Beyond BLE: Cracking
Open the Black-Box of RF
Microcontrollers

Adam Batori & Robert Pafford

whoami

Adam Batori (hcadam)
« HW Security Research

e Side Channels & Fault
Injection

* Reverse Engineer
* Silicon O@day Enjoyer

« DECT: 70569

Robert Pafford

* Forward & Reverse Engineer

* Experienced with Embedded
MCU Development

* Decent at staring at
undocumented registers to
figure out what they do

* GitHub: rjpbth

Background

* Market is flooded with low-cost RF MCUs
o ESP32, nRF, CC26xx, etc.
* RF hardware with enough DSP power for at least 1Mbps
Bluetooth modulation, potentially more
* No info on how the actual RF peripherals work for any of these
chips
e That’s not cool
* We wanted to change that

» | paid for the whole chip, | want to program the whole chip/

Tl SimpleLink

e Family of 2.4GHz and Sub-1GHz RF Transceivers and MCUs

o« CC13xx line for Sub-1GHz + MCU, CC26xx line for 2.4GHz +
MCU

o Some special PNs can do both Sub-1GHz and 2.4GHz in the same
chip
3 Main Generations
o CC13x0/CC26x0 "Chameleon” (~2015)
= ARM Cortex-M3 @ 48MHz

o CC13x2/CC26x2 "Agama" (~2018)
= ARM Cortex-M4F @ 48MHz

o CC13x4/CC206x4 "Thor" (~2022)
= ARM Cortex-M33 @ 48 MHz

The Target

71 SimpleLink CC1352R Dual-Band Wireless MCU

* Wanted a fully-featured chip for analysis
o Bluetooth LE 5
o ZigBee
o Other IEEE 802.15.4 mode
o Sub-GHz Proprietary mode (backwards compatible with CC1101)

» Flipper Zero transceiver
o Also supports 2.4 GHz Proprietary modes

* Investigate how modes are "locked out” on lower models
* Multi-band IC increases likelihood of flexible RF tuning

A Closer Look At Proprietary Radio
Format

pgi101010110010011110111100000001000010111000000010100011100010001

» Supports Various Modulation Schemes:
o 2-GFSK
« OOK
* Long Range (DSSS)

* Everything is abstracted away into a simple TX/RX of a data packet
» Higher-level features up to the implementer (auto-retry, segmentation, etc.)

* This is already better low-level access than most other RF chips
» Still far from being able to fully control PHY

Tl SmartRF Studio

E CC1352R_PROP - Device Control Panel (offline)

e TI| GUI tool to interact
directly with radio

e Generates C
headers that call radio
APls to be integrated in
user code

* Proprietary RF modes
are suspiciously flexible
compared to your
standard Bluetooth
MCU..

File Settings View Evaluation Board Help

p

Command View RF Param

DC/DC Enable

RF Parameters @

Frequency Symbol Rate

000 50.00000

6

Pa Count: | 100 |[_] Infinite

Length Config: ~ Varial

Preambl 4 ync Word Length ~ [Addr

Preamble Mode nd s th preamble bit

Add Seq. Number
© Random

Mot Connected

|| Cap-amray Tuning

kBaud

Offline Mode

Q48 2ENNN KH-

Radio State: N.A.

B Show All

Value

Versatile but Undocumented

* All of this

configurability b _Ame
requires an incredibly

versatile RF

subsystem \ g",z‘:sgi:;:q:::%
] Y Y m m (6 Interfaces
* No documentation

exists for the
hardware

* “Only to be used > ous

through Tl provided
A P | ” E Bus Master

Copyright © 2022, Texas Instruments Incorporated

How “Tl Provided APIs” Interact w/
RF

* All driver COde mUSt eXiSt in the SDK RF_runCmd(CMD_PROP_RX);
» Unlike other peripherals, RF uses a higher- Tlstoron
level API system instead of direct MMIO cormcr s
d river IRQ RX ENTRY DONE

* APl only passes messages between the
RF Command Packet Engine (CPE)

* Uses a mailbox system, sending

predefined commands to request variou
RF operations I —
* Initialize Protocol, Set Frequency, Transmit, —

callback(RF_EventCmdDone

Rece|Ve, etC. bL‘ - | RF_EventLastCmdDone);

The Command Packet Engine (CPE]

A Bonus CPU Core!

« Can’t™ be programmed by the user
« Gateway to the rest of the RF Subsystem

* Designed as a dedicated processor for real-time management of
the RF hardware and protocol stack without main CPU intervention

 CPU is an ARM Cortex-MO
* Runs from its own private ROM
* Has access to primary system bus
* Also gets extra privileges in bus fabric for accessing RF specific MMIO
ranges

» Wanted code execution on CPE to dump ROM for further analysis

Gaining Access to CPE

« CPE ROM is not mapped in CM4 address
space

« CPE SRAM is mapped at 0x2100_0000 ©
o 4K of mostly random/garbage data

* Need to do some blind exploitation

» SimpleLink SDK contains "patches” which
can be loaded into CPERAM to fix bugs or
enable new features

o Likely contains mechanism to load executable
code

RFC_RAM

Instance: RFC_RAM
Component: RFC_RAM
Base address: 0x21000000

Command and packet engine RAM (CPERAM) in the RF core

72 CPE_PATCH TYPE patchImageGenook|]| =
RF Patches o

75 0x218068569,

76 0x2100045d,

77 0x21888491 ,

* Opaque binary blobs released by Tl to add " 0x21000455,
SuU pport for additional features 30 ax2199954d:

. X d,

» Bluetooth Co-existence - Exiiﬁ?z-j

- DSSS D | e

* Proprietary Mode OOK Modulation = S22 T

80 0x21866789,

* Loaded into CPE private SRAM after boot i e octats.
» These are powerful enoughto allow TIto & eseerd
re_lease new pr_otocols for existing chips, o oot toon.
without changing the ROM 93 0xd60be79b,
a4 Ox78204c12,

* Understanding the pgtches is key to allow et
us to do the same thing 97 ex240f490e,
98 Ox43200224,

99 Ox82c83160,

1 AvwhcLfokhAdLfo

CPE PWN

* Trying to disassemble patch blob yielded some regions of valid
Thumb code

* Seemingly no encryption/signatures

 Let's replace code with a bunch of NOPs + jump to main
SYSRAM
o Small shellcode to copy chunks of CPE ROM to SYSRAM

it
00000000

GoooOO10
0OOOEO20
0OOOOE30
0OOOOE40
0OOOOO50
0OOOOE60
0OOOOO70
0OOOOO8O
elejoleleloele]
0OOOOOAE
0OOOOEBO
GooeeeCo
elelolelelol]e]
GOOOOOE
GOOOOOFO
eoOEO100

CPE ROM

00 01 02 63 04 65 06 07 08 09 BA OB OC OD OE OF Decoded Text

00 10 00 21 0D 01 00 0O DF 32 00 0O DF 32 00 00
00 00 00 00 00 6O 0O GO 00 00 00 OO 66 OO 00 00
00 00 00 00 00 6O 00 GO 00 00 00 OO DF 32 00 00
00O 00 00 00 00 OO 00 GG DF 32 00 0O DF 32 00 00
2B 0B 00 00 81 64 00 21 89 04 00 21 91 04 00 21
99 04 00 21 11 75 00 00 C3 32 00 00 Al 04 00 21
A9 04 00 21 B1 04 00 21 D1 04 00 21 D9 04 00 21
B9 04 00 21 C1 64 00 21 C9 04 00 21 C9 04 00 21
C9 04 00 21 AF 7D 00 0G0 AF 7D 00 00 AF 7D 00 00
00 FO F8 F8 00 FO 3A F8 10 3A 02 D3 78 (8 78 (1
FA D8 52 07 01 D3 30 C8 30 C1 01 D5 04 68 0C 60
70 47 1F B5 C0 46 CO 46 1F BD 10 B5 10 BD 70 47
00 00 00 00 01 61 03 05 08 0D 15 1F 2C 3C 4E 62
76 8A 9C AB B8 C1 C8 CB 00 00 00 00 01 81 02 03
05 08 0D 14 1C 26 32 3F 4C 58 64 6D 76 7C 80 82
00 23 00 24 00 25 00 26 10 3A 01 D3 78 C1 FB D8
52 07 00 D3 30 C1 00 D5 0B 60 70 47 60 FO DE F8

-

C&27LXdmv | .

% . & . 1.
T pG .

. S

Code Exec As a Service (CEAaS]

* [t would be nice to have an easy and reliable
way to run arbitrary code on CPE without
needing to load patches

e Found some undocumented mailbox
APl commands in the CPE ROM

* Including one Ox0811 which just calls a
function pointer without any checks

* Thank you TlI!

CPE Patches

» Structure of CPE patches can now be understood by RE'ing ROM

» Majority of ROM functions check if patch is enabled at entry
» Allows execution to be detoured to address written to patch table
« Even functions like IRQ/NMI handlers are patchable

» Patches are powerful enough to effectively replace CPE ROM
entirely

* Want to make our own patches now!
* Created a custom toolchain' to compile CPE patches
« Can reuse existing RFC mailbox system to talk to CPE custom firmware

» With access to CPE, we can reverse engineer the rest of the RF core

Part 2: Gaining Knowledge of the
Chip

3 TI__Gurur++ 317180 points

Yes and no.

We support custom firmware for the radio MCU, more features will be added to the chip by providing patches to the existing

code but we will not open this for customers. To write a patch requires knowledge of the chip far outside what we are going to
include in the documentation.

&

4

The RFE and MCE et REC e st

#define RFC_MCERAM BASE ©9x21008000
#Fendif

* SDK contains 2 other types of patches
» Referred to as "RFE" and "MCE" patches

 These do not disassemble to ARM code, and look vastly different from
CPE patches

* Also get loaded into separate RFERAM/MCERAM addresses
= Not listed in the TRM memory map

 Very little is documented about what these are
« Acronym only occurs once in TRM seemingly by accident
 The TRM doesn’t even give the full meaning of the acronym

MCE/RFE Override Entry

Table 25-20. Format of an MCE/RFE Override Mode Entry

entryType 11: Firmware-defined parameter
entrySubType 01: MCE/RFE override mode

If 1, copy the contents of the MDM ROM bank given by mceRomBank to RAM after MCE has
completed setup.

If 1, copy the contents of the RFE ROM bank given by feRomBank to RAM after MCE has
completed setup.

0: Run MCE from ROM
1: Run MCE from RAIM

MGE ROM bark to run from

0: Run RFE from ROM
bRfeUseRam 1- Run RFE from RAM

_ rfeRomBank RFE ROM bank to run from
rfeMode Mode to send to RFE

bMceCopyRam

bRfeCopyRam

biMicelUseRam

A Lucky Break

L . 3 mce_ram_bank.asm: 676 IIR K4:
¢ FOU nd One patCh In One SDK VerSIOn 3 mce_ram_bank.asm: 677 ;5 make a simple TIR y[n] = y[n-1]3/4 + x[n]/4
n n 3 mce_ram_bank.asm: 678 53 PS5 =y
Was nOt eXported pro perly 3 mce_ram_bank.asm: 679 33 Tirst calculate y[n-1]*3/4
3 mce_ram_bank.asm: 680 mov r5, ré 5 y[n-1] into ré
* Accidentally includes full assembly & merambacan a0 2 wicply by s
. i 3 mce_ram_bank.asm: 682 sub r5,ré 3 sub x1 to get multiply by 3
||St|ng for the MCE pa‘tCh Sou rce ; mce_ram_bank.asm: 683 add r2, re 3 add new sample _
3 mce_ram_bank.asm: 684 srx 2, ré 3 scale back to normal again
COde ;3 mce_ram_bank.asm: 685 mov reé, r5 ; copy to r5
3 mce_ram_bank.asm: 686 jmp HARD_DECISION B
° InC|Ud|ng a” headers © 3 mce_ram_bank.asm: 687 IIR K8:
3 mce_ram_bank.asm: 688 53 make a simple IIR y[n] = y[n-1]7/8 + x[n]/8
H . 3 mce_ram_bank.asm: 689 53 M5 =y
® Reveals neW |nStrUCt|On Set ;5 mce_ram_bank.asm: 690 ;3 first calculate y[n-1]*7/8
. 3 mce_ram_bank.asm: 691 mov r5, ré 5 y[n-1] into re
® ASSGmbly tO OpCOde matChlng (fOF mOSt 3 mce_ram_bank.asm: 692 sle 3, ré 3 multiply by 8
1 1 3 mce_ram_bank.asm: 693 sub r5,ré 3 sub x1 to get multiply by 7
InStrUCtlonS) 3 mce_ram_bank.asm: 694 add r2, r6 3 add new sample
NI 3 mce_ram_bank.asm: 695 srx 3, ré 3 scale back to normal again
¢ Fuzz the remalnlng OpCOde map ;5 mce_ram_bank.asm: 696 mov r6, r5 3 copy to r5
- I 3 mce_ram_bank.asm: 697 jmp HARD _DECISION B
* IO Space map for MCE DSP perlpherals 3 mce_ram_bank.asm: 698 NO ITR FILTER:
* Alot of interesting comments providing @ meranpeeam e o :

insight to how the modem works

The TopSM Architecture

Tl calls this architecture TopSM
* Simple RISC CPU Instruction Set

» 16-bit word-addressable architecture
16 registers
Small internal hardware stack solely for subroutine support
Read-only data/instruction bus (10-bit address)
* Point to 1 of 8 ROM banks, selected by CPE
» Can also boot from dedicated 2KiB RAM bank (used by patches)

« Seemingly no instruction to write to RAM &
» Alternatively, bus locks up if writing to RAM while running from RAM

/O bus (8-bit address)
« Allows control of a subset of the RF hardware in the chip

* Interacts with RF analog blocks and DSP accelerator peripherals

RFE/MCE Reverse Engineering

* Want to analyze the RFE and MCE ROMs

* Seemingly no way to read out the ROMs from the TopSM, as running
code from RAM disconnects the ROM from the bus

* Luckily, Tl built ROM-dumping functionality right into the

hardware!
e There’s also another undocumented CPE command for that

/f CMD_TOPSM COPY: Radio Copy TOPsm ROM-to-RAM Command
PACKED_ALIGNED TYPEDEF_STRUCT

1
rf0pCmd t rfOpCmd; /f radio command common structure
intd mceBank ; J/ W: ROM bank number for the MCE (@-5). Negative: Do not copy MCE ROM.
int& rfeBank; // W: ROM bank number for the RFE (8-5). Negative: Do not copy RFE ROM.
uintlé mceStopAddr; [/ W: Last 16-bit address top copy for MCE ROM. @: Copy entire ROM
uintlé rfeStophAddr; /f W: Last 16-bit address top copy for RFE ROM. @: Copy entire ROM

} rfOpCmd_TopsmCopy t;

TopSM Ghidra Plugin

2 poid FUN_ram_o

vold default FUM _ram_013e (void) 5 word wVarl;

vold 3 d JRM:=
FUN_ram_013e KREF[1]: 7| wWarl = MCEEVEN <0
ram:013e d2 ab outbclr ¢ MCEEVENTHM arl & Oxfffh;
ram:013f f outbclr . MCEEVENTM 9| wVarl = M ;
ram:0140 f: outhclr HMCEEVENTMSE 3| MCEEVEMTM arl & Oxfffe;
0141 11 utset JENTCLRO _:
0142 1; b MCEEW 2| MCEEVENTH farl & Oxfff7;
0143 \ W, . p— -
0144
ram: 0145 d0 68 jsr
ram: 0146] outhset
ram: Q0147 35 c0 111 wiarl i
MCEEVENTMSKD
ram 0148 KREF[1]: [
ram: 0 oo 7 walt
ram: 0149 75 output
ram:01da 38 bq outhset FTO
ram:014bh 74 bo outhset N ROBESO
ram:Ql4dc) outhset
ram: 0l4d 5 imp

HMCEEVENT!

} while(true }:

So what actually is the RFE/MCE?

* Now that we have all these tools and ROM dumgs, we can actually
answer the question: What is the RFE and MICE

 First of all: What do they actually stand for?
* RFE: RF Engine
« MCE: Modem Command Engine

* RFE is responsible for real-time control of the RF Front End

» Configuration
e BRSSI Estimation
 Automatic Gain Control

 MCE is responsible for real-time control of the Modem block
* Handles some configuration of modem settings
» On-the-fly configuration of the various DSP accelerator blocks
» Sequencing the various stages of packet transmission/reception

A Quick Review

 Full code execution on the CPE with ROM to map various patch
ocations to code to enable full access to RF MMIO registers

* Instruction map of MCE/RFE CPUs & ROMs to understand the
default configuration of the RF hardware

» Register map for MCE

* Very useful as this is where the interesting DSP blocks are that can be
used to implement new protocols/features

* Good guesses for the rest of the RF subsystem based on
CPE/RFE reverse engineering and analyzing patents

Part 3: The RF Subsystem

RF "Analog” Section

* Based on All-Digital "ADPLL" architecture
o Digital LO
o Digital Mixer + IQ ADC chain
o Digital Transmitter modulator
* Tries to move as much of the RF subsystem into digital as possible
o Reduced cost, complexity, and variability vs. traditional analog architecture

* Most of the processing occurs in DSP hardware accelerators,
coordinated by a real-time processor (the MCE)

* Quite complex, but luckily lots of information available in patents!

oUS 9,473,155 B2
oUS 8,045,670 B2

RF "Analog”™ Section

PHASEDOMAIN| DCO 56
CALCULATION

-
|
' (ASIP) e
SRAM | z
‘s
69

DIGITAL
BASEBAND
PROCESSOR

62

SCRIPT
PROCESSOR

N CURRENT
65 SAMPLER

I

I

I

I

I

I

¥ Dy
K o (=~
I

I

I

POWER RF BUILT-IN SELF
MANAGEMENT (PM) [™-34 TEST (RFBIST)

L —

BATTERY
MANAGEMENT +
; 6
32

=V
8-’_f

RF "Analog” Section

COMPLEX
PULSE
SHAPING
FILTER DATA FCW

AMPLITUDE CONTROL
WORD (ACW)

FREQUENCY ERROR LOOP
CHANNEL FREQUENCY " AcCUMULATOR FILTER
FREQUENCY DETECTOR 140
COMMAND 6
WORD (FCW) felkl

DCO GAIN
NORMALIZATION

FIG. 6

DSP Modem

CPE ROM Masking

* There are several chips in the SimpleLink family, all with slightly
different features enabled
« Some support only Bluetooth, others enable IEEE 802.15.4 support, some
support all of the available protocols

e Each variant is very likely the same die, just with features fused off

» We noticed some jumps in CPE ROM that go to pages of all OxFF's
e But on other variants, code exists there for a certain supported protocol

 CPE ROM checks "supported protocols” OTP value before jumping

» Patches can override these checks

* As a secondary protection measure, ROM pages for unsupported protocols
are disabled in HW based off OTP bitmask

Part 4: Custom RF Firmware

| paid for the whole Microcontroller * I'm gonna use
the whole Microcontroller

Creating Custom RF Patches

* We can now implement custom protocols in MCE!

* For this example, we are going to implement a Narrowband FM
Demodulator with the SimpleLink
* This is an analog modulation scheme

* The SimpleLink does not natively support any form of analog
modulation

* Leverage IQ receiver architecture to demodulate

Custom NBFM Patch
[bepioss | [woE curompa |
-]

’.(_-(7-(_-‘
-

TopSM Toolchain

 MCE patches coul/d be written by hand
» Easier to work in native assembly

* Wrote a TopSM assembler toolchain for developing MCE
patches

* Even managed to catch a syntax error in TI's MCE patch that was
missed

GitHub: https://qgithub.com/rjp5th/beyond-ble-tools

https://github.com/rjp5th/beyond-ble-tools

Future Work

* Explore full capabilities of the device
* Frequency tuning range, analog front-end bandwidth, etc.

 Continue RE of Modem DSP Blocks
e Custom TX

* Path to ultra-low cost single-chip SDR

* RF core can pass raw |Q samples to CM4 for more advanced
processing

* Other chips in SimpleLink family
« CC32xx Wi-Fi transceiver

Putting it All Together

e Demo of NBFM receiver!

Thank Youl

Q&A

	Slide 1: Beyond BLE: Cracking Open the Black-Box of RF Microcontrollers
	Slide 2: whoami
	Slide 3: Background
	Slide 4: TI SimpleLink
	Slide 5: The Target
	Slide 6: A Closer Look At Proprietary Radio Format
	Slide 7: TI SmartRF Studio
	Slide 8: Versatile but Undocumented
	Slide 9: How “TI Provided APIs” Interact w/ RF
	Slide 10: The Command Packet Engine (CPE)
	Slide 11: Gaining Access to CPE
	Slide 12: RF Patches
	Slide 13: CPE PWN
	Slide 14: CPE ROM
	Slide 15: Code Exec As a Service (CEAaS)
	Slide 16: CPE Patches
	Slide 17: Part 2: Gaining Knowledge of the Chip
	Slide 18: The RFE and MCE
	Slide 19: MCE/RFE Override Entry
	Slide 20: A Lucky Break
	Slide 21: The TopSM Architecture
	Slide 22: RFE/MCE Reverse Engineering
	Slide 23: TopSM Ghidra Plugin
	Slide 24: So what actually is the RFE/MCE?
	Slide 25: A Quick Review
	Slide 26: Part 3: The RF Subsystem
	Slide 27: RF "Analog" Section
	Slide 28: RF "Analog" Section
	Slide 29: RF "Analog" Section
	Slide 30: DSP Modem
	Slide 31: CPE ROM Masking
	Slide 32: Part 4: Custom RF Firmware
	Slide 33: Creating Custom RF Patches
	Slide 34: Custom NBFM Patch
	Slide 35: TopSM Toolchain
	Slide 36: Future Work
	Slide 37: Putting it All Together
	Slide 38: Thank You!

