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About Me

• Postdoctoral Researcher @ EPFL, Switzerland
• Researcher in distributed ML Systems
• Reverse engineering enthousiast
•Mobile banking apps during PhD
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Motivation

• Inspired by Jonathan Afek’s blog post
• “Running iOS in QEMU to an interactive bash shell”

• Fun challenge
• (long-term) hardware preservation
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Where to start?

• Which device to emulate?
• Modern embedded devices are hard to emulate
• Neural engines
• FaceID/TouchID engines
• Secure enclaves
• Trust caches

• iPod Touch 1G looks like a promising starting point
• Released in 2007, ARMv6 instruction set
• Should be simple enough to emulate *

* Famous last words 5

iPod Touch 1G



Related Projects

• Very early attempt by @cmwdotme to emulate S5L8900
• Evolved into Correlium

• iPhone 6s plus emulation by Johathan Afek
• iPhone 11 emulator by Trung Nguyen
• OpeniBoot

• Big thanks to the people behind these projects!
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QEMU

• Open-source framework for hardware emulation
• Define peripherals and their expected behaviour
• Support for popular hardware and protocols
• USB, NICs, SPI, I2C, SDIO, …

• Poor documentation L
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Debugging with GDB
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Reverse Engineering with Ghidra
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Philosophy

• Stay close to the real hardware
• Avoid relying on image patching if possible
• Hacks and workarounds might bite us later, better get it right 

early on

• As expected, emulator ended up with a bunch of hacks J
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iPod Touch 1G/2G Boot Chain
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Bootrom

• Very first code that executes on the device
• Initializes some key peripherals
• Loads LLB or puts the device into DFU (restoration) mode

• Jumps to unknown memory addresses
• Probably some proprietary encryption/decryption logic by Samsung
• No access to/dumps of the memory being jumped to L
• Didn’t have a physical IT1G at that time
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Low-level Bootloader (LLB)

• Initializes some peripherals and loads iBoot
• Same problem, jumps to unknown memory locations
• Let’s skip the bootrom and LLB, and go straight to iBoot!
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iBoot (main bootloader)

• Responsible for loading the kernel from NAND
• iBoot source code got leaked in 2018

17



Device Tree

• Lists all peripherals and properties
• Included in the IPSW, populated by

iBoot
• I used a public DT dump published

on GitHub as reference
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These devices are complicated!
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Peripherals

• The kernel communicates with peripherals
through memory-mapped I/O (MMIO)
• Each peripheral has a dedicated space in 

memory
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Initializing Hardware with QEMU
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Talking to Peripherals
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More Complicated Hardware
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Attaching Peripherals to the Machine

24



XNU Kernel

• First loads and starts all device drivers 
declared in the device tree
• Uses IOKit

• Starting a driver usually involves
resetting the peripheral
• After all drivers are loaded, it starts 

launchd
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~20 peripherals later…

• Most key peripherals fully functional
• Clock, timer, vector interrupt controller 

(VIC), DMA, crypto engines, …
• Only partial support for other peripherals
• Just enough to make it past the 

initialization
• TVOut, GPU, accelerometer, light sensor …

• Avoided GPU rendering with a flag

• Lots of work to do still, but we boot to
userland! J 26



Persistence

• Two types of storage: NOR and NAND
• Key differences between iPod Touch 1G and 2G
• Emulator expects proper file system layouts
• Figuring out the layouts took most time (especially for NAND)

• Ended up with two scripts to generate the NOR and NAND 
images
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NAND
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Multitouch

• Particularly challenging
• Converting touch to coordinates is quite

difficult
• Complex initialization procedure

• Communicated with through SPI
• To get this working, I required the real 

device
• Installed OpeniBoot to read/analyze frames
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Hello World!

iPod Touch 1G
iPhoneOS 1.0

iPod Touch 2G
iOS 2.1.1
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QEMU-iOS

• An emulator for legacy Apple devices
• https://github.com/devos50/qemu-ios
• Support for iPod Touch 1G and 2G
• Current focus on iPod Touch 2G stability

• Contributions are welcome!
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https://github.com/devos50/qemu-ios


Thank you!

devos50

https://devos50.github.io
(some blog posts)
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https://devos50.github.io/

