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Who we are
Jasper Devreker 🇧🇪

(redfast00)

Embedded & security engineer

Simon Neuenhausen 🇩🇪
(Frostie314159)

Reverse engineer and Rust 
developer

DECT: 8041
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Why?
● Hardware can do more than what the proprietary 

library allows
– 802.11s mesh networking
– Apple Wireless Direct Link
– Nintendo DSi PictoChat

● Security auditability
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What is the ESP32?
● Low cost Wi-Fi/Bluetooth microcontroller (  €2)∼

● Dual core, 520 KB RAM
● More than 1 billion sold
● Almost the entire SDK is open source
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What is Wi-Fi
● Marketing term for the 

WLAN technology 
specified in IEEE 802.11

● Operates on Frames
● Defines Layer 1 & 2
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How Wi-Fi works on the ESP32
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The current situation
● Closed source Wi-Fi stack
● Espressif ships binaries licensed under Apache
● API exposed in public header files
● Public API is well documented
● Wi-Fi hardware was licensed from Riviera Waves
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Reverse engineering
● Static vs dynamic
● On hardware vs in emulator
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Intro to hardware reversing
● Interaction with Wi-Fi peripheral happens via 

MMIO
● There is a large undocumented hole in the 

memory map → mostly related to Wi-Fi and BT
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Static analysis
● Ghidra now has 

mainline Xtensa 
support

● Espressif did not strip 
function names
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Dynamic analysis on real HW
● Use a JTAG debugger to set breakpoints (2)
● Wi-Fi dongle in monitor mode to receive packets
● Problem: lots of other networks nearby
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Faraday cage
● Data passthrough via 

fiber
● No power passthrough, 

but battery
● at least 70 dB of 

attenuation @ 2.4GHz
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Dynamic analysis in emulator
● Espressif already has QEMU fork for their HW
● added support for Wi-Fi peripheral based on 

assumptions from static reversing
● added “execution tracing”: a stacktrace is saved on 

every wifi peripheral access
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Tradeoffs of each method
Static 

analysis
Debugging 

HW Emulating HW

Breakpoints N/A 2 infinite

Guaranteed 
correct Yes Yes No

Used for Finding exact 
details

Verifying 
assumptions

Finding general 
direction
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Reverse engineering results
● The hardware does a lot for us

– Transmit packet
– Automatically send ACK to received packets
– Hardware cryptography, just tell it the keys
– Receive packets into memory
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Transmitting packets
● Write packet content to memory
● Write metadata to hardware registers (rate, length, 

…)
● Write address of packet to hardware register
● Set TX bit on slot
● Wait for interrupt
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Receiving packets
● Write a linked list with each node pointing to a buffer 

to receive packets in
● Every time a packet is received, an interrupt is called
● Recycle the buffers!
● But what about ACKs? 10 µs of time is not a lot of time
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Receive filters
● Avoid handling every packet in software
● Instead, only process packets we are interested in
● Hardware allows filtering based on RA / BSSID
● Automatically sends ACK to TA of matched packet
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Cryptography acceleration
● With WPA, every packet needs to be encrypted/decrypted
● Hardware does this for us; set the key, algo and MAC address 

in one of the key slots
● When transmitting, tell the hardware what key slot index to 

use to encrypt + set the Protected bit
● When receiving, it will automatically decrypt based on the 

MAC address 



 38C3 - esp32-open-mac.be 20

Now we need a MAC stack
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Ferris-on-Air
● Asynchronous IEEE 802.11 stack written in Rust
● Open Source
● Currently only supports the ESP32
● Uses modular interface design
● STA interface supports basic features
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FoA in the OSI model
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FoA’s Architecture
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The Lower MAC
● Divides access to the medium among the 

interfaces
● Controls the channel
● Thin layer between hardware driver and upper 

MAC
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Channel Locking
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What the STA interface can do
● Scanning
● Connecting
● Disconnecting
● User Data TX & RX
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What it can’t do (yet)
● Rate selection
● Encryption
● Broadcast protection
● Power save
● 40 MHz Operation
● Target Wake Time
● Fine Timing Measurement

● WPA-Enterprise
● AMSDU
● AMPDU
● QoS
● Long Range mode
● Channel State Information
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Future Work
● Implement missing features
● AP mode
● AWDL (AirDrop, Airplay)
● Mesh operation
● Indoor Navigation (maybe for c3nav?)
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Thanks to these people
● Zeus WPI
● Austin Conn
● Everyone at the fNordeingang 
● The embassy and esp-hal projects
● Espressif
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Thanks for listening!
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Questions?
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