Energy Consumption of AI

Thomas Fricke

December 27, 2023

Thomas Fricke Energy Consumption of AI

Who are we?

Innovationsverbund Öffentliche Gesundheit

- Born in WirVsVirus Hackathon
- Funding Holistic Foundation
- Projects
 - Open Source
 - Privacy
 - Open Social Innovation
- Iris Connect

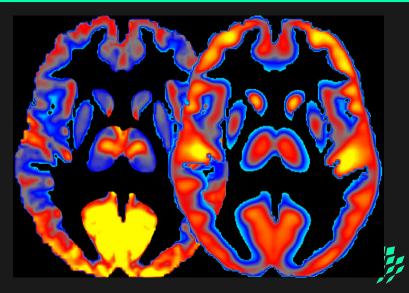
Contact Tracking Public Health Departments Björn Steiger Stiftung Thomas Fricke

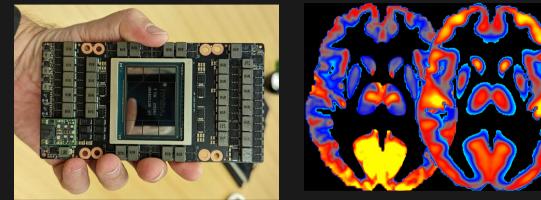
- Kubernetes Cloud Security
- Statistical Physics
- Disclaimer
 - Pro Bono: OpenCode, Beratung IT Planungsrat
 - Payed: OpenDesk, FITKO

Hardware NVIDIA Hopper H100

Energy Consumption

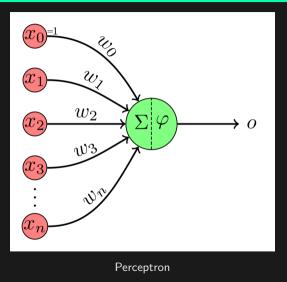
- Single Graphics Card
- 700 Watts = 0.7kW
- ▶ ~30 kW / rack
- instead of 3 to 6 KW / rack

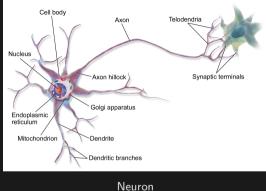

NVDIA Hopper H100 in a Hand


Legacy Model – Homo Sapiens Sapiens

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain.

Dr. Ehsan Shokri Kojori, NIAAA


Comparison



20 Watt

700 Watt

Some Inconvenient Truth

- The AI neuron is not even a biological synapse
- The synapse computes an has the complexity of some handfull of perceptro

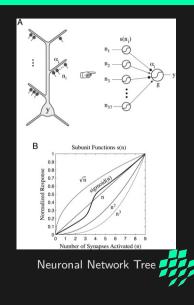
NVIDIA Tensor Core Datasheel

Built with 80 billion transistors using a cutting-edge TSMC 4N process custom tailored for NVIDIA's accelerated compute needs, H100 is the world's most advanced chip ever built

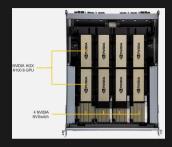
Basic Neural Units of the Brain: Neurons, Synapses and Action Potential by Jiawei Zhang

we will introduce the basic compositional units of the human brain, which will further illustrate the cell-level bio-structure of the brain. On average, the human brain contains about 100 billion neurons and many more neuroglia which serve to support and protect the neurons. Each neuron may be connected to up to 10,000 other neurons, passing signals to each other via as many as 1,000 trillion synapses.

- German Milliarde: American Billion $= 10^9$
- German Billion: American Trillion = 10^{12}



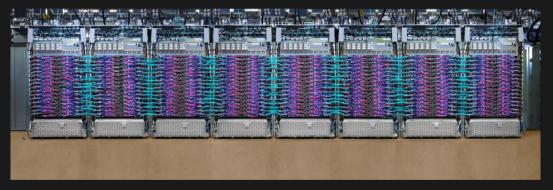
Pyramidal Neuron as Two-Layer Neural Perceptron Network


We found the cell's firing rate could be predicted by a simple formula that maps the physical components of the cell onto those of an abstract two-layer "neural network." In the first layer, synaptic inputs drive independent sigmoidal subunits corresponding to the cell's several dozen long, thin terminal dendrites.

Pyramidal Neuron as Two-Layer Neural Network by Panayiota Poirazi, Terrence Brannon, Bartlett W. Mel, 2003

- article is old
- simulation of real firing synapses
- consistent result
- hundreds of different types of synapses
 - chemical
 - electrical

Racks

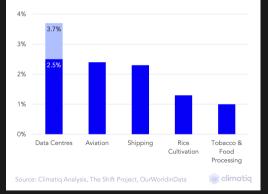


Nvidia Rack

- Key Applications : High Performance Computing, AI, Deep Learning and Industrial Automation.
- Dual AMD EPYC 9004 Series Processors (Socket SP5)
- 8x NIC for GPU direct RDMA (1:1 GPU Ratio)
- ► High density 8U system with NVIDIA® HGXTM H100 8-GPU
- ▶ Highest GPU communication using NVIDIA® NVLINKTM + NVIDIA® NVSwitchTM
- 24x DIMM Slots, Up to 6TB DRAM, 4800 ECC DDR5 LRDIMM;RDIMM;
- 8x PCIe Gen 5.0 X16 LP, and up to 4 PCIe Gen 5.0 X16 FHFL Slots
- Flexible networking options
- 1x M.2 NVMe for boot drive only
- 2x 2.5" hot-swap NVMe/SATA drive bays (12x 2.5" NVMe dedicated)
- 2x 2.5" Hot-swap SATA drive bays
- 10x heavy duty fans with optimal fan speed control
- 6x 3000W redundant Titanium level power supplies

Datacenters

Liquid Cooling Google



Thomas Fricke Energy Consumption

Compared to other businesses

Global cloud computing emissions exceed those from commercial aviation

Share of global CO₂ emission generated by sector/category

Hyperscale data centres are significantly more efficient than internal data centres

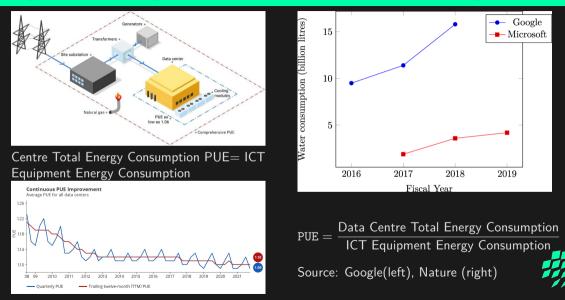
Category	Energy use	Computing workloads	Water intensity	Carbon intensity	Water intensity	Carbon intensity
	Million MWh	million	M ₃ MWh ₃	ton CO ₂ -eq MWh _{.1}	m ₃ /workload	Ton CO ₂ -eq /workload
Internal	26.90	16	7.20	0.45	12.15	0.75
Colocation	22.4	41	7.00	0.42	3.85	0.25
Hyperscale	22.85	76	7.00	0.44	2.10	0.15
Source: Side	dik & Sehab	2021			Ŵ	climati

Thomas Fricke

Energy Consumption of AI

Waterlogged

A midsize data center uses roughly as much water as about 100 acres of almond trees or three average hospitals, and more than two 18-hole golf courses.


Approximate annual water usage, in gallons*

*Use varies depending on climate and other factors Sources: California Department of Water Resources (orchards); James Hamilton

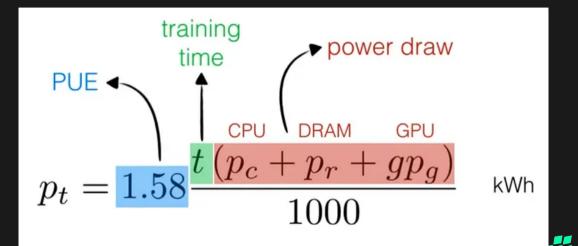
Thomas Fricke Energy Consump

Google Power Usage Effectiveness – PUE Greenwashing

Thomas Fricke

▶ Ireland: Microsoft and Amazon reportedly halt plans to build data centers ...

- Netherlands: Inside the data centre moratorium movement
- Germany, Brandenburg, Neuenhagen: Alphabet darf kein Rechenzentrum bei Berlin bauen now in Mittenwalde

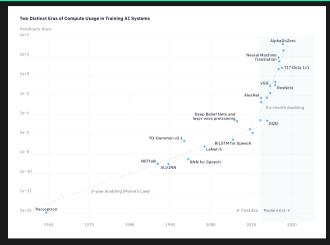

This was all before the AI Boom took of

Heating up: how much energy does AI use?

What we do know is that training ChatGPT used 1.287 gigawatt hours, roughly equivalent to the consumption of 120 US homes for a year.

Machine learning

Thomas Fricke Energy Consumption of


Typical numbers

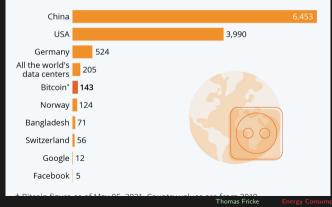

Model	Hardware	Hours	CO ₂ e (lbs)	Cloud compute (USD)
Transformer _{base}	P100x8	12	26	\$41-\$140
Transformerbig	P100x8	84	192	\$289-\$981
ELMo	P100x3	336	262	\$433-\$1472
BERTbase	V100x64	79	1438	\$3751-\$12,571
BERTbase	TPUv2x16	96		\$2074-\$6912
NAS	P100x8	274,120	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1	32,623		\$44,055-\$146,848
GPT-2	TPUv3x32	168		\$12,902-\$43,008
TPU				
GPU				

Consumption	CO ₂ e (lbs)				
Air travel, 1 person, NY↔SF	1984				
Human life, avg, 1 year	11,023				
American life, avg, 1 year	36,156				
Car, avg incl. fuel, 1 lifetime	126,000				
Training one model (GPU)					
NLP pipeline (parsing, SRL)	39				
w/ tuning & experiments	78,468				
Transformer (big)	192				
w/ neural arch. search	626,155				
Table 1: Estimated CO ₂ emissions from training com					

Table 1: Estimated CO_2 emissions from training common NLP models, compared to familiar consumption.¹

Moore's Law for Training Neural Networks How AI will really kill us

some 67 MW hours



Moore's Law

Bitcoin is the worst

Bitcoin Devours More Electricity Than Many Countries

Annual electricity consumption in comparison (in TWh)

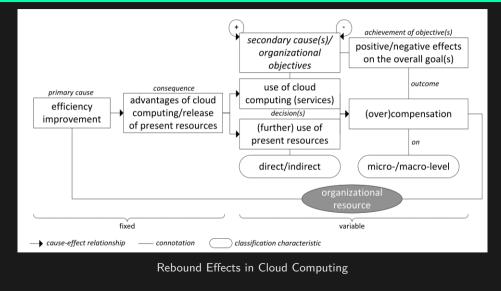
Applications

From the trenches

- going life in critical infrastructure
- trading software
- Open Shift
- vendor came up with 10 nodes of HBase
- tried to measure the load neglectable
- calculated the needs
 - MySQL would be oversized
 - SQLite on a Raspi would have done it

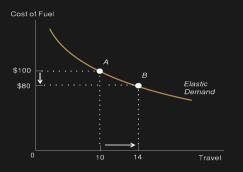
Shrink your app

- Most of the apps are hopelessly overdimensioned
- Factor of 10 is typical
- dissolved the Oracle team at a customer 10 years ago
- they moved to Hadoop



Wrong incentives - Server Machism

the more horsepower, the more important is the team Big Data paradigm is WRONG cuts into the business model of all DC companies Hyperscalers Housing ► ISP


CC-BY-SA 4.0 Matti Blume

Rebound Effect

Jevons Paradox

Jevons Paradox

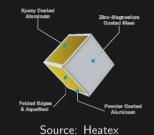
Jevons Paradox

- first described for steam engines
- example is for travelling costs
- Rebound Effects in Cloud Computing: Towards a Conceptual Framework

Personal observations

- provisioning times are hidden costs
- self provisioning
- cloud enabling
 - virtualisation
- containers
- Kubernetes
- CI/CD pipelines

New Datatacenter Berlin Lichtenberg



- 100MW power usage
 - transformer substation
 - integration of energy management
 - cooperation with local Berlin power network
- integration into district heating
 - 50-60% use of heating energy
 - only 6% of datacenters are integrated
- \triangleright PUE \ll 1.3
- adiabatic cooling

Cooling

Thomas Fricke Energy Consumption

Local Clouds

Sovereign Cloud Stack

- Summit
- Hochschule Osnabrück
 - Campus Netz
 - Datacenter in a Real Container Disaster management
 Distributed Usage
- Energy Transition
 - Datacenter without losses
 - Renewable Energy
 - Cloud Computing
 - local remote heating

by JH-Computers and OSISM

Energy Consumption of AI

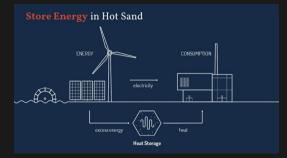
JH Computers

upcycling heat to 85C

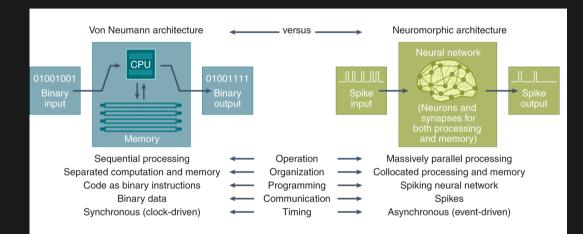
scalable between 50kW and 50MW

makes economic sense ≥ 250KW

- 2GWh/year heat production
- 400 houses
- customers want at least 5MW datacenters
 - 40 GWh/year
 - 8000 houses
 - industrial usage

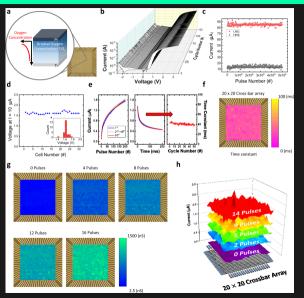

real estate companies are interested

Energy or Heat Storage in Finnland


Hot Heart Project

Finnish "sand battery" offers solution for renewable energy storage

Neuromorphic Computing – Nature


Intel Labs' second-generation neuromorphic research chip, codenamed Loihi 2, and Lava, an open-source software framework, will drive innovation and adoption of neuromorphic computing solutions.

Enhancements include:

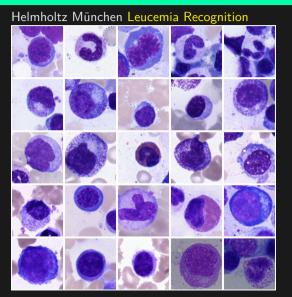
- Up to 10x faster processing capability1
- Up to 60x more inter-chip bandwidth2
- Up to 1 million neurons with 15x greater resource density3
- 3D Scalable with native Ethernet support
- A new, open-source software framework called Lava
- Fully programmable neuron models with graded spikes
- Enhanced learning and adaptation capabilities

Neuromorphic Computing – Nature about Memristor

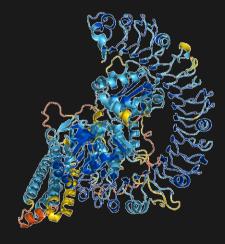
Thomas Fricke

DeepSouth

Western Sydney University to get DeepSouth neuromorphic supercomputer in 2024



Thomas Fricke


Energy Consumption of

Where is the positive? We want AI!

Alpha Fold Protein Folding

Thomas Fricke

Al to get nuclear reactors approved

- Microsoft is training an AI to help get nuclear reactors approved
- Getting new nuclear reactors approved by regulators is an expensive, complex process.
- We're really excited about the game-changing potential for AI in this space. MICHELLE PATRON
- Is advanced nuclear in trouble? What's next after NuScale cancellation

Conclusion

Al will use a lot of resources

- without care we will see a factor of 5-10 increase in energy consumption
- this is a danger to the local climate
- energy hunger cannot be satisfied
 - competion with other industries
 - nuclear power plants
 - really?
 - we are running out of Uranium btw.
 - not under democratic control
- GPUS are a naive way of implementing perceptrons
- research on alternatives?
- there is a problem with bias
 - careful selection of sources
 - expensive human control
- charlatanry
- massive financial interest

Some Answers

Mail: ai@thomasfricke.de

LinkedIn

Mastodon: @thomasfricke@chaos.social

