was compiled with a recent gcc v7.4.0 with standard
compilation flags under Ubuntu 18.04.1 and with the Intel SGX-SDK
v2.7.1. All evaluations were performed on an Intel i5-1035G1.

Table 1 shows the attack in practice by listing the results of an
executed enclave with attacker-primed FPU registers before the
ecall into the enclave. For all depicted values, the FPU CW and the
MXCSR were set to the desired value via the fldcw and the ldmxcsr
instruction respectively right before the enclave was entered. Illus-
trated are four FPU groups of possible attack modes available to an
ABI poisoning adversary, with the expected (unpoisoned) default
mode highlighted. In the first three FPU groups, the attacker sets the
x87 FPU control word to operate in either single-precision, double-
precision, or extended-precision mode. These precision modes are
then combined with each of the four available rounding modes set
in both the FPU control word and the MXCSR register to affect the
operation of the x87 FPU as well as SSE instructions. The last FPU
group targets the MMXmode by marking all x87 registers as in-use,
as described above, which always yields NaN independent of the
rounding mode. For readability, all computation results are listed
with a precision of 10−30 and cut off after the last digit.

As a first interesting observation, the results of the calculation
of 𝜋 listed in the middle column remain unaffected by the choice
of the x87 precision mode. Up to the order of 10−19, the calculated
approximation is identical with the actual value of 𝜋 across all
possible x87 precision modes. Only the rounding mode can degrade
the precision of this single math library calculation in the order of
10−19. Specifically, the rounding modes to nearest and upward both
achieve the baseline precision while the rounding modes down-
ward and towards zero have a degraded performance. This example
shows that even when relying on standard math libraries, the at-
tacker can partly degrade the quality of calculations. At the same
time, it is evident that although the compiler relied on the x87 FPU
to satisfy the precision requirements of the long double data type,
the results remain unaffected by the modified precision mode. The
reason for this is the fact that the acosl library function is inter-
nally implemented using SSE instructions, and hence the actual
computation is not performed by the x87 FPU in this case. Listing 3
in Appendix A shows that the compiler-generated code transfers
the x87 data into the SSE registers and similarly retrieves the data
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acosl has returned. In summary, the attack surface is somewhat
limited whenever the victim code utilizes library functions that are
not compiled to x87 instructions.

The capabilities of an attacker that targets victim code which
solely relies on x87 calculations, however, can be seen in the right
column of Table 1. The right column of the table lists the results of
the calculation 2.1 ∗ 3.4 which is performed without any external
libraries and is, as such, by default compiled into pure x87 instruc-
tions due to its long double data type. Notice that this simple
multiplication already experiences a floating-point representation
error in the highlighted base mode, which is an inherent conse-
quence of limited-precision numerical representations. However,
the table clearly shows that ABI attackers can significantly magnify
the error with several orders of magnitude. While in the default
extended-precision mode, the error for our exemplary multipli-
cation lies in the order of 10−19, this error increases to the order
of 10−16 in double-precision mode and lastly to the order of 10−7
in single-precision mode. Observe that for each precision mode,
rounding upward yields the next higher floating-point number that
can be represented in the given precision, whereas the other three
rounding modes yield identical results for this particular example.
It is important to note that any successive calculation on the cor-
rupted result in larger applications would be exposed to an ever
increasing floating-point error. In this respect, our example also
highlights a remarkable discrepancy: while attentive enclave devel-
opers would aim to utilize the maximum available precision and
minimize the effects of inherent floating-point imprecisions, the
usage of the long double data type for this purpose also exposes
the enclave to increased attack surface for x87 ABI attackers.

The last row finally shows the impact of the MMX attack that
always silently replaces the expected outcome with an incorrect
-NaN result. As discussed previously, this error results from the x87
FPU not being able to determine a usable floating-point register on
the register stack and aborting the calculation.

3.3 TEE runtime vulnerability assessment
In order to methodologically assess the prevalence of ABI-level
FPU poisoning attack surface in real-world SGX shielding runtimes,
we performed a comprehensive vulnerability assessment of the 7
open-source projects summarized in Table 2. Our selection was
motivated by a recent extensive study [43] of popular Intel SGX
shielding runtimes, which we extended with two newer runtimes [4,
15] that were not analyzed before. Particularly, we examined all
predominant SGX shielding solutions in use by industry, namely
Intel’s SGX-SDK [19], Microsoft’s OpenEnclave [30], Fortanix’s
Rust-EDP [13], and RedHat’s Enarx [4], as well as three relevant
runtimes that were, at least initially, developed as research projects,
namely Graphene-SGX [38], SGX-LKL [35], and Go-TEE [15]. This
wide selection highlights that our ABI-level vulnerabilities apply
to both research and production code, emerging safe languages
like Rust and Go as well as traditional unsafe languages like C or
C++, and SDK-based secure function interfaces as well as library
OS-based system call shielding systems.

A first conclusion from Table 2 is that prior to October 2019, i.e.,
before the initial Patch by Microsoft OpenEnclave, all 7 runtimes
were originally vulnerable to the ABI poisoning attacks described

Table 2: Marked runtimes were demonstrated to not (⋆) or
only partially (⋆) sanitize FPU/SSE state, whereas empty
symbols (#) indicate that the runtime was not vulnerable at
the time of our initial analysis (Nov 2019). When applicable,
applied and potentially remediated Patches are provided.

SGX
-SDK

∗

Ope
nEn

clav
e

Grap
hene

SGX
-LKL

Rust
-ED

P
Go-T

EE
Ena

rx

Exploit ⋆ ⋆ # ⋆ ⋆ ⋆ #
Patch 1 xrstor ldmxcsr/cw fxrstor – ldmxcsr/cw xrstor xrstor
Patch 2 xrstor xrstor

∗ Includes derived runtimes such as Apache Teaclave’s Rust SGX SDK [36] (formerly
Baidu Rust-SGX [46]) and Google’s Asylo [16].

in this work. Indeed, our initial analysis was motivated by a par-
tial ABI hardening patch in OpenEnclave in October 2019, which
subsequently appears to have been picked up by Graphene-SGX
developers as well. For the remaining runtimes, we then performed
our initial analysis in November 2019 where we experimentally
demonstrated that the SGX-SDK, Rust-EDP, SGX-LKL, and Go-TEE
all similarly lacked any form of FPU or SSE register sanitization.
We reported these issues and in the case of the SGX-SDK, this can
be tracked via CVE-2020-0561/Intel-SA-00336, which also affects
derived runtimes, such as Apache Teaclave’s Rust SGX SDK [36]
(formerly Baidu Rust-SGX [46]) and Google’s Asylo [16], that build
on top of the SGX-SDK.

A second tendency in Table 2 relates to the mitigation strate-
gies applied in the different runtimes. Particularly, following our
recommendations for more principled ABI sanitization, Intel re-
sponded to our disclosure by patching the shielding runtimewith an
explicit xrstor instruction that fully initializes the entire processor-
extended state on every enclave entry. This is also the mitigation
applied by Enarx2 and Go-TEE. Note that SGX-LKL is depicted
in Table 2 as not to sanitize the FPU/SSE state because of their
unmaintained assembly entry code into the shielding enclave. How-
ever, SGX-LKL has been in a migration process in order to utilize
the code base of Microsoft OpenEnclave in favor of self-written
assembly stubs. As such, once SGX-LKL is fully migrated to utilize
OpenEnclave, it will inherit the mitigations implemented there.

In response to our disclosure, Rust-EDP adopted the original
mitigation strategy of OpenEnclave, which merely sanitizes the
SSE configuration register and the x87 control word through the
ldmxcsr and fldcw instructions respectively. While this approach
appears sufficient at first sight, and avoiding a full xrstor may
indeed be motivated from a performance perspective, we make
the crucial observation that fldcw does not clear the x87 regis-
ter stack and hence cannot protect the enclave against the MMX
poisoning attack variants described above. Specifically, we experi-
mentally demonstrated that on the initially patched Rust-EDP and
OpenEnclave runtimes, we can still forcibly put the processor in
MMX mode before entering the enclave and cause the outcome of
trusted in-enclave x87 FPU operations to be incorrectly replaced
with NaN values, which are further propagated silently and may
cause application-specific misbehavior. Hence, while the initial
2Enarx is an ongoing project, still under active development, which is only included
for completeness here. The specific runtime entry sanitization code was committed in
March 2020, in completion of a longer-standing documented issue.
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patches in these runtimes do severely reduce the attack surface
by cleansing MXCSR and the FPU control word, they fail to fully
shield the enclave application binary from our attacks. To fully rule
out MMX attack variants as well, the runtime should minimally
execute an additional emms instruction to place the FPU in the ex-
pected x87 mode. The mitigation implemented by the Graphene
developers who used an fxrstor instruction is sufficient to also
rule out this followup MMX attack as it cleanses all state related
to the FPU, MMX, XMM, and MXCSR registers. However, in light
of our findings, we explicitly recommend that shielding runtimes
adopt the more principled and future-proof strategy of cleansing the
entire processor-extended state through xrstor on every enclave
entry. Both OpenEnclave and Rust-EDP acknowledged the remain-
ing attack surface of an insufficient ldmxcsr/cw mitigation, and
our recommended full xrstor approach was integrated into their
respective projects. Microsoft additionally assigned this followup
issue CVE-2020-15107.

4 CASE STUDY: FLOATING-POINT
EXCEPTIONS AS A SIDE CHANNEL

Background. Apart from allowing to compromise computa-
tions, an adversary can also use the FPU state registers to obtain
side-channel information about floating-point computations inside
SGX enclaves. Notably, this side channel also applies to floating-
point operations carried out using the SSE extensions, i.e., with
standard compiler settings and without the special requirement to
use the x87 FPU. The base for this side channel are the exception
mask bits that can be set in the MXCSR register right before entering
the enclave and the fact that an attacker can register a custom signal
handler for floating-point exceptions (SIGFPE) to be notified about
the exceptions. Crucially, for SGX enclaves, the signal handler is
untrusted code. This is similar to other controlled-channel attacks,
e.g., attacks based on page faults [48], segmentation faults [17],
or alignment-check exceptions [43]. Note that in contrast to user-
space code, the exact reason for the exception (e.g., underflow or
overflow) is not passed on to the signal handler when triggered
from within SGX. However, we show that this can be overcome by
only unmasking one exception at a time and executing the enclave
multiple times with the same input operands.

In this section, for the sake of simplicity, we focus on double
operands, i.e., the 8-byte IEEE 754 double-precision binary floating-
point format [47]. In this case, the smallest normal number is
nmin ≈ 2.2250738585072014 · 10−308 (hex 0x0010000000000000),
while the largest subnormal is dmax ≈ 2.2250738585072009 · 10−308
(hex 0x000FFFFFFFFFFFFF). Whenever the result of a computation
is ≤ dmax , an underflow exception will be triggered. As described
in the following, this can be used as a side channel to infer one
possibly secret operand of an enclaved floating-point computation,
in this particular example a multiplication, if the other operand is
attacker-controlled.

Attack scenario. For example, consider a neural network im-
plementation, where the weights of the network are secrets stored
securely inside an SGX enclave. The input layer of the network
involves multiplications of the attacker-controlled inputs and the
secret weights. For simplicity, we focus on a single multiplication
of two floats secret * input in the following, but note that the
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e.g., attacks based on page faults [48], segmentation faults [17],
or alignment-check exceptions [43]. Note that in contrast to user-
space code, the exact reason for the exception (e.g., underflow or
overflow) is not passed on to the signal handler when triggered
from within SGX. However, we show that this can be overcome by
only unmasking one exception at a time and executing the enclave
multiple times with the same input operands.

In this section, for the sake of simplicity, we focus on double
operands, i.e., the 8-byte IEEE 754 double-precision binary floating-
point format [47]. In this case, the smallest normal number is𝑛𝑚𝑖𝑛 ≈
2.2250738585072014 · 10−308 (hex 0x0010000000000000), while the
largest subnormal is 𝑑𝑚𝑎𝑥 ≈ 2.2250738585072009 · 10−308 (hex
0x000FFFFFFFFFFFFF). Whenever the result of a computation is
≤ 𝑑𝑚𝑎𝑥 , an underflow exception will be triggered. As described
in the following, this can be used as a side channel to infer one
possibly secret operand of an enclaved floating-point computation,
in this particular example a multiplication, if the other operand is
attacker-controlled.

Attack scenario. For example, consider a neural network im-
plementation, where the weights of the network are secrets stored
securely inside an SGX enclave. The input layer of the network
involves multiplications of the attacker-controlled inputs and the
secret weights. For simplicity, we focus on a single multiplication
of two floats secret * input in the following, but note that the

1 void secret_mul(double input) {

2 double internal = secret * input;

3 // further computations on internal value ...

4 }

Listing 1: Example enclave code vulnerable to secret
extraction through a floating-point exception side channel.

method can be extended to multiple such multiplications by recov-
ering the secret operand one-by-one. Furthermore, for SGX, the
enclave code can be single-stepped [44] which allows to exactly
pinpoint on which instruction an exception has been raised.

For our proof-of-concept, we created an ecall on Intel SGX-
SDK v2.7.1 which multiplies a secret value with an input. The gcc
compiler by defaults generates the SSE instruction mulsd for the
multiplication in Listing 1. Note that the enclave API does not
expose the internal result value to the attacker and we merely focus
on the side-channel signal whether an exception was raised or not.

Secret recovery. To recover secret, in the first step, we deter-
mine if its magnitude is ≤ 1. This can be achieved by passing 𝑛𝑚𝑖𝑛

as input: if an underflow exception is raised, |secret| < 1, because
the result of the multiplication is less than 𝑛𝑚𝑖𝑛 . In the following,
we describe an attack for the case that |secret| < 1, but we veri-
fied that a similar procedure can be used for the other case where
|secret| ≥ 1 by leveraging the overflow exception (cf. Algorithm 2
in Appendix B). Next, knowing that |secret| < 1, we use binary
search to gradually approximate the secret. More precisely, the
attack proceeds as in Algorithm 1: the input is set to 0.5, and if no
underflow occurred, the search continues in the lower half [0, 0.5]
and otherwise in the upper half [0.5, 1]. This process is repeated
until the difference between the upper and lower bound is below
an attacker-chosen minimal value epsilon.

Algorithm 1: Binary search algorithm to recover a secret
value based on underflow exceptions for operands < 1
Result: recovered_secret
low = 0;
high = 1;
while abs(high - low) >= epsilon do

mid = (low + high) / 2;
secret_mul(mid);
recovered_secret = 𝑛𝑚𝑖𝑛 / mid;
if underflow exception raised then

// continue search in upper half
low = mid;

else
// continue search in lower half
high = mid;

end
end

For our experiments, we set epsilon = 0.00001 · 10−308. For this
bound, Algorithm 1 requires a fixed number of 1040 invocations
of the ecall to recover a secret operand. We ran this algorithm for
1000 random, uniformly distributed secrets in the interval [0, 1[,
and computed the difference between the actual and the recov-
ered secret. The histogram of the error is shown in Figure 4. The
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Figure 5: MLaaS system model with enclaves

maximum observed error was 3.667689888908754 · 10−6, with the
average error being 6.2648851729085662 · 10−7.

5 CASE STUDY: ATTACKING MACHINE
LEARNING PREDICTIONS

Background and system model. The core attributes of TEEs
are ideally suited for offloading sensitive computations into the
cloud. With conventional systems, a sensitive workload needed
to either be self-hosted or entrusted to an external cloud provider
that is bound by contracts and confidentiality clauses. Both solu-
tions require extensive (legal) planning and are attributed with
an increased cost compared to the benefit of conventional cloud
computing. When utilizing TEEs on the other hand, a customer can
place her sensitive computation inside an enclave that is executed
on the cloud provider’s premises. The TEE will guarantee the confi-
dentiality and integrity of the performed workload while the cloud
provider will do his due diligence to achieve a high availability of
the paid service to preserve his reputation. Additionally, customers
that utilize the service can be ensured that the cloud provider will
not learn the potentially confidential inputs or outputs.

Figure 5 illustrates such a TEE-based cloud computing service: A
Machine Learning as a Service (MLaaS) example of a model provider
who gives paid access to his model to customers. In this case study,
we assume that the model provider has spent enough resources
on the training of the model to make a direct access of customers
to the model undesirable. The model provider is assumed to train
the model in a trusted setting and then pushes the trained model
directly into the enclave that provides the service to customers.
Customers then communicate with the enclave and perform evalu-
ations and predictions of their input without learning the machine
learning model. Additionally, the enclave can guarantee privacy
such that neither the model provider nor the cloud provider learn
the customer’s input.

We assume that the cloud provider can behave maliciously as
long as his actions stay hidden from the model provider and the
customer.

Experimental evaluation. We base our case study on earlier
work from Alder et al. [1] who placed the Duktape Javascript en-
gine [40] in an Intel SGX enclave and utilized it to provide Machine
Learning with the ConvNetJS Javascript library [21]. This setup
allows to provide machine learning predictions from Javascript
code executed inside an Intel SGX enclave. We adjust this system
to prototype a simple service where a user requests evaluations of
her input from a machine learning model inside the enclave. As a
platform for this service, we utilize a standard exemplary convo-
lutional neural network from the ConvNetJS library that classifies
images of handwritten digits from the MNIST dataset into their
machine counterpart of 0 to 9. We utilize the demo example to
perform the training of a neural network on a trusted machine
outside of the enclave and export the trained classifier to be used
by our MLaaS enclave to classify future inputs. Such a training step
is equivalent to a model provider training the neural network in a
trusted environment, as it has not been subject to ABI-level fault
injection by our attack yet. With the exported neural network and
the ConvNetJS library, the enclave aims to evaluate customer inputs
in a trusted environment. Finally, we simulate the customer with
repeated requests with MNIST input digits to the enclave and mea-
sure the reported class and the reported confidence of the neural
network associated with each class. Again, we perform the attack
by modifying the FPU CW and the MXCSR directly before entering
the enclave. To showcase the potential worst-case impacts of our
attack, we consider two distinct scenarios with different victim en-
clave binaries created using Intel SGX-SDK v2.7.1: one binary was
generated with default compilation flags and hence uses primarily
SSE instructions, whereas the other binary was generated by ad-
ditionally passing the -mfpmath=387 compilation flag to explicitly
instruct gcc to use the x87 FPU for floating-point computations.

Table 3 shows the results of 100 input evaluations for all rounding
modes when using the SSE, or the x87 FPU in extended or single-
precision mode. Evaluations with the x87 double-precision mode
are not shown as we found these results to be identical to runs with
the x87 extended-precision mode. All depicted configurations were
executed on the same set of inputs to ensure repeatability. For the
highlighted baseline scenario, i.e., SSE and the default rounding
mode of rounding to the nearest value, the trained model expectedly
predicts 100% of the provided digits correctly. When adversely
changing rounding modes through the untrusted ABI, small errors
in the order of 10−16 are clearly introduced. Importantly, however,
the results indicate that such small perturbations are insufficient to
affect the predicted digit class and the model still holds the same
overall accuracy. This observation also holds for the x87 victim
enclave binary when utilizing the x87 FPU in extended-precision
mode. However, when ABI-level attackers maliciously reduce the
FPU to a single-precision mode, the x87 victim enclave binary can
interestingly be coerced into one of two roles. When rounding to
nearest or rounding up, the trainedmodel will simply have a gravely
decreased accuracy with only 4% of the given input classified with
the correct digit. Alternatively, when forced to round down or
towards zero, the trained model will predict every given input as
the digit 2, regardless of the actual input. The average error in single-
precision mode lies in the range of 10−1, which easily scrambles
and rearranges the prediction percentages of each input evaluation.
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Table 3: MNIST data set predictions with the x87 FPU and with SSE for different rounding modes and precisions.
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Table 3: MNIST data set predictions with the x87 FPU and with SSE for different rounding modes and precisions.

Prediction class count (predicted digit) Average error compared to baseline
Rounding mode Accuracy 0 1 2 3 4 5 6 7 8 9 (SSE, rounding to nearest)

x8
7

Si
ng
le

pr
ec
is
io
n Round to nearest 4% 0 12 14 2 10 32 0 30 0 0 0.176046466527088413256407761764

Rounding down 8% 0 0 100 0 0 0 0 0 0 0 0.167963971736379585886211884826
Rounding up 4% 0 12 14 2 10 32 0 30 0 0 0.176046434092910736302073360093
Round to zero 8% 0 0 100 0 0 0 0 0 0 0 0.167963875521444400140680386357

x8
7

Ex
te
nd

ed
pr
ec
is
io
n Round to nearest 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000000554406357383

Rounding down 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000330733402271493
Rounding up 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000314522247559579
Round to zero 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000524157807065445

SS
E

Round to nearest 100% 9 14 8 10 14 8 9 14 3 11 0.0
Rounding down 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000330733402271493
Rounding up 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000314522247559579
Round to zero 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000524157807065445

Discussion. While the overall effectiveness of this attack was
shown to heavily depend on the way in which the enclave appli-
cation was compiled, which may not always be under the control
of the attacker, the case study clearly highlights the fallacy of the
shielding runtime to protect an ABI-compliant enclaved applica-
tion binary from its untrusted environment. The results especially
underline the threat for larger legacy 32-bit [17] or specialized ap-
plications that heavily rely on the x87 FPU, or even just require high
precision via the long double data type that might get compiled to
utilize the x87 FPU. Our example MNIST attack illustrates that, for
certain enclaved application binaries, an ABI-level adversary has
the potential to inject faults that purposefully and stealthily disrupt
the overall security objective of the outsourced application, with-
out needing to break any confidentiality or availability guarantees.
Furthermore, this attack can stealthily target specific customers to
allow a malicious cloud provider to degrade the neural network per-
formance for specific victims. Such a degradation in performance
may for instance allow the adversary to shift the customer’s favor
greatly towards a competing product or drive away customers from
the model provider while the adversary at the same time would
have little to no risk of being detected.

6 CASE STUDY: SPEC BENCHMARKS
To evaluate the theoretical impact of our ABI-level fault-injection
attacks on larger and more varied applications, we perform a larger-
scale synthetic attack evaluation on the SPEC CPU 2017 benchmark
programs outside of Intel SGX.While it is not straightforwardly pos-
sible to run the SPEC benchmark programs inside an SGX enclave,
we argue that the induced faults into floating-point computations
are independent of the surrounding execution environment and
a common benchmark will help to better understand the possible
impact of our attacks on an objective baseline computation.

Experimental evaluation. Our experimental setup runs out-
side Intel SGX and compiles the SPEC suite twice with gcc v6.2.0,
one time with default settings and one time with an additional

-mfpmath=387 flag to enforce the usage of the x87 FPU for a maxi-
mum demonstration of the attack’s impact. We then run the refer-
ence workload of the fprate class to generate meaningful evalua-
tion results. The fprate class of benchmarks is explicitly designed
around floating-point calculations and as such forms a relevant can-
didate to evaluate the impacts of our attack. It is important to note,
that the SPEC benchmark evaluation scripts already account for
floating-point errors by allowing a workload-specific error margin
before a benchmark is marked as failed. Similar to the previous case
studies, we perform the attack by executing fldcw and ldmxcsr
instructions before executing the SPEC benchmarks. As such, the
attacker performs the same steps as when attacking enclave code
as the execution of the SPEC benchmark can be seen as equivalent
to entering the enclave in this respect.

Table 4 shows the benchmarks in the fprate class and a marker
indicating whether the benchmark succeeded or failed for both the
default SSE binary, as well as for the x87 binary in single-precision
mode. In the highlighted baseline mode of to-nearest rounding with
the SSE, all SPEC benchmarks succeed. When maliciously changing
the rounding mode before execution of the SPEC benchmark, how-
ever, multiple tests already fail due to a too high accumulation of
floating-point errors. Furthermore, when considering a simulated
maximum-impact attack on an x87 binary in single-precision mode,
the attacker can, depending on the rounding mode, further degrade
floating-point computations and cause even more benchmarks to
fail. Under this attack, only 4 benchmarks in to-nearest rounding
mode or one benchmark in to-zero rounding mode still succeed.

Discussion. To better understand the nature of the induced
floating-point errors, we performed an additional manual analy-
sis of the 526.blender_r image rendering benchmark. While the
blender benchmark is designed to be resilient against expected
floating-point perturbations that do not exceed the internal error
threshold, we found that the x87 binary in single-precision mode
and with rounding towards zero can lead to subtle-yet-visible qual-
ity degradations in the rendered 3D images.

Figure 6 shows an example rendering with the difference be-
tween the expected original and an attacked scene marked in shades
of red. While most of the scene is colored in a light shade of red
that already stands for a small difference between the expected
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Discussion. While the overall effectiveness of this attack was
shown to heavily depend on the way in which the enclave appli-
cation was compiled, which may not always be under the control
of the attacker, the case study clearly highlights the fallacy of the
shielding runtime to protect an ABI-compliant enclaved applica-
tion binary from its untrusted environment. The results especially
underline the threat for larger legacy 32-bit [17] or specialized ap-
plications that heavily rely on the x87 FPU, or even just require high
precision via the long double data type that might get compiled to
utilize the x87 FPU. Our example MNIST attack illustrates that, for
certain enclaved application binaries, an ABI-level adversary has
the potential to inject faults that purposefully and stealthily disrupt
the overall security objective of the outsourced application, with-
out needing to break any confidentiality or availability guarantees.
Furthermore, this attack can stealthily target specific customers to
allow a malicious cloud provider to degrade the neural network per-
formance for specific victims. Such a degradation in performance
may for instance allow the adversary to shift the customer’s favor
greatly towards a competing product or drive away customers from
the model provider while the adversary at the same time would
have little to no risk of being detected.

6 CASE STUDY: SPEC BENCHMARKS
To evaluate the theoretical impact of our ABI-level fault-injection
attacks on larger and more varied applications, we perform a larger-
scale synthetic attack evaluation on the SPEC CPU 2017 benchmark
programs outside of Intel SGX.While it is not straightforwardly pos-
sible to run the SPEC benchmark programs inside an SGX enclave,
we argue that the induced faults into floating-point computations
are independent of the surrounding execution environment and
a common benchmark will help to better understand the possible
impact of our attacks on an objective baseline computation.

Experimental evaluation. Our experimental setup runs out-
side Intel SGX and compiles the SPEC suite twice with gcc v6.2.0,
one time with default settings and one time with an additional
-mfpmath=387 flag to enforce the usage of the x87 FPU for a maxi-
mum demonstration of the attack’s impact. We then run the refer-
ence workload of the fprate class to generate meaningful evalua-
tion results. The fprate class of benchmarks is explicitly designed

around floating-point calculations and as such forms a relevant can-
didate to evaluate the impacts of our attack. It is important to note,
that the SPEC benchmark evaluation scripts already account for
floating-point errors by allowing a workload-specific error margin
before a benchmark is marked as failed. Similar to the previous case
studies, we perform the attack by executing fldcw and ldmxcsr
instructions before executing the SPEC benchmarks. As such, the
attacker performs the same steps as when attacking enclave code
as the execution of the SPEC benchmark can be seen as equivalent
to entering the enclave in this respect.

Table 4 shows the benchmarks in the fprate class and a marker
indicating whether the benchmark succeeded or failed for both the
default SSE binary, as well as for the x87 binary in single-precision
mode. In the highlighted baseline mode of to-nearest rounding with
the SSE, all SPEC benchmarks succeed. When maliciously changing
the rounding mode before execution of the SPEC benchmark, how-
ever, multiple tests already fail due to a too high accumulation of
floating-point errors. Furthermore, when considering a simulated
maximum-impact attack on an x87 binary in single-precision mode,
the attacker can, depending on the rounding mode, further degrade
floating-point computations and cause even more benchmarks to
fail. Under this attack, only 4 benchmarks in to-nearest rounding
mode or one benchmark in to-zero rounding mode still succeed.

Discussion. To better understand the nature of the induced
floating-point errors, we performed an additional manual analy-
sis of the 526.blender_r image rendering benchmark. While the
blender benchmark is designed to be resilient against expected
floating-point perturbations that do not exceed the internal error
threshold, we found that the x87 binary in single-precision mode
and with rounding towards zero can lead to subtle-yet-visible qual-
ity degradations in the rendered 3D images.

Figure 6 shows an example rendering with the difference be-
tween the expected original and an attacked scene marked in shades
of red. While most of the scene is colored in a light shade of red
that already stands for a small difference between the expected
and calculated output, some parts of the screenshot are marked
more clearly such as the framed mountain scenery or the hills to its
left. In the zoomed in portion of the framed scenery, it can be seen
that the expected baseline image (left) shows a tree shadow and
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Table 4: Benchmarks with SPEC CPU 2017 under compilation with the x87 FPU and with the SSE, both shown for different
rounding modes. Listed are all workloads in the fprate test class and their result in the given configuration.

Rounding mode bwaves cactuBSSN namd parest povray lbm wrf blender cam4 imagick nab fotonik3d roms specrand

Si
ng
le

pr
ec
is
io
n To nearest Ë é é é é é Ë Ë é Ë é é é é

Downward é é é é é é é Ë é Ë é é é é
Upward é é é é é é é Ë é Ë é é é é
To zero é é é é é é é é é Ë é é é é

SS
E

To nearest Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë
Downward Ë é é Ë Ë Ë é é Ë Ë Ë é Ë é
Upward Ë é é é é Ë é Ë Ë Ë Ë é Ë é
To zero Ë é é Ë Ë Ë é é Ë Ë Ë é Ë é

Figure 6: Composite image of the Blender benchmark in
Spec CPU 2017 under attack by our FPU attacker in x87 sin-
gle precision mode when rounding towards zero. Areas in
red differ from the expected render image with the zoomed-
in area showing differences visible to the human eye.

a snow cover on the mountains. With the attack (right), however,
the shadow is missing and the contours of the mountains are lower,
making the snow cover to appear to float. It is evident that the
visual perturbations between the baseline and attacked rendering
are small, yet the fact that they are visible even for human observers
clearly illustrates the potential impact of insufficient ABI shield-
ing on the integrity of an outsourced enclave rendering service.
Such an attack may for instance be relevant when an untrusted
cloud provider has an economical incentive to stealthily degrade
the quality of refined 3D movie stills from a competitor.

From the SPEC analysis, we conclude that common applications
may widely fail when unexpectedly interfaced with a malicious ABI
and that attacker-induced floating-point errors in larger applica-
tions may propagate into subtle corruptions of the expected result.
The exact impact of such attacks will always be application-specific,
however, and require careful analysis by the attacker depending on
the x87 or SSE processor features used in the victim application.

7 CONCLUSIONS AND LESSONS LEARNED
With the wide availability of SGX in mainstream Intel processors,
an emerging software ecosystem of enclave shielding runtimes
has developed in recent years to ease the adoption process and
enable developers to largely transparently enjoy SGX protection
guarantees. But despite the considerable advances and developer
efforts behind these runtimes, API and ABI-level issues continue

to pose a threat to the promise of transparently shielding enclave
applications [22, 43].

In this work, we presented novel ABI-level attacks on the largely
overlooked x87 FPU and SSE state that allow an unprivileged adver-
sary to impact the integrity of enclaved floating-point operations, in
terms of the rounding mode, precision, and silently introduced NaN
values. We furthermore explored an innovative controlled-channel
attack variant that abuses attacker-induced floating-point excep-
tions to partially breach the confidentiality of otherwise private
enclaved floating-point operations. In a comprehensive analysis of
this vulnerability space in 7 popular runtimes, developed by both
academia and industry, we were able to provide a proof-of-concept
attack for 5 of them. Moreover, our analysis revealed that 2 pre-
viously patched production runtimes remained vulnerable to NaN
injection, further highlighting the intricacy of fully mitigating this
ABI-level attack surface. While the eventual impact of our FPU
poisoning attacks remains intrinsically application-dependent, we
have presented several case studies that illustrate the potential
exploitability in selected application binaries.

The fundamental issue can be mitigated by simply setting the
x87 FPU control word as well as the SSE MXCSR register into known
states when entering enclaved execution. Mitigating the followup
MMX issue requires an additional emms instruction to place the
FPU in the expected x87 mode. Regarding more principled mitiga-
tion strategies however, we explicitly recommend that shielding
runtimes perform a full xrstor to initialize the complete processor-
extended state whenever the enclave is entered. Although this may
come with a slightly increased cost in performance, we believe that
our findings underscore the need for shielding runtimes to move
away from selective register cleansing on an ad-hoc case-by-case
basis, in order to more systematically prevent any orthogonal ABI-
level issues that may arise in current or future processor extensions.
Six of the seven investigated enclave shielding runtimes have now
opted to perform such a full xrstor or in the case of Graphene
perform an equivalent fxrstor while SGX-LKL will inherit the
xrstor mitigation from Microsoft OpenEnclave in the future.

In the wider perspective, our work highlights the fallacy and chal-
lenges of implementing a high-assurance TEE on top of a complex
instruction set architecture like x86, with arguably too many ne-
glected legacy features and strict backwards compatibility.We argue
that, in an era where the research community is increasingly look-
ing into subtle microarchitectural CPU vulnerabilities [6, 25, 41, 42],
the strictly architectural attack surface of today’s complex x86 pro-
cessor features remains not sufficiently understood. As such, an
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interesting focus of future work could be to extend vulnerability as-
sessment tools such as TEEREX [8] that are predominantly focused
on API-level attack surfaces thus far, to ABI-level vulnerabilities.
Our analysis reveals that the high level of complexity and the large
amount of interconnected instructions in modern x86 architectures
make it particularly challenging to evaluate, investigate, and finally
mitigate ABI-level attacks. We urge the research community and
industry players to deepen their efforts of exploring TEE solutions
for alternative processor architectures, such as RISC-V, that are not
unnecessarily complex for historic reasons.
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2 #include <math.h>

3
4 long double ecall_acosf(int a) {

5 return acosl(a);

6 }

7 long double ecall_mul(long double a, long double b) {

8 return a*b;

9 }

Listing 2: Code to perform basic floating-point operations
inside the enclave.

1 <ecall_acosf >:

2 push %rbp

3 mov %rsp ,%rbp

4 sub $0x20 ,%rsp

5 mov %edi ,-0x4(%rbp)

6 fildl -0x4(%rbp)
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25 fmulp %st ,%st(1)

26 pop %rbp
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Listing 3: Compiled assembly of Listing 2.

B SEARCH ALGORITHM BASED ON
OVERFLOW EXCEPTIONS

This appendix lists the additional Algorithm 2 to recover secrets
for operands > 1. It functions analogous to Algorithm 1 described

in Section 4. We note that for brevity, both Algorithm 1 and Algo-
rithm 2 use standard floating-point variables for secret recovery.
However, if desired, these algorithm could be likely re-written (al-
though in a less clear manner) using the binary representation of
the double operands instead.

Algorithm 2: Binary search algorithm to recover a secret
value based on overflow exceptions for operands > 1
Result: recovered_secret
// Maximum representable double
max_double = 1.7976931348623157e308;
low = 1;
high = max_double;
cnt = 0;
while cnt < 100 do

mid = low / 2 + high / 2;
secret_mul(mid);
recovered_secret = max_double / mid;
cnt++;
if overflow exception raised then

// continue search in lower half
high = mid;

else
// continue search in upper half
low = mid;

end
end
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