

BlinkenCity

Radio-controlling street lamps and power plants

Fabian Bräunlein & Luca Melette | 28.12.2024

Disclaimer

Educational Purpose Only. The content of this presentation is intended solely for informational and educational purposes and to warn of the risks associated with the presented security vulnerabilities.

Responsible Disclosure. Any vulnerabilities discovered were reported to the appropriate parties through responsible disclosure practices.

Audience Responsibility. We do not encourage, support, or endorse the abuse of any vulnerabilities discussed. Attendees are responsible for ensuring that their actions comply with all legal and ethical standards. The presenters are not liable for any misuse of the information shared.

Let the research begin: once upon a time, we found an open street lamp in Berlin...

We found a radio-controlled switch for the street light!

Funkrundsteuerung is a nation-wide system able to control devices with longwave radio

Who delivers the control signal?

Through internet research we found that Funkrundsteuerempfänger are **managed by energy supply companies through a single company named EFR**, controlling devices in multiple EU countries.

How are they controlled?

Control messages (telegrams) are sent via **high power** (100kW) and **low frequency** transmitters, covering a good part of central Europe. Two rather obscure low bitrate protocols are used:

- Versacom (DIN 43861-301/401)
- Semagyr-TOP (DIN 43861-302/402)

https://www.ptb.de/cms/fileadmin/internet/_processed_/csm_Empfangskarte_Langwellenfunk_616767aa0d.jpg

Devices are in: AT, CZ, DE, HU, SK

EFR longwave transmitters provide a one-way channel between energy suppliers and devices

Besides street lights, the EFR ecosystem is applied to a variety of use cases

https://commons.wikimedia.org/wiki/File:SolarPowerPlantSerpa.jpg

Tariff switching

Night tariff

Day tariff

https://commons.wikimedia.org/wiki/File:Economy_7_Meter_and_Teleswitcher.JPG

Weather forecasts

- Weather stations •
- Predictive heating and
- concrete core cooling

https://www.sigidwiki.com/images/a/ab/EFR_Metering_Billing_CIS_America.pdf

Load management

- Night storage heating
- Heat pumps
- Wall boxes

Custom devices

For example:

Food cooling systems

EFR für Bäcker, Metzger und für Gaststätten

Time source

- Regular time and date
- Precise time

"EFR-Zeit" ist jetzt auch gesetzliche Zeit Drei Langwellensender der Europäischen Funk-Rundsteuerung GmbH liefern ihre Zeitsignale jetzt mit aufwendiger PTB-Prüfung

https://www.ptb.de/cms/en/gateways/ptb-for-the-public/news/single-news.html

https://commons.wikimedia.org/wiki/File:Car2Go_Charging_Station_Stuttgart_2013_01.jpg

An attacker controlling power sources and loads could cause power grid instabilities

Source: efr.de

Meaningful power at stake

EFR lists several GigaWatts of both controlled power loads and power sources.

Example figures from 2009:

Customer	MW Controlled	Comment	
edis	2,100 MW	Wind Generation	
e.on Avacon	600 MW	Wind Generation	
WEMAG AG	25 MW	Wind Generation	
contraction energiequelles	230 MW	Wind Generation	
e-on Bayern	2,500 MW	Heating Systems	
Him Berlin, de	20 MW	Street Lighting	
All Companies	500,000 households	Tariff Switching	
envia	900 MW	Wind Generation, Solar & Biogas systems	

Blackout risks

Major blackouts happened in the US, and there are reports of growing instabilities in the EU grid

Following the current worldwide political tensions and cyber attack strategies, how likely can this ecosystem be abused to cause a power outage?

https://www.sigidwiki.com/images/a/ab/EFR_Metering_Billing_CIS_America.pdf https://www.vox.com/climate/23893057/power-electricity-grid-heat-wave-record-blackout-outage-climate

But before things get too serious... let's combine this information with some creativity

Project Blinkenlights By turning on and off lights programmatically, buildings become art exhibitions

Haus des Lehrers, Berlin 2001

Bibliothèque nationale de France/Arcade, Paris 2002

City Hall, Toronto 2008

We just got an idea!

What if Berlin becomes a giant screen? That would be... BlinkenCity!

Back to our investigation, radio transmissions can be observed with a real device or an SDR

Signal demodulation[1]: FSK-LSB with 170 Hz shift, 200 baud, 8E1 serial coding

[1] https://www.sigidwiki.com/images/a/ab/EFR_Metering_Billing_CIS_America.pdf https://www.bremerfunkfreunde.de/images/bilder/sdr/megaloop1.jpg https://www.rtl-sdr.com/wp-content/uploads/2016/08/RTLSDR_Front.jpg

Telegrams share a common header & trailer, but inner contents follow different standards

The first decoded telegram carries date and time information, and is read by all receivers

KiwiSDR already has a decoder for this, look inside: https://github.com/jks-prv/Beagle_SDR_GPS

Attack 1: Time machine Telegrams with spoofed date/time trigger programmed functions

Time is sent in plaintext, **without any integrity or replay protection**...

What happens if a device receives a telegram with a **timestamp in the past or in the future**?

Device time is updated, and timebased functions are triggered!

So, there is a way to control lights (probably not power plants), but **only all at once**

Reviving the job of a "lamplighter"

We built our own EFR replica lab to test various telegrams on different receivers

We acquired several used receivers from eBay

We created a near-field EFR emulator

P = Prolan, G = Landis+Gyr, Z = Langmatz Versacom

acom 📃 Semagyr

Now we are ready to play with remote commands, but we still need to find out how to craft one ©

Long wave systems have been designed as a cheaper alternative to ripple control over wire

Before we deep dive into the bits, let's understand how this technology came around

Year 1900 - Ripple Control

- Allows to remotely switch tariffs in electricity counters by adding tones ("ripple") over the 50 Hz main wave of electricity lines
- Multiple devices could be controlled by slowly sending a few bits
- Each country and vendor developed their own proprietary systems

Year 1990 - Radio Ripple Control

- Two of these protocols have been ported to radio waves, creating a cheaper alternative to powerline
- Later, some protocol extensions have been defined to cover new use cases

The following standards describe the used protocols

DIN 43861 "Rundsteuerempfänger" besteht aus:

- Teil 1: "für Einbau in Lichtmaste; Hauptmaße"
- Teil 2: "Hauptmaße"
- Teil 3: "Übertragungsprotokolle"
- Teil 301: "Übertragungsprotokolle Typ A"
- Teil 302: "Übertragungsprotokolle Typ B"

Funkrundsteuerempfänger

- Teil 4: "Übertragungsprotokolle"
- Teil 401: "Übertragungsprotokolle Typ A" V
- Teil 402: "Übertragungsprotokolle Typ B" S

Can be bought at DIN website

> Can be bought by calling VDE

VTelegrams seem to follow the standard, but addressing schemes need to be investigated

Decoding a Versacom (DIN 43861-401) telegram

Addressing schemes are hierarchical: not all groups need to be specified at once

Publicly available PDFs disclose the relation between address bits and power plants

Searching the internet we found documents that describe the device addressing and use cases

Classification of power plants by type and size

Nomenklatur

Eindeutige Kennzeichnung der Parametrierung: X_Y_Z (z. B. 2_III_45134)

- X Energieart (im Beispiel: Energieart 2 Deponiegas)
- Y Leistungsklasse (im Beispiel: Leistungsklasse III <500kW)
- Z Postleitzahl (im Beispiel: Postleitzahl 45134 Essen)

Leistungsklassengrenzen/Energieart

Alle Angaben in kW

		Energieart									
	1	1 2 3 4		5	6						
Leis- tungs- klasse	Windenergie Deponiegas Grubengas Klärgas Biomasse		Wasserkraft	Solare Strahlungs- energie (PV)	BHKW-/IKW- Anlagen mit konventionellen Energieträgern (z.B. Erdgas, Öl), KWK-gefördert	Geothermie					
	≥ 10.000	≥ 2.000	≥ 1.000	≥ 500	≥ 1.000	≥ 5.000					
I	$\geq 1.000 \text{ und} < 10.000$	≥ 500 und < 2.000	$\geq 500 \text{ und} < 1.000$	$\geq 100 \text{ und} < 500$	$\geq 100 \text{ und} < 1.000$	\geq 500 und < 5.000					
	< 1.000	< 500	< 500	< 100	< 100	< 500					

Mapping of address bits to relay#, device type & location

Adressierungsebene A

Unterscheidung der Energiearten:

- A1 Windenergie
- A3 Wasserkraft

Adressierungsebene B

Unterscheidung der Relais und Leistungsklassen:

B1	Relais 1, Leistungsklasse I
B 3	Relais 3, Leistungsklasse I
B9	Relais 1, Leistungsklasse II
B11	Relais 3, Leistungsklasse II
B17	Relais 1, Leistungsklasse III
B19	Relais 3, Leistungsklasse III

A2 Deponiegas, Grubengas, Klärgas, BiomasseA4 Solare Strahlungsenergie (PV)

B2	Relais 2, Leistungsklasse I
B4	Relais 4, Leistungsklasse I
B10	Relais 2, Leistungsklasse II
B12	Relais 4, Leistungsklasse II
B18	Relais 2, Leistungsklasse III
B20	Relais 4, Leistungsklasse III

Adressierungsebene C + D

Nol I I I I I I Cerman postoo	
	Je
1 45897 45881 45883 45884 45886 45888 45889 45891 45892 45894 45896 4589	45899
2 46236 46238 46240 46242 46244	
3 45964 45966 45968	

EVU values for different zones and energy providers

<u>Anwenderadresse</u>

Netzgebiet Nord - BOB1 Region A und B Netzgebiet Süd - BFB1 Region A und B Netzgebiet Süd - BFB2 Region C und D

Anwenderadresse ELE

BFB9

Association between relay# and power reduction

100% keine Reduzierung (K1)

- 60% Reduzierung auf maximal 60% der Leistung (K2)
- 30% Reduzierung auf maximal 30% der Leistung (K3)

0% Reduzierung auf 0% der Leistung – keine Einspeisung möglich (K4)

Aside of understanding group addresses, we could enumerate a large number of EVUs

EVU address

EVU and group addressing information can be found in FRE installation manuals (online PDFs)

Netzgebiet Nord – B0B1

Adressierungsebenen C und D (Matrix)

Unterscheidung der Einspeiseorte durch die Postleitzahl der EEG/KWK-Anlage. Region A

c	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	32139		32312	32339	32351	32361	32369		32609		33775	33790		33824	33829	
2	48477	48496			49074	49076	49078	49080	49082	49084	49086	49088	49090			
3	49124	49134	49143	49152	49163	49170	49176	49179	49186	49191	49196		49201	49205	49214	49219
4	49324	49326	49328		49356		49401	49406	49419	49434	49439	49448	49453	49457	49459	
5	49477	49479		49492	49497		49504	49509	49525	49536	49545	49549	49565	49577		
6	49584	49586	49593	49594	49596	49597	49599		49610	49626	49635	49637	49638			
7	44532	44534	44536				45711	45721	45731	45739		45768	45770	45772		
8	46282	46284	46286		46325	46342	46348	46354	46359		46414					
9	48143	48145	48147	48149	48151	48153	48155	48157	48159	48161	48163	48165	48167			
10	48249		48301	48308	48317	48329	48341	48366		48432		48527	48565	48599		48607
11	48612	48619	48624	48629	48653	48683	48691			48703	48712	48720	48727	48734	48739	
12	59192				59348	59368	59379	59387	59394	59399						
13	48268	48282	48291		48356	48369		48429	48431	48455	48465	48480	48485	48488		
14	48493	48499		48529	48531				49716	49733	49740	49744	49767			
15	49808	49809	49811		49824	49828	49832	49835	49838	49843	49844	49846	49847	49849		
16				27232	27245	27246	27248	27249	27251	27252	27254	27257	27259			

EVU a receiv	ddresse ed teleg	es in grams	A more leaked f
1235 alal ala3 ala7 alab alad a3a2 a3a3 a9a9 ac01 ac02 b040 b0a3 b0b0 b0b1 b0a1	blal bla2 blb0 blb1 blb3 blb5 blb6 blb8 blc2 b2a1 b2a2 b2b2 b2b8 b3b4 b3b8 b3b8	b3bc b4a0 b4b1 b4b2 b4b4 b4b5 b4c0 b4d0 b5a1 b5b5 eaea ec10 ece1 ece5 ede1	" <mark>43947</mark> " " zrspe " an: " las " fur " (
Siuc			

A more extensive list of EVUs leaked from EFR portal APIs

'43947': { < EVU address	
"zrspeicher":{	
"anzahlSP":16,	
"lastUpdateFromZR":"Dec	13,
"funktelegramme":{	
"9":{	
"infoteil":"",	
"prio":0,	
"status":-1,	
"anforderungsArt":0	,
"wdh":false,	
"platzNr":9,	
"wochentag":0,	
"tgID":0,	
"sendDate":0,	
"periodTgID":0,	
"sendTime":0	_

This leak has been fixed

This sounds quite useful, let's see if we can identify the right one for us!

Attack 2: Device EVU recovery Group A addressing can be abused to brute-force the actual EVU of a device

Based on the fact that group levels are hierarchical, a telegram **using** group-A only can select all devices belonging to the specified EVU

This attack can be used to disconnect real photovoltaic systems from the grid

Wait... just with a Flipper Zero?

Flipper Zero is a flexible tool that can be programmed to speak various radio protocols, including 125 kHz RFID

With a custom app, it can **send EFR telegrams** that are correctly received by nearby devices

StreetLight-B-Gone

Illustrative

Parody

S Moving to the second telegram standard, we could not easily map it to any message

Following the **Semagyr** standard, we tried to identify the correct radio messages

Documents indicate that payload is split across telegrams

Fragments include a sequence, header, CRC and padding:

Start

	k Bit	4 Bit	4 Bit	4 Bit	n-(12+k) Bi	t			
Start- impuls	Typ-B- Adresse	LN=1	Funktion	CRC1	Parameter				
			Impulsfo	lge 1					
Mid	dle								
	k Bit	4 Bit		n-(4+k) Bit					
Start- impuls	Typ-B- Adresse	LN=2		Parar	neter				
			Impulsfo	lge 2					
End									
	k Bit	4 Bit	x Bit	8 Bit	1 Bit				
	Typ_B-	I N-m	Parameter	CBC2	End-	1001			

So we assume Semagyr payloads must be somewhere else, but where?

To understand how telegrams are handled, we started looking at low level details

Langmatz and Landis+Gyr devices

- NXP/Motorola 68HC08
- SPI flash 95128
- Optional I2C RTC
- ULN2003 relay drivers
- Infrared serial port

This CPU implements certain security features to block code readout, but the **external flash** is **easy to dump**. Desolder it and use an Arduino or Raspberry PI to read it.

Prolan devices

- Microchip PIC18F46xx
- ULN2003 relay drivers
- Infrared serial port

Code protection of this chip family is **known to be broken**, potentially allowing full firmware dumps. The difficulty depends on the actual security fuse configurations.

Tracing communication on specific PCB lines enhanced further our device understanding

By monitoring a selection of CPU and flash pins, we could derive some key information

The standard HW reversing procedure

 Measure voltages at multiple points
 Check signals with an oscilloscope
 Connect all lines to a logic analyzer
 Let the device run, interact with it
 Attempt to decode captured bits to known protocols (SPI, I2C, serial)

In addition to passive device observation, getting access to the firmware can be a useful resource

Flash memory dump

By bypassing CRP[1], the whole chip can be read from the boot block

Original	1st Step	2nd Step							
Boot Block	Boot Block	Dumper	00000h 001FFh						
Block 0	Block 0	Block 0	00200h						
			01FFFh						
Block 1	Block 1	Block 1	02000h						
			03FFFh						
Block 2	Block 2	Block 2	04000h						
			05FFFh						
Block 3	Block 3	Block 3	06000h						
			07FFFh						
	Protected Firr	mware	08000h						
	Boot Block Erase								
	 Flashed Dumper firmware 								

Manual code analysis

Understanding the code can be more challenging than expected

Chip and peripheral emulation

Another way would be to emulate the device to debug it, but it is also not trivial

This path requires time and resources, is there a better alternative?

[1] https://www.meriac.com/dl/HID-iCLASS-security.pdf

What about that infrared port? All devices have it, so it must be important

Choosing the protocol

FRE documentation suggests **IEC 62056-21**

 but no reply using open source tools

Internet search reveals some tool names: **TooLIC** and **RPT01**

 but not available for download at vendor website

Trying random things

Sending various strings based on the IEC spec

 at all possible serial speed and parity configurations

Got some **single bytes back** at 9600bps

seemingly indicating an error condition

Without the right tools, it's hard to communicate to our devices over IR 🙁

Searching the internet, we eventually found the RPT01 parametrization software

We can now read some parts of the device configuration, that includes unique IDs

RPT01 configuration files include lists of addresses and commands with nice comments that explain their scope

Empfänger-Test LOOKS like	a device ID ×
Another Daten Identifikation FC28.B726	Rundsteuer-Wochentage 15/09 16/09 17/09 18/09 19/09 20/09 21/09 22/09
device /	
	Di
Geräteadresse 2'951'281	Mi
Anzahl SPU's 42	
Empfänger-Uhr	Fr
	Sa
(11.MM.00) 15.09.24	So 📕 🗌 🗌 🗌 🗌 💭 💭
	<u>sı</u>
Timo is	<u>\$2</u>
	- Teilprogramm-Kombination
synced	15/09 16/09 17/09 18/09 19/09 20/09 21/09 22/09
Switching	
schedule >	

Codierte	Befehle -			Straf	Senbeleuchtung LAN	G	
Name		DK	EIN	AUS	Adresse	Kommentar	^
H2RM		9	17	18	01-02 ++	München Halbnacht 2	
H2RR		9	17	18	01-03 ++++	Ostbayern Halbnacht 2	
H2RW		9	17	18	01-06 ++++	Würzburg Halbnacht 2	
H3RB		10	19	20	01-05 ++-++	Bayreuth Halbnacht 3	
H3RM		10	19	20	01-02 ++	München Halbnacht 3	
H3RR		<u> </u>	-B	20	01-03 ++++	Ostbayern Halbnacht 3	
H3RW	But wr	nat	Э	20	01-06 ++++	Würzburg Halbnacht 3	
H4RB	are the	se		22	01-05 ++-++		
H4RM	numbe	ers?		22	01.02 ++	And these symbols?	
H4RR		11	ZÌ	22	01-03 ++++	Ostbayern Halbnacht 4 Du	
H4RW		11	21	22	01-06 ++++	Würzburg Halbnacht 4 Du	
SBRB(L	.)	7	13	14	01-05 ++-++	Bayreuth Ganznacht	
SBRM(L	_)	7	13	14	01-02 ++	München Ganznacht	
SBRRN	(L)	7	13	14	01-04 +++	Schwandorf Ganznacht	
SBRRS	(L)	7	13	14	01-03 ++++	Eggenfelden Ganznacht	
SBRW(L)	7	13	14	01-06 ++++	Würzburg Ganznacht	
TSTR	-	7	13	14	01-01 ++	Tarif Straßenbeleuchtung	~

We still don't know how to use those device IDs and addresses...

S We improved our knowledge by digging into help pages and old documents

 \times

RPT01's built-in help pages are actually helpful

Hde Back Pint Options		Telegramm rückübersetze	n X
Content Ingen Search Content Ingen Search Content Ingen Search Content Sear	Inputsfolgen, kodierte imputsfolgen und Interpreterprogramm. Inputsfolgen wurden vom Rundsteuersender geschaft. Erne modafildigen it Rundsteueringfolgen wurden damit Latien geschaftet. Erne modafildige it Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Azaff der Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Belter mit 4 Stunden Admitzentil. Die Lange der Adersse und die Belter mit 4 Stunden Admitzentil der Aderse und die Belter der Belter der Aderse und die Aderse und die Belter der Belter der Belter der Aderse und die Aderse und die Belter der Belter der Belter der Belter der Belter der Belter die Aderse und die Belter der Belter	Telegramm E88001001204 Direktbefehl (14) Gesetzte Impulse: 1, 5, 20, 32, 3 "Telegramme ru feature yields co their parameter	Rückübersetzen Löschen 5,42 Schliessen

RPT01 allows encoding and Semagyr was proudly also decoding of payloads presented in 1993

Semagyr-TOP eine Erweiterung von Rundsteuersystemen

Von Hugo Hess, Zug/Schweiz *)

	TRE-Status	Pendenz	Pro	Staffa	HDHDFSS12	Befehl	To. Ht-To. Ht
3:	=aktiv,p=pas	ssiv, c=lös	chen)				
				04:00	XXXXXX	-806R	
			TO	06:00	XXXXXXXXXXX		01.10 31.03
				06:00	XXXXXXX.		01.04 30.09
		< •		11:30	XXXXXX		
		< •		12:46	XXXXXXXXXXX		
				13:00	XXXXX	+HOST	
	And States of Contract			16:30	XXXXXXXXXX	-HOST	
			10	16:50	XXXXXXXXX	+KBEL	
		< c	10	17:00	XXXX	+OBEL	
	and Party of			17 : 45	XXXXXXXXX	-KBEL	
	and the second			18:00	XXXXXXXXXX	+SBEL	
	200		10	28:00	XXXXXX.	+1103	
	State of			18:15	XXXXXXXXX	+TRS	01.08 31.08
	Cherry States and		10	22:00	XXXXXXXXX	-HT1	
				22:00	XXXXXXXXXXX	-1903	
	A TRUE DOLLAR			23:00	AXXXXXXX	-HUS1	
				23:00	XXX	-11402	
			Sec. 1. 181	23:05		-1801	
	and the second			23155	20101110401111	+1NHL	
	and the second second			23:55	XXXXXXXXXX	-SBEL	

https://www.tib.eu/en/search/id/tema: TEMAE93071412292/Semagyr-TOPeine-Erweiterung-von-Rundsteuersystemen

Patents reveal other details

Rundsteuerverfahren und Rundsteuerempfänge

Eine Menge von Handlungen, die von Rundsteuerempfängern auszuführen sind, sind in einer Rundsteuer-Sendezentrale in einer Liste von zeitlich festgelegten Befehlen formuliert und abgespeichert. In den Rundsteuerempfängern wird je ein Abbild desjenigen Teils der Liste abgespeichert, der demjenigen Teil der Handlungen entspricht, der vom betreffenden Rundsteuerempfänger durchzuführen ist. Die Liste ist vorzugsweise eine Sendezentrale-Zeitprogramm-Liste (SZPL), deren Zeilen (Z1 bis Z23) je eine Informations-Einheit enthalten. Das Abbild ist dann eine Empfänger-Zeitprogramm-Liste (EZPL1

https://patents.google.com/ patent/EP0588006A1

> **Concepts and** terminology

Combining all docs and features, we finally fully understood the Semagyr world ©

S Finally, received telegrams could be decoded and new ones can be crafted

Decoding a Semagyr-TOP (DIN 43861-402) telegram

Great, we understand addresses and program arguments, but what do programs do?

Programs can be found by guessing addresses; their behavior revealed through real-world tests

We need a way to map and classify the wide variety of programs being used to identify the useful ones

Attack 3: Relay program discovery Most devices store simple programs that can directly switch relays

)) FER-Telegrammgenerator (für Avacon Netz - FRSE)		
	Datei Hilfe		
Relays can be steered individually over radio	wirelession comp Port öffnen Port öffnen FAE Schaltbefehl konfigurieren (Mehrfachauswahl möglich) Relais Relais Relais	By sending these requests we can change relay states at will	Finally, we have a way to switch both Versacom and Semagyr devices!
Test program DK 25 can switch relays, no matter	Ki Ki Ki Ki Ki Ki Direkt-Schaltbefehle TEST TEST TEST Direkt-Schaltbefehle TEST DK25 ALS RESET Senden		LIVE DEMO
What address:	ektbefehl (14)		
	Name DK EIN AUS Adresse Nommentar 25 25 49 50 Ohne Adresse Testsendung 0310 10 19 20 A03 +++++++ Strassenbeleuchtung A 0510 10 19 20 A05 +++++ Strassenbeleuchtung B		

So what about the BlinkenCity idea?

Feasibility

- Radio-controlling individual street lamps is possible To display content, one needs to know the correct individual ID for each lamp:
 - Extract single addressing IDs from recordings
 - Read out individual ID via infrared

A MARKEN MARKEN ALL

- After finding one, enumerate consecutive IDs
- Map ID to location, potentially from a drone

Low "fps

Limitations

Low "fps" (~2 pixels/regions per second and sender)

- Requires sufficient sending power to cover the city
- Requires prior mapping from street lamp to location

Could be done (within limitations and with permissions!), probably best as a timelapse

"AskTheState" how many displays there are

While a few cities consider it sensitive information, others respond with more detail than asked for

ImgDenStaat Anfragen - Recherchen Klagen Kampagne	n	Über uns Newsletter ♥ Spenden ➡) Anmelden	Nacking 7
Anfragen (16)	Inform	lationstreineitsantragen	
Benorden Dokumente	"Steuerun	g von Straßenbeleuchtung* Suchen Anfrage erfolgreich * *	
Recherchen			
Handbuch der Informationsfreiheit	m	Stadtwerke Bielefeld / mobiel 🔊 am 01.04.2020	
Hilfe zu FragDenStaat und Informationsfreiheit		Details ~	
Zuständigkeitsbereiche Nordrhein-Westfaten (4) Niedersachsen (3) Thüringen (2) Schleswig-Hotstein (2) Bayern (2)			
Rheinland-Pfalz (1) Bremen (1) Sachsen (1)		Sehr	
		vielen Dank für Ihre Anfrage. Die Bielefelder Straßenbeleuchtung wird über eine Funk-	
		Rundsteueranlage ein- und wieder ausgeschaltet. Den Ein- bzw. Ausschaltimpuls erhält die An-	
		lage von zwei Dämmerungssensoren. Der eine Sensor ist in der Stadtmitte und der andere im	
		Bielefelder Süden installiert. Dies ist den unterschiedlichen Lichtverhältnissen in den Stadtgebie-	
		ten geschuldet, die durch den Kamm des Teutoburger Waldes getrennt sind. Je nachdem wel-	
		cher Sensor zuerst den Schaltimpuls ausgibt, wird die Anlage über den einen oder den anderen	
		Sensor geschaltet. So wird sichergestellt, dass die Straßen im gesamten Stadtgebiet zum glei-	
		chen Zeitpunkt ausgeleuchtet werden. Um auf die Trends der Smart City reagieren zu können,	
		soll die Funk-Rundsteueranlage perspektivisch durch ein modernes System abgelöst werden.	
		Weitere Technologien sind aktuell nicht produktiv im Einsatz.	
https://fragdenstaat.de/a	anfrage	/steuerung-von-straenbeleuchtung-bei-den-stadtwerken-bielefeld/#nachricht-475436	

Thanks to FragDenStaat, and Thomas Blinn for performing the requests!

Hamburg has **just** finished migrating **to** the "future-proof" radio ripple control system

radiocontrollable now!

Zukunftsfähiges System

Hamburg stellt Technik für Beleuchtungsanlagen um

26. August 2024 Pressemitteilung

In Hamburg erfolgt die Ansteuerung der öffentlichen Beleuchtungsanlagen seit vielen Jahren mithilfe der sogenannten Tonfrequenzrundsteuerung (TFR), kabelgebunden über das städtische Stromnetz. Die TFR-Technik wird seit Jahrzenten von Stromnetz Hamburg (SNH) bzw. den Vorgängerunternehmen in Hamburg als Steuersignal für verschiedenste Anwendungen zur Verfügung gestellt. Zum Beispiel beim Ein- und Ausschalten von Nachtspeicheröfen, Beleuchtungsanlagen bei privaten Kleingartenvereinen oder auch den öffentlichen Beleuchtungsanlagen. Die Technik ist in die Jahre gekommen und entspricht nicht mehr den aktuellen Bedürfnissen. Beim bevorstehenden Netzumbau des städtischen Stromnetzes wird die Technik daher nicht weiter verbaut werden. Die dazu genutzte Signalübermittlung wird von der SNH zum 31. Dezember 2024 endgültig abgeschaltet. Damit Hamburg zum Jahreswechsel nicht im Dunkeln steht, muss eine technische Alternative installiert werden. Hamburg Verkehrsanlagen installiert daher seit Dezember 2021 eine neue Ansteuerungstechnik auf Basis der Europäischen Funkrundsteuerung namens EFR.

Für die erfolgreiche Umsetzung mussten im Hamburger Stadtgebiet insgesamt 49.000 einzelne Empfänger ersetzt werden, die künftig über den Langwellenradioweg zentral von den Maststandorten bei Mainflingen bei Frankfurt am Main und Burg bei Magdeburg angesteuert werden und die rund 126.000 Beleuchtungsanlagen ein- oder ausschalten. Diese Ansteuerung geschieht in Hamburg

Our talk is too late for Hamburg, but maybe not for others?

In other news: Hiccup in Hesse

Im Südkreis wird es dunkel

Die Spekulationen über die Ursachen reichten von Einsparmaßnahmen bis zur leichteren Suche nach einem Brandstifter in Riedstadt oder einem Hackerangriff. Wie die Presses alle des zuständigen

Radio ripple controlled, "technical defect" (Not us!)

https://www.hamburg.de/politik-und-verwaltung/behoerden/bvm/aktuelles/pressemeldungen/2024-08-26-bvm-beleuchtungsanlagen-959032 https://www.echo-online.de/lokales/kreis-gross-gerau/landkreis-gross-gerau/grosse-teile-des-suedkreises-versinken-in-dunkelheit-4021448

Three conditions need to be met to cause grid instabilities

Now, radio ripple control telegrams have been reversed: is that sufficient to cause a blackout?

We are not experts, but we imagine that at least these 3 conditions have to be met:

A large enough amount of power has to be involved

- How much power is controlled via radio ripple receivers?
- How much power would need to be taken away to cause trouble?

The radio control signal has to be overcome/hijacked

Two options:

- Overpowering EFR signal with antennas in multiple areas. This seems not an easy task, but we will do a feasibility study on it
- Gain control of EFR's transmitters, either by hacking their IT infrastructure, or by physically breaching into the tower sites

Optimal timing has to be chosen

Some elements can affect the damage produced by the attack:

- How utilized are the controlled plants?
- Is there any real-time information about the current grid status?

EVUs use radio ripple control to manage small and medium solar plants in Germany

Radio ripple control is **widespread** and legally required for a large portion of PV **roof installations**

Installed power	Remote control	Type of ripple control
< 30kW	Optional. Demanded by some EVUs.	Controlled Power Estimate!
30 – 100kW	Required by law (EEG). Almost exclusively implemented via ripple control.	+
> 100kW	Required by law (EEG). More advanced "Fernwirktechnik" needs to be installed.	Radio Powerline Estimate based on manual research for 30 of the biggest power supply companies in Germany
	But does it mean that FREs are not in use in this case?	And how about very arge solar parks?

Still today, FREs are used to control also massive renewable power generation plants

https://www.youtube.com/watch?v=OaaLkQ0gzZ4; Video from 2021, confirmed to still be in use today

Solarpark Senftenberg/Schipkau

文A 2 languages ~

Article Talk

From Wikipedia, the free encyclopedia

Enough for ~200.000 households, or ~8 times Berlin street lighting

Solarpark Senftenberg/Schipkau is a 166 megawatt (MW)

photovoltaic power station located in Germany near the border of Senftenberg and Schipkau (near the village of Meuro). The plant was built on the now closed Meuro lignite mine^[1] and is the country's largest solar park. By now, the 3rd largest solar park hational solar project of the year in 2012.^[4]

The park consist of Solarpark Schipkau (72 MWp), Solarpark Senftenberg I (12 MWp) and Solarpark Senftenberg II & III (78 MWp). [5]

The PV system uses about 636,000 solar panels provided by Canadian Solar and 20k-string inverters from REFUsol. It is also the first solar park to use a 690VAC gridvoltage for some of REFUsol's 333k HV central inverters.

Solarpark Senftenberg/Schipkau

Several documents confirm the existence of >100kWp producers controlled by FREs

Technische Mindestanforderungen Umsetzung des Einspeisemanagements nach § 9 EEG für Erzeugungsanlagen

4/8 Seite: Stand: 09/2014

Wird bei PV-Anlagen das Signal zur Reduzierung der Einspeiseleistung über einen FRE übermittelt, kommen im Netzgebiet der Netze BW GmbH leistungsabhängig derzeit zwei unterschiedlich parametrierte FRE zum Einsatz. Bei der Bestellung ist sicherzustellen, dass der jeweils passende FRE bestellt und verwendet wird.

- Für alle PV-Anlagen, bis einschließlich 100 kW, wird ein Empfänger mit einer für das jeweilige Netzgebiet spezifischen Parametrierung eingesetzt.
- Alle PV-Anlagen, die gemäß § 9 Abs. 3 EEG als Anlagen mit mehr als 100 kW gelten. werden über einen FRE mit einer eigenen Parametrierung angesteuert.

Anschlussschema und Parametrierung eines ZZM 49.1000 **Funkrundsteuerempfängers**

	Teil – Seite 4/7
q	Fachbereich: DRZ-O-PD

für EEG/KWK-Anlagen zur Reduzierung der Einspeiseleistung

Alle Angaben in kW

	Energieart							
	1	2	3	4	5	6		
Leis- tungs- klasse	Windenergie	Deponiegas Grubengas Klärgas Biomasse	Wasserkraft	Solare Strahlungs- energie (PV)	BHKW-/IKW- Anlagen mit konventionellen Energieträgern (z.B. Erdgas, Öl), KWK-gefördert	Geothermie		
Ι	≥ 10.000	≥ 2.000	≥ 1.000	≥ 500	≥ 1.000	≥ 5.000		
П	$\geq 1.000 \text{ und} < 10.000$	$\geq 500 \text{ und} < 2.000$	$\geq 500 \text{ und} < 1.000$	$\geq 100 \text{ und} < 500$	$\geq 100 \text{ und} < 1.000$	\geq 500 und < 5.000		
III	< 1.000	< 500	< 500	< 100	< 100	< 500		

Im Netzgebiet der EWR Netz GmbH wird für das Einspeisemanagement die Funkrundsteuertechnik der Fa. EFR GmbH eingesetzt. Zur Umsetzung werden Funkrundsteuerempfänger (FRE) verwendet. Hierbei handelt es sich um technische Einrichtungen zur ferngesteuerten Reduzierung der Einspeiseleistung einer Erzeugungsanlage.

Bei einer Modulleistung von höchstens 100 kWp:

Mehrstufige Leistungsreduzierung (100 % - 60 % - 30 % - 0 %)

Alternative zum FRE (zulässig bei einer Modulleistung von höchstens 25 kWp)

Dauerhafte Reduzierung, d. h. Begrenzung der Wirkleistungseinspeisung auf 70 % der installierten Leistung ٠

Bei einer Modul- bzw. Generatorleistung von mehr als 100 kW(p): Mehrstufige Leistungsreduzierung (100 % - 60 % - 30 % - 0 %)

Die Syna GmbH realisiert das Netzsicherheitsmanagement mit Hilfe der sogenannten Funkrundsteuertechnik. Hierzu ist bei EEG- und KWK-Anlagen mit einer installierten elektrischen Leistung > 25 kW und < 950 kW ein Funkrundsteuerempfänger zu installieren.

Allgemeines

Die Avacon Netz GmbH setzt für die Stadtwerke Burg die neue Parametrierung ebenfalls unter Verwendung der alten Identifikationsnummer FAE6.3143 als Typ 6 UW031 SF43 ein.

für Avacon Netz GmbH nach alter Parametrierung:

Einspeisemanagement Typ IV für PV ≤ 100 kWp ... nur Relais 4 aktiv für 100% Einspeisemanagement Typ III Wind (alt PV ≤ 100kWp) ... alle Relais deaktiviert Einspeisemanagement Typ II für PV > 100 kWp ... nur Relais 4 aktiv für 100%

Our estimate is that 40 GWp of supply and 20 GW of load are controlled with FREs

We collected and correlated information from various sources to estimate FRE-controllable power

Much less than 60GW is needed to cause serious instabilities in the European grid

In theory, in a fully loaded European grid at 300 GW: 1 Hz change requires 18 GW imbalance

https://netzfreguenz.info/regelleistung

In practice, during an incident on May 17, 2021: 49.84 Hz after a sudden loss of **3.32 GW** of power

https://eepublicdownloads.entsoe.eu/clean-documentsnews/2022/220318_Final_report_Rogowiec_inciden

Sudden regional imbalances can also cause cascade effects!

Multiple deployment strategies can be leveraged to create a network of decentralized transmitters

How to overpower EFR transmitters?

Our calculations (together with a longwave expert) suggest that with:

- 550m antenna –
- **10kW** radio amplifier (~500€)
- 10kWp power station (~100€/day)
- **300km** distance to EFR tower the legitimate signal can be sufficiently **overpowered within 70-240 km**

Antenna r	mount option	Length	Price (€)	Limitations
High floor	A tall building from which one can drop a cable	50-150m	100	Fixed location
Kite	Kite models designed for aerial photography (KAP)		500	Requires wind
Balloon	Tethered weather balloons filled up with helium	Full size (550m)	١K	Helium refill, low wind
Drone	Heavy duty commercial or custom drones	Full size (550m)	3-30K	Short operational time
Trailer with mast	Civil or military trailers with a telescopic mast	40m	10K (used) 200K (new) 60/day	Slow to move, availability

Jammed Hijacked

Alternatively, an attacker could attempt to abuse EFR's own radio transmitters

Attack option 1: Remote access

Via internet recon, we identified:

- official customer portals and APIs
- information leaks on forgotten websites (now removed)
- outdated software, e.g. a 12-yearold Typo3 CMS (now fixed)

Attack option 2: Physical access

The radio transmitter sites do not seem to be particularly well secured

Hegal Instructions Let's adopt the perspective of an attacker

Inspired by this 32c3 talk, we will now discuss how a real attack to the grid could look like, assuming FRE control is possible

Step 1: Find good locations to place senders

Rogue radio transmitters should be close to power plants and away from real ones

https://www.smard.de/home/ueberblick; less visual, but more detailed and complete: https://www.marktstammdatenregister.de

Hijacked Safe Jammed

Attacker Radiated

Power (kW)

8.0

https://www.smard.de/home

https://www.netzampel.energy/home

52

Step 3: Perform the attack

1. Switch on all renewables

- With many renewables off, switch all of them on
- Reduces supply from uncontrolled power plants ("amplification attack")
- Wait for return to 50 Hz

2. Switch renewables off and loads on

Possible optimizations:

- Time it with the change of hour
- Multiple on-off-rounds synced with grid's resonance frequency
- Add an "FRE deactivation" message in the end and jam the frequency

In our opinion, this attack scenario has potential to cause grid instabilities

A large enough amount of power has to be involved

+

The radio control signal has to be overcome/hijacked

The biggest unknown.

However, with our estimate of FRE-controlled supply and load, the European grid could experience a never-before-seen unexpected loss of power The biggest obstacle.

Overpowering the signal with own transmitters requires a significant coordinated effort

For a state-sponsored attacker, hijacking of the actual transmitter might be the more plausible attack vector Optimal timing has to be chosen

Comparably trivial.

Public information about production and loads is available in real-time

Note: If an attack does not cause a blackout or brownout, it could still have short-term effects on energy prices and/or result in a network split

But we're not experts, so SPIEGEL asked one

Thanks to Prof. Dr. Albert Moser, university professor at "Institut für Elektrische Anlagen und Netze, Digitalisierung und Energiewirtschaft" at RWTH Aachen for taking the time to provide his assessment *"Ein Angriff in dieser Größenordnung könnte durchaus zum ersten europaweiten Stromausfall in der Geschichte führen"*

Translation: "An attack of this magnitude could indeed lead to the first Europe-wide power outage in history"

EFR took our disclosure seriously ... and involved their lawyers

2024-09-12: Reported our findings to EFR via email

2024-11-06: In-person meeting with EFR

- Some issues already known, reported by Prof. Dr. Christoph Ruland and Matthias Schneider from the University of Siegen in 2013 (mainly unencrypted/unauthenticated time stamp, our attack #1) ^[1]
- In 2015, an encrypted protocol replacement was developed, but "the market did not demand it"
- Use of FREs in large power plants was not intended and not known

Umsetzungspflicht. EFR hat im vergangenen Jahr eine Möglichkeit der Verschlüsselung der Langwellensignale erarbeitet, die implementiert werden kann, sobald der Markt dies fordert. Im laufenden Jahr ist ein Schwerpunkt die Sicherheit der Kommunikation im System der EFR zu verbessern, um hier Source: EFR "Jahresabschluss zum Geschäftsjahr" 2015

2024-11-07: Filed report to BSI, which forwarded it also to BNetzA and BMWK

2024-12-05: EFR told us they will inform customers next week and warn of FRE usage in large power plants

2024-12-10: EFR sent us a letter via their lawyers, urging us not to proceed with this talk and demanding removal of their company name, also from the Fahrplan talk description

2024-12-28: Public disclosure at 38C3

§ 130a Abs. 1 StGB erfüllen. Es handelt sich im buchstäblichen Sinne um "Illegal Instructions", was zwar dem Motto des diesjährigen 38C3 entsprechen mag, für Sie persönlich aber **erhebliche nachteilige Folgen** haben kann. Source: EFR lawyer's letter

Note: EFR quickly mitigated some low-hanging internet perimeter issues that we stumbled upon and reported

Last Minute Update:

EFR is now publicly denying the possibility to overpower their senders with a decentralized network

2024-12-10:

Diese Darstellung übergeht aber, welcher enorme technische Aufwand erforderlich ist, um flächendeckend ein stärkeres Signal als die Sendeanlagen unserer Mandantin auszusenden. Hierfür wären sehr viele geeignete Sender von **über 200m Höhe** erforderlich. Source: EFR lawyer's letter

2024-12-28:

Die EFR wiederum weist das Angriffsszenario mit den selbstgebauten, fliegenden Antennen strikt zurück. Die Firma schreibt auf SPIEGEL-Anfrage noch deutlicher: »Die Einschätzung, dass die Funkrundsteuerung über Langwelle großflächig manipuliert werden kann«, sei schlicht »falsch«.

> Source: https://www.spiegel.de/netzwelt/web/stromversorgung-koennten-hackerblackouts-ueber-funk-ausloesen-a-53c29240-425b-4603-852e-5alc0ale5400

While EFR **has agreed** with our assessment in their lawyer letter ("one would need many transmitters with >200m height"), they are **now outright denying** this possibility towards media

Our offer still stands: Let us validate it in a real-world test!

The way forward: Implement remote management using a more secure alternative

The rollout of iMSys started, but could speed up and it seems to prioritize the wrong targets

Initially planned for 2017, iMSys gateways will "soon" really be required in Germany (probably)

Letztverbraucher

https://ariadneprojekt.de/media/2024/10/Gesetzlicher-Smart-Meter-Rolloutplan.png

Takeaways

<u>ð</u>S

Radio ripple receivers can be locally abused for fraud (tariff switching, no power limitations)

Compromising receivers at scale could result in grid instabilities and potentially blackouts

iMSys rollout should speed up to replace radio ripple control devices in large power plants

In general, all legacy systems need scrutiny by security experts, so go and find the next one!

Our wish, if you're on the receiving side: Collaborate with good-faith researchers instead of threatening to sue them

Thanks to:

- Jakob Lell
- Maximilian Kirchmeier
- Dr. Markus Vester

Questions?

Contact us:

- fabian@positive.security
- luca@positive.security