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HDCP MASTER KEY (MIRROR THIS TEXT!)

This is a forty times forty element matrix of fifty-six bit
hexadecimal numbers.

To generate a source key, take a forty-bit number that (in
binary) consists of twenty ones and twenty zeroes; this is
the source KSV.  Add together those twenty rows of the matrix
that correspond to the ones in the KSV (with the lowest bit
in the KSV corresponding to the first row), taking all elements
modulo two to the power of fifty-six; this is the source
private key.

To generate a sink key, do the same, but with the transposed
matrix.
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What is HDCP?



Why do we care?



What can we do about it?
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But that is not enough, we need forty or a bit more
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So, where to get more keypairs? 
We could get many Mac laptops 

But in the end we could not easily get the keys out
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So, new approach 
Keys are stored close to the video driver 

So let's try to get stuff from there!



nvidia comes in

- In 2010, I (Wanda) was working on reverse engineering nvidia 
hardware as part of project nouveau

- At one point I ended up reversing mysterious blobs of on-GPU 
firmware in a custom ISA, related to video decoding

- We later learned this is their in-house Falcon architecture
- As in turns out, one of the Falcon cores has a secure co-processor, 

and one of its duties is decrypting the HDCP keys and sending them 
to the display unit



The Falcon architecture

- Falcon (FAst Logic CONtroller) is a generic RISC-ish CPU 
architecture made in-house by nvidia, used as their default go-to 
management core

- ISA is unremarkable
- Uses dedicated tiny SRAM for code and data segments (~5kiB)
- Has DMA capabilities to and from VRAM

- We looked at the very first version of the architecture (v0), used in 
only three devices: G98 (low-end GPU), MCP77 (motherboard chipset 
with integrated GPU), MCP79 (another chipset with integrated GPU)



The Falcon architecture

- The GPU contains four Falcon cores, managing various video 
decoding engines:

- MSBSP: video bitstream processing
- MSPDEC: picture decoding
- MSPPP: picture post-processing
- SEC: DRM stuff

- The SEC Falcon has a Secure CoProcessor (SCP), which extends 
the Falcon ISA with AES opcodes, code signing, and key storage



Falcon and HDCP

- HDCP is mostly handled by the display unit, which is hardwired logic
- The HDCP key is large (285 bytes) and is stored encrypted in an I²C 

EEPROM
- On IGPs, the encrypted key is stored in main BIOS flash instead
- On startup, a signed bit of code is run on SEC that decrypts the 

HDCP key and sends it over a dedicated bus to the display unit



The SCP coprocessor — main features

- The Falcon can run in secure or non-secure mode
- 8× 128-bit registers for key and plaintext/ciphertext block storage and 

working area
- Each register has a 5-bit ACL (readable/writable/usable-as-key by 

non-secure code, readable/usable-as-key by secure code)
- AES encryption/decryption, CMAC computation, AND, XOR, MOV 

instructions



The SCP coprocessor — main features

- 63× 128-bit mask ROM secret storage, identical across all GPUs
- Secrets likewise have ACLs

- 1× 40-bit fuse key storage, per-GPU
- Streaming DMA to and from:

- Falcon code segment
- Falcon data segment
- VRAM and system RAM

- A true RNG (not used for our purposes)



The SCP coprocessor — secure mode entry

- Upload the secure-mode code into code RAM, mark it as secure using 
special registers

- Put the MAC into one of the SCP registers
- Jump to the code
- Instead of running the code, Falcon will jump to the secret ROM that 

validates the signature and, if correct, jumps to the code in secure 
mode

- If the signature is incorrect, you get a trap



The HDCP firmware

- The code is not encrypted so we can just reverse it
- However, the HDCP keys are (unsurprisingly) decrypted using the 

mask keys that cannot be read from non-secure mode
- For unclear reasons, the decryption key is also encrypted using the 

decryptor code’s MAC
- as it later turned out, the resulting decryption key is actually 

identical to the encrypting mask secret???
- The EEPROM decryption key was not tied to the particular device



The SCP coprocessor — security flaws

- We cannot read the secrets to “normal” storage, but we can MOV 
them to registers just fine, they just retain their “unreadable” ACL

- We can even perform AND/XOR operations — the result just inherits 
the most restrictive ACL

- … and we can try entering secure mode without being actually able to 
read the MAC we are presenting



The SCP coprocessor — secret extraction

The extraction algorithm is really simple:

- Load 1 << i to a crypto register
- AND it with a secret
- XOR it with a known-good MAC of some random piece of nvidia code
- Try entering secure mode
- If it still runs, bit i of the secret was a 0

This even lets us read secrets marked as unreadable from secure mode.

SCP security for secret storage completely broken at this point…



The SCP coprocessor — ACE in secure mode

- … but we ran into a problem with an unknown (at the time) opcode in 
the HDCP blob in the code used to derive the decryption key

- The opcode didn’t seem to do anything at all in non-secure mode
- But if we actually tried replicating the blob’s logic with a NOP 

there, it didn’t decrypt right
- … so we needed to figure out a way to run our code in secure mode 

to reverse the missing opcode



The SCP coprocessor — ACE in secure mode

- We had dumped all secrets at this point, and tried various AES-based 
MAC algorithms, but found no match

- As it turns out, if you fail secure mode entry, the correct MAC is just 
left in one of the SCP registers

- 󰣼
- We can read it using the previous trick
- Or just MOV it to the right register and retry secure mode entry



The SCP coprocessor — the missing bits

- As it turns out, the unknown opcode was just “encrypt this block using 
the current code’s MAC as a key” — it only added obscurity, not real 
security

- Also, in this particular code, the result of this operation was just equal 
to the originally used mask key

… and with that, we had the capability to dump the full HDCP key from 
any G98-based GPU or MCP77/MCP79-based motherboard



The SCP coprocessor — followup

- Years later, we found out the MAC algorithm is actually an obscure 
variant of Davies-Meyer construction (turning AES into a hash 
function) combined with CMAC

- The flaws we used have been fixed on the next-generation (v3) 
Falcon

- Not our doing, v3 was released before we ever looked at Falcon
- This is why we had to target a very narrow range of GPUs



The SCP coprocessor — followup

- Falcon became relevant again due to its use on Nintendo Switch
- A great way to attract many hackers!

- Turns out someone broke the root of trust in the ARM bootROM, so 
Nintendo tried to recover by using Tegra’s SEC2 as the new root of 
trust

- This time it fell to blind ROP in the Falcon secret ROM (use DMA to 
smash the stack)
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Linear algebra



Bushing decided to buy 45 or so 
cards, from Newegg



When returning the cards, they 
pay you back day price



When returning the cards, they pay you 
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We made money!



When returning the cards, they pay you back day price 
We made money! 

(This is not a viable business plan though)







So now we had enough keys to 
do whatever we wanted



The sink (like, a display) uses its own private 
key together with the source's public key (its 

KSV) to derive a shared secret
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The sink (like, a display) uses its own private key 
together with the source's public key (its KSV) to 

derive a shared secret 
And the source does it the other way around, and the 

HDCP standard tells us that will give us the same 
shared secret 

"Key selection vector" means to take the 20 (out of 40) 
columns that have a 1 in the KSV 

This is the same as taking their internal product; 
written as just a multiplication
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of 40) bits equal to 1, which means you cannot 
make any linear combination of them that have 

just one bit set



And, there isn't enough data to fully solve everything 
anyway: all valid KSVs have 20 (out of 20) bits equal 
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combination of them that have just one bit set 

But that doesn't matter so much



And, there isn't enough data to fully solve everything 
anyway: all valid KSVs have 20 (out of 20) bits equal 

to 1, which means you cannot make any linear 
combination of them that have just one bit set 

But that doesn't matter so much 

We cannot find a unique solution, but we can find 
one that works!



We cannot find a unique solution, but we can 
construct something that works! 

In principle it is possible that from the data we 
reconstruct it can be determined what key pairs we 
used to reconstruct it, and we cannot have that, that 

is basic opsec 
So I filled in random noise for all data that cannot be 

uniquely derived 

srand(42)



And, any KSV has exactly 20 bits set, and 20 is a multiple of 4 

So we can add whatever number we want to the top 2 bits of 
all entries in any column and it will still work 

Same for row, everything is symmetric



We can also add the same 
number in the top 4 bits of all 
entries in the whole matrix: 

20x20=400 is a multiple of 16



Leaking it



We contemplated various avenues to get 
the thing into the public's hands without 

showing it was us



We contemplated various avenues to get the thing into the 
public's hands without showing it was us 

We contacted wikileaks, but this isn't their mission really, 
they didn't want to do it.  Fair enough; well we could try :-)





HDCP MASTER KEY (MIRROR THIS TEXT!)

This is a forty times forty element matrix of fifty-six bit
hexadecimal numbers.

To generate a source key, take a forty-bit number that (in
binary) consists of twenty ones and twenty zeroes; this is
the source KSV.  Add together those twenty rows of the matrix
that correspond to the ones in the KSV (with the lowest bit
in the KSV corresponding to the first row), taking all elements
modulo two to the power of fifty-six; this is the source
private key.

To generate a sink key, do the same, but with the transposed
matrix.
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“Intel confirmed last week that the master key 
published online was genuine and is now 

investigating if the key was leaked or cracked”


