
Adam Batori & Robert Pafford



Adam Batori (hcadam)
• HW Security Research
• Side Channels & Fault 

Injection
• Reverse Engineer
• Silicon 0day Enjoyer

• DECT: 70569

Robert Pafford
• Forward & Reverse Engineer
• Experienced with Embedded 

MCU Development
• Decent at staring at 

undocumented registers to 
figure out what they do

• GitHub: rjp5th



• Market is flooded with low-cost RF MCUs
oESP32, nRF, CC26xx, etc.

• RF hardware with enough DSP power for at least 1Mbps 
Bluetooth modulation, potentially more

• No info on how the actual RF peripherals work for any of these 
chips
• That’s not cool
• We wanted to change that

• I paid for the whole chip, I want to program the whole chip!



• Family of 2.4GHz and Sub-1GHz RF Transceivers and MCUs
• CC13xx line for Sub-1GHz + MCU, CC26xx line for 2.4GHz + 

MCU
oSome special PNs can do both Sub-1GHz and 2.4GHz in the same 

chip
• 3 Main Generations

oCC13x0/CC26x0 "Chameleon" (~2015)
▪ ARM Cortex-M3 @ 48MHz

oCC13x2/CC26x2 "Agama" (~2018)
▪ ARM Cortex-M4F @ 48MHz

oCC13x4/CC26x4 "Thor" (~2022)
▪ ARM Cortex-M33 @ 48 MHz



TI SimpleLink CC1352R Dual-Band Wireless MCU
• Wanted a fully-featured chip for analysis

oBluetooth LE 5
oZigBee
oOther IEEE 802.15.4 mode
oSub-GHz Proprietary mode (backwards compatible with CC1101)

▪ Flipper Zero transceiver
oAlso supports 2.4 GHz Proprietary modes

• Investigate how modes are "locked out" on lower models
• Multi-band IC increases likelihood of flexible RF tuning



• Simple TX/RX Command Format:

• Supports Various Modulation Schemes:
• 2-GFSK
• OOK
• Long Range (DSSS)

• Everything is abstracted away into a simple TX/RX of a data packet
• Higher-level features up to the implementer (auto-retry, segmentation, etc.)

• This is already better low-level access than most other RF chips
• Still far from being able to fully control PHY



• TI GUI tool to interact 
directly with radio

• Generates C 
headers that call radio 
APIs to be integrated in 
user code

• Proprietary RF modes 
are suspiciously flexible 
compared to your 
standard Bluetooth 
MCU…



• All of this 
configurability 
requires an incredibly 
versatile RF 
subsystem

• No documentation 
exists for the 
hardware

• “Only to be used 
through TI provided 
API”



• All driver code must exist in the SDK
• Unlike other peripherals, RF uses a higher-

level API system instead of direct MMIO 
driver

• API only passes messages between the 
RF Command Packet Engine (CPE)

• Uses a mailbox system, sending 
predefined commands to request various 
RF operations
• Initialize Protocol, Set Frequency, Transmit, 

Receive, etc.



• A Bonus CPU Core!
• Can’t be programmed by the user

• Gateway to the rest of the RF Subsystem
• Designed as a dedicated processor for real-time management of 

the RF hardware and protocol stack without main CPU intervention
• CPU is an ARM Cortex-M0

• Runs from its own private ROM
• Has access to primary system bus
• Also gets extra privileges in bus fabric for accessing RF specific MMIO 

ranges
• Wanted code execution on CPE to dump ROM for further analysis



• CPE ROM is not mapped in CM4 address 
space

• CPE SRAM is mapped at 0x2100_0000 
o 4K of mostly random/garbage data

• Need to do some blind exploitation
• SimpleLink SDK contains "patches" which 

can be loaded into CPERAM to fix bugs or 
enable new features
o Likely contains mechanism to load executable 

code



• Opaque binary blobs released by TI to add 
support for additional features
• Bluetooth Co-existence
• DSSS
• Proprietary Mode OOK Modulation

• Loaded into CPE private SRAM after boot
• These are powerful enough to allow TI to 

release new protocols for existing chips, 
without changing the ROM

• Understanding the patches is key to allow 
us to do the same thing



• Trying to disassemble patch blob yielded some regions of valid 
Thumb code

• Seemingly no encryption/signatures
• Let's replace code with a bunch of NOPs + jump to main 

SYSRAM
oSmall shellcode to copy chunks of CPE ROM to SYSRAM





• It would be nice to have an easy and reliable 
way to run arbitrary code on CPE without 
needing to load patches

• Found some undocumented mailbox
API commands in the CPE ROM

• Including one 0x0811 which just calls a 
function pointer without any checks

• Thank you TI!



• Structure of CPE patches can now be understood by RE'ing ROM
• Majority of ROM functions check if patch is enabled at entry

• Allows execution to be detoured to address written to patch table
• Even functions like IRQ/NMI handlers are patchable

• Patches are powerful enough to effectively replace CPE ROM 
entirely

• Want to make our own patches now!
• Created a custom 'toolchain' to compile CPE patches
• Can reuse existing RFC mailbox system to talk to CPE custom firmware

• With access to CPE, we can reverse engineer the rest of the RF core





• SDK contains 2 other types of patches
• Referred to as "RFE" and "MCE" patches
• These do not disassemble to ARM code, and look vastly different from 

CPE patches
• Also get loaded into separate RFERAM/MCERAM addresses

▪ Not listed in the TRM memory map

• Very little is documented about what these are
• Acronym only occurs once in TRM seemingly by accident
• The TRM doesn’t even give the full meaning of the acronym





• Found one patch in one SDK version 
was not exported "properly"

• Accidentally includes full assembly 
listing for the MCE patch source 
code
• Including all headers 

• Reveals new instruction set
• Assembly to opcode matching (for most 

instructions)
• Fuzz the remaining opcode map
• IO-space map for MCE DSP peripherals
• A lot of interesting comments providing 

insight to how the modem works



• TI calls this architecture TopSM
• Simple RISC CPU Instruction Set

• 16-bit word-addressable architecture
• 16 registers
• Small internal hardware stack solely for subroutine support
• Read-only data/instruction bus (10-bit address)

• Point to 1 of 8 ROM banks, selected by CPE
• Can also boot from dedicated 2KiB RAM bank (used by patches)
• Seemingly no instruction to write to RAM

• Alternatively, bus locks up if writing to RAM while running from RAM
• I/O bus (8-bit address) 

• Allows control of a subset of the RF hardware in the chip

• Interacts with RF analog blocks and DSP accelerator peripherals



• Want to analyze the RFE and MCE ROMs 
• Seemingly no way to read out the ROMs from the TopSM, as running 

code from RAM disconnects the ROM from the bus

• Luckily, TI built ROM-dumping functionality right into the 
hardware!
• There’s also another undocumented CPE command for that





• Now that we have all these tools and ROM dumps, we can actually 
answer the question: What is the RFE and MCE?

• First of all: What do they actually stand for?
• RFE: RF Engine
• MCE: Modem Command Engine

• RFE is responsible for real-time control of the RF Front End
• Configuration
• RSSI Estimation
• Automatic Gain Control

• MCE is responsible for real-time control of the Modem block
• Handles some configuration of modem settings
• On-the-fly configuration of the various DSP accelerator blocks
• Sequencing the various stages of packet transmission/reception



• Full code execution on the CPE with ROM to map various patch 
locations to code to enable full access to RF MMIO registers

• Instruction map of MCE/RFE CPUs & ROMs to understand the 
default configuration of the RF hardware

• Register map for MCE
• Very useful as this is where the interesting DSP blocks are that can be 

used to implement new protocols/features

• Good guesses for the rest of the RF subsystem based on 
CPE/RFE reverse engineering and analyzing patents





• Based on All-Digital "ADPLL" architecture
o Digital LO
o Digital Mixer + IQ ADC chain
o Digital Transmitter modulator

• Tries to move as much of the RF subsystem into digital as possible
o Reduced cost, complexity, and variability vs. traditional analog architecture

• Most of the processing occurs in DSP hardware accelerators, 
coordinated by a real-time processor (the MCE)

• Quite complex, but luckily lots of information available in patents!
o US 9,473,155 B2
o US 8,045,670 B2









• There are several chips in the SimpleLink family, all with slightly 
different features enabled
• Some support only Bluetooth, others enable IEEE 802.15.4 support, some 

support all of the available protocols

• Each variant is very likely the same die, just with features fused off
• We noticed some jumps in CPE ROM that go to pages of all 0xFF's

• But on other variants, code exists there for a certain supported protocol

• CPE ROM checks "supported protocols" OTP value before jumping
• Patches can override these checks
• As a secondary protection measure, ROM pages for unsupported protocols 

are disabled in HW based off OTP bitmask





• We can now implement custom protocols in MCE!
• For this example, we are going to implement a Narrowband FM 

Demodulator with the SimpleLink
• This is an analog modulation scheme
• The SimpleLink does not natively support any form of analog 

modulation
• Leverage IQ receiver architecture to demodulate





• MCE patches could be written by hand
• Easier to work in native assembly

• Wrote a TopSM assembler toolchain for developing MCE 
patches
• Even managed to catch a syntax error in TI’s MCE patch that was 

missed

GitHub: https://github.com/rjp5th/beyond-ble-tools

https://github.com/rjp5th/beyond-ble-tools


• Explore full capabilities of the device
• Frequency tuning range, analog front-end bandwidth, etc.

• Continue RE of Modem DSP Blocks
• Custom TX

• Path to ultra-low cost single-chip SDR
• RF core can pass raw IQ samples to CM4 for more advanced 

processing

• Other chips in SimpleLink family
• CC32xx Wi-Fi transceiver



• Demo of NBFM receiver!



Q&A


	Slide 1: Beyond BLE: Cracking Open the Black-Box of RF Microcontrollers
	Slide 2: whoami
	Slide 3: Background
	Slide 4: TI SimpleLink
	Slide 5: The Target
	Slide 6: A Closer Look At Proprietary Radio Format
	Slide 7: TI SmartRF Studio
	Slide 8: Versatile but Undocumented
	Slide 9: How “TI Provided APIs” Interact w/ RF
	Slide 10: The Command Packet Engine (CPE)
	Slide 11: Gaining Access to CPE
	Slide 12: RF Patches
	Slide 13: CPE PWN
	Slide 14: CPE ROM
	Slide 15: Code Exec As a Service (CEAaS)
	Slide 16: CPE Patches
	Slide 17: Part 2: Gaining Knowledge of the Chip
	Slide 18: The RFE and MCE
	Slide 19: MCE/RFE Override Entry
	Slide 20: A Lucky Break
	Slide 21: The TopSM Architecture
	Slide 22: RFE/MCE Reverse Engineering
	Slide 23: TopSM Ghidra Plugin
	Slide 24: So what actually is the RFE/MCE?
	Slide 25: A Quick Review
	Slide 26: Part 3: The RF Subsystem
	Slide 27: RF "Analog" Section
	Slide 28: RF "Analog" Section
	Slide 29: RF "Analog" Section
	Slide 30: DSP Modem
	Slide 31: CPE ROM Masking
	Slide 32: Part 4: Custom RF Firmware
	Slide 33: Creating Custom RF Patches 
	Slide 34: Custom NBFM Patch
	Slide 35: TopSM Toolchain
	Slide 36: Future Work
	Slide 37: Putting it All Together
	Slide 38: Thank You!

