
 38C3 - esp32-open-mac.be 1

Liberating Wi-Fi on the ESP32

Jasper Devreker - redfast00
Simon Neuenhausen - Frostie314159

 38C3 - esp32-open-mac.be 2

Who we are
Jasper Devreker 🇧🇪

(redfast00)

Embedded & security engineer

Simon Neuenhausen 🇩🇪
(Frostie314159)

Reverse engineer and Rust
developer

DECT: 8041

 38C3 - esp32-open-mac.be 3

Why?
● Hardware can do more than what the proprietary

library allows
– 802.11s mesh networking
– Apple Wireless Direct Link
– Nintendo DSi PictoChat

● Security auditability

 38C3 - esp32-open-mac.be 4

What is the ESP32?
● Low cost Wi-Fi/Bluetooth microcontroller (€2)∼

● Dual core, 520 KB RAM
● More than 1 billion sold
● Almost the entire SDK is open source

 38C3 - esp32-open-mac.be 5

What is Wi-Fi
● Marketing term for the

WLAN technology
specified in IEEE 802.11

● Operates on Frames
● Defines Layer 1 & 2

 38C3 - esp32-open-mac.be 6

How Wi-Fi works on the ESP32

 38C3 - esp32-open-mac.be 7

The current situation
● Closed source Wi-Fi stack
● Espressif ships binaries licensed under Apache
● API exposed in public header files
● Public API is well documented
● Wi-Fi hardware was licensed from Riviera Waves

 38C3 - esp32-open-mac.be 8

Reverse engineering
● Static vs dynamic
● On hardware vs in emulator

 38C3 - esp32-open-mac.be 9

Intro to hardware reversing
● Interaction with Wi-Fi peripheral happens via

MMIO
● There is a large undocumented hole in the

memory map → mostly related to Wi-Fi and BT

 38C3 - esp32-open-mac.be 10

Static analysis
● Ghidra now has

mainline Xtensa
support

● Espressif did not strip
function names

 38C3 - esp32-open-mac.be 11

Dynamic analysis on real HW
● Use a JTAG debugger to set breakpoints (2)
● Wi-Fi dongle in monitor mode to receive packets
● Problem: lots of other networks nearby

 38C3 - esp32-open-mac.be 12

Faraday cage
● Data passthrough via

fiber
● No power passthrough,

but battery
● at least 70 dB of

attenuation @ 2.4GHz

 38C3 - esp32-open-mac.be 13

Dynamic analysis in emulator
● Espressif already has QEMU fork for their HW
● added support for Wi-Fi peripheral based on

assumptions from static reversing
● added “execution tracing”: a stacktrace is saved on

every wifi peripheral access

 38C3 - esp32-open-mac.be 14

Tradeoffs of each method
Static

analysis
Debugging

HW Emulating HW

Breakpoints N/A 2 infinite

Guaranteed
correct Yes Yes No

Used for Finding exact
details

Verifying
assumptions

Finding general
direction

 38C3 - esp32-open-mac.be 15

Reverse engineering results
● The hardware does a lot for us

– Transmit packet
– Automatically send ACK to received packets
– Hardware cryptography, just tell it the keys
– Receive packets into memory

 38C3 - esp32-open-mac.be 16

Transmitting packets
● Write packet content to memory
● Write metadata to hardware registers (rate, length,

…)
● Write address of packet to hardware register
● Set TX bit on slot
● Wait for interrupt

 38C3 - esp32-open-mac.be 17

Receiving packets
● Write a linked list with each node pointing to a buffer

to receive packets in
● Every time a packet is received, an interrupt is called
● Recycle the buffers!
● But what about ACKs? 10 µs of time is not a lot of time

 38C3 - esp32-open-mac.be 18

Receive filters
● Avoid handling every packet in software
● Instead, only process packets we are interested in
● Hardware allows filtering based on RA / BSSID
● Automatically sends ACK to TA of matched packet

 38C3 - esp32-open-mac.be 19

Cryptography acceleration
● With WPA, every packet needs to be encrypted/decrypted
● Hardware does this for us; set the key, algo and MAC address

in one of the key slots
● When transmitting, tell the hardware what key slot index to

use to encrypt + set the Protected bit
● When receiving, it will automatically decrypt based on the

MAC address

 38C3 - esp32-open-mac.be 20

Now we need a MAC stack

 38C3 - esp32-open-mac.be 21

Ferris-on-Air
● Asynchronous IEEE 802.11 stack written in Rust
● Open Source
● Currently only supports the ESP32
● Uses modular interface design
● STA interface supports basic features

 38C3 - esp32-open-mac.be 22

FoA in the OSI model

 38C3 - esp32-open-mac.be 23

FoA’s Architecture

 38C3 - esp32-open-mac.be 24

The Lower MAC
● Divides access to the medium among the

interfaces
● Controls the channel
● Thin layer between hardware driver and upper

MAC

 38C3 - esp32-open-mac.be 25

Channel Locking

 38C3 - esp32-open-mac.be 26

What the STA interface can do
● Scanning
● Connecting
● Disconnecting
● User Data TX & RX

 38C3 - esp32-open-mac.be 27

What it can’t do (yet)
● Rate selection
● Encryption
● Broadcast protection
● Power save
● 40 MHz Operation
● Target Wake Time
● Fine Timing Measurement

● WPA-Enterprise
● AMSDU
● AMPDU
● QoS
● Long Range mode
● Channel State Information

 38C3 - esp32-open-mac.be 28

Future Work
● Implement missing features
● AP mode
● AWDL (AirDrop, Airplay)
● Mesh operation
● Indoor Navigation (maybe for c3nav?)

 38C3 - esp32-open-mac.be 29

Thanks to these people
● Zeus WPI
● Austin Conn
● Everyone at the fNordeingang
● The embassy and esp-hal projects
● Espressif

 38C3 - esp32-open-mac.be 30

Thanks for listening!

 38C3 - esp32-open-mac.be 31

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

