
An open-source Emulator of 
Legacy Apple Devices

A Dive into Reverse Engineering and
Understanding the iPod Touch

Martijn de Vos



About Me

• Postdoctoral Researcher @ EPFL, Switzerland
• Researcher in distributed ML Systems
• Reverse engineering enthousiast
•Mobile banking apps during PhD

2



Motivation

• Inspired by Jonathan Afek’s blog post
• “Running iOS in QEMU to an interactive bash shell”

• Fun challenge
• (long-term) hardware preservation

4



Where to start?

• Which device to emulate?
• Modern embedded devices are hard to emulate
• Neural engines
• FaceID/TouchID engines
• Secure enclaves
• Trust caches

• iPod Touch 1G looks like a promising starting point
• Released in 2007, ARMv6 instruction set
• Should be simple enough to emulate *

* Famous last words 5

iPod Touch 1G



Related Projects

• Very early attempt by @cmwdotme to emulate S5L8900
• Evolved into Correlium

• iPhone 6s plus emulation by Johathan Afek
• iPhone 11 emulator by Trung Nguyen
• OpeniBoot

• Big thanks to the people behind these projects!
6



QEMU

• Open-source framework for hardware emulation
• Define peripherals and their expected behaviour
• Support for popular hardware and protocols
• USB, NICs, SPI, I2C, SDIO, …

• Poor documentation L

7



Debugging with GDB

11



Reverse Engineering with Ghidra

12



Philosophy

• Stay close to the real hardware
• Avoid relying on image patching if possible
• Hacks and workarounds might bite us later, better get it right 

early on

• As expected, emulator ended up with a bunch of hacks J

13



iPod Touch 1G/2G Boot Chain

14

SecureRom
bootrom

Low-level
bootloader

iBoot XNU
Kernel Springboard

Alarm.app

Safari.app

…

with
launchd



Bootrom

• Very first code that executes on the device
• Initializes some key peripherals
• Loads LLB or puts the device into DFU (restoration) mode

• Jumps to unknown memory addresses
• Probably some proprietary encryption/decryption logic by Samsung
• No access to/dumps of the memory being jumped to L
• Didn’t have a physical IT1G at that time

15



Low-level Bootloader (LLB)

• Initializes some peripherals and loads iBoot
• Same problem, jumps to unknown memory locations
• Let’s skip the bootrom and LLB, and go straight to iBoot!

16



iBoot (main bootloader)

• Responsible for loading the kernel from NAND
• iBoot source code got leaked in 2018

17



Device Tree

• Lists all peripherals and properties
• Included in the IPSW, populated by

iBoot
• I used a public DT dump published

on GitHub as reference

18



These devices are complicated!

CPU
(S5L8720)

DMA Controller
(PL080)DMA Controller

(PL080)

Vector Interrupt
Controller
(PL192)

Vector Interrupt
Controller (VIC)

(PL192)

Daisy chained

Clock
Clock

Timer

SysIC

GPIO Controller

SDIO Controller

UART
UART

UART
UART

ChipID

SPI
Controller 1

SPI
Controller 4

USB OTG

I2C
Controller 1

Accelerometer
(LIS302DL)

PMU
(D1759)

I2C
Controller 2

Microphone
(CD327)

FMSS
Controller

USB Phys. MIPI
Controller

LCD
Controller

SHA1
Engine

AES
Engine

PKE
Engine

Cryptography

NOR Flash
Controller

Multitouch...

Serial Peripheral Interface

Inter-Integrated
Circuit (I2C)

WiFi
(BCM4325)

Secure Digital Input Output

Display, sound and Graphics

GPU
(PowerVR MBX) Scaler

RAM NAND
flash memory

NOR
memory

Memory and Persistence

TV Out

Schematic of the
iPod Touch 2G

19



Peripherals

• The kernel communicates with peripherals
through memory-mapped I/O (MMIO)
• Each peripheral has a dedicated space in 

memory

20



Initializing Hardware with QEMU

21



Talking to Peripherals

22



More Complicated Hardware

23



Attaching Peripherals to the Machine

24



XNU Kernel

• First loads and starts all device drivers 
declared in the device tree
• Uses IOKit

• Starting a driver usually involves
resetting the peripheral
• After all drivers are loaded, it starts 

launchd

25



~20 peripherals later…

• Most key peripherals fully functional
• Clock, timer, vector interrupt controller 

(VIC), DMA, crypto engines, …
• Only partial support for other peripherals
• Just enough to make it past the 

initialization
• TVOut, GPU, accelerometer, light sensor …

• Avoided GPU rendering with a flag

• Lots of work to do still, but we boot to
userland! J 26



Persistence

• Two types of storage: NOR and NAND
• Key differences between iPod Touch 1G and 2G
• Emulator expects proper file system layouts
• Figuring out the layouts took most time (especially for NAND)

• Ended up with two scripts to generate the NOR and NAND 
images

27



NAND

28
Source: Modern SSDs (Fall 2022), Jin-Soo Kim, Seoul National University



Multitouch

• Particularly challenging
• Converting touch to coordinates is quite

difficult
• Complex initialization procedure

• Communicated with through SPI
• To get this working, I required the real 

device
• Installed OpeniBoot to read/analyze frames

29



Hello World!

iPod Touch 1G
iPhoneOS 1.0

iPod Touch 2G
iOS 2.1.1

31



QEMU-iOS

• An emulator for legacy Apple devices
• https://github.com/devos50/qemu-ios
• Support for iPod Touch 1G and 2G
• Current focus on iPod Touch 2G stability

• Contributions are welcome!

32

https://github.com/devos50/qemu-ios


Thank you!

devos50

https://devos50.github.io
(some blog posts)

33

https://devos50.github.io/

