
Smartphone Malware Forensics
─ An Introduction

Viktor Schlüter & Janik Besendorf
Digital Security Lab - Reporter ohne Grenzen

Who we are and
what we do:

Digital Security Lab

● founded 1.5 years ago

● IT security trainings for journalists
● Analysis of digital attacks
● active (re-)search for spyware attacks

on journalists

Digital Security Lab

@

Fundamentals

Computer vs. Smartphone Forensics

https://commons.wikimedia.org/wiki/File:Forensic_disk_imager.jpg
https://www.flickr.com/photos/30478819@N08/36059117945

https://commons.wikimedia.org/wiki/File:Forensic_disk_imager.jpg

Malware vs. Spyware

with exploits without exploits

Sandbox

Phone malware: The significance of exploits

with exploits without exploits

Sandbox

Phone malware: The significance of exploits

Exploits in different operating systems

scams /
stalkerware
without exploits

● no sideloading
(yet)

● limited app
permissions

● jailbreaks
sometimes
possible

● sideloading
● broader app

permissions
● rooting often

possible

spyware
with exploits

● possible to
detect

● very hard to
get binary

● rarely
detected

● little info
for analysis

Mobile state actor forensics: An eternal cat and mouse game

Mobile state actor forensics: The eternal cat and mouse game

Traces that exist

What we know

What we talk
about today

Helpful websites for cyber stalking victims

https://antistalking.haecksen.org

https://stopstalkerware.org/information-for-
survivors

https://antistalking.haecksen.org
https://stopstalkerware.org/information-for-survivors
https://stopstalkerware.org/information-for-survivors

Methodology

Linked Devices

https://netzpolitik.org/2021/ohne-staatstrojaner-polizei-und-geheimdienste-koennen-whatsapp-mitlesen/

Methodology for iOS

1. Create an iPhone Backup

2. decrypt mvt Backup

3. analyse data with mvt

4. Look through resulting data,

additional analyses

idevicebackup2 -i encryption on

idevicebackup2 backup --full <backup_folder>

mvt-ios decrypt-backup -d <decrypted_dir> <backup_folder>

mvt-ios check-backup -o <mvt_output> <decrypted_dir>

0. optional: jailbreak device

Methodology for Android

1. extract data with mvt

2. download apk’s

3. upload apk’s to Virustotal

4. Look through resulting data,

additional analyses

mvt-android check-adb --output /path/to/results

mvt-android download-apks --output /path/to/folder

MVT_VT_API_KEY=<key> mvt-android download-apks --output /path/to/folder --virustotal

0. optional: root device

Primary findings vs. secondary findings

Primary findings contain
the full chain of evidence:

vendor ➜ infrastructure
➜ network traffic
➜ smart phone
➜ Proof of execution on
phone

(plus ideally the binary)

Secondary findings correlate
with a primary finding:

● Identifying behaviour is
the same:

○ file names

○ process names

○ Same way to “clean up”

○ same traces in logs

Indicators of Compromise (IoC)

● useful for easy secondary finding
● recommended IoC lists

○ https://github.com/AssoEchap/stalkerware-indicators
○ https://github.com/mvt-project/mvt-indicators
○ https://github.com/AmnestyTech/investigations

https://github.com/AssoEchap/stalkerware-indicators
https://github.com/mvt-project/mvt-indicators
https://github.com/AmnestyTech/investigations

Meet the toolbox

or if you’re wild, your favourite sqlite parser ;)

Traffic Analysis

● spyware needs to transmit data back to the surveillant

● this traffic can be intercepted and analyzed

● encryption and obfuscation can make this tricky

TinyCheck

● Tool by Kaspersky to analyze traffic in order to find
stalkerware

● runs on a raspberry pi (optional)
● opens a dedicated wifi
● generates a report with suspicious connections
● https://tiny-check.com

Catching iOS malware Part 1: Stalkerware

● Since iOS 15.7 no jailbreak

● Stalkerware without jailbreak difficult to impossible
○ Has to go through app store

○ Has to comply to app store rules

○ Notifier whan camera / microphone are activated

○ No access to data from other apps

● Sometimes: iCloud data crawling services

Catching iOS malware Part 1: Stalkerware
TCC (Transparency, Consent, and Control)

2023-12-18 11:36:49,629 - mvt.ios.modules.mixed.tcc - INFO -
Found client "org.whispersystems.signal" with access allowed to microphone on
2022-10-05 13:10:41.000000 by user_consent

● path:/Library/TCC/TCC.db
● Interesting Table: access

in the database:

mvt output:

Catching iOS malware Part 1: Stalkerware

Data Usage

● Library/Databases/DataUsage.sqlite

● Interesting Table: ZLIVEUSAGE, ZPROCESS

Catching iOS malware Part 1: Stalkerware
Data Usage

● Library/Databases/DataUsage.sqlite

● Interesting Table: ZLIVEUSAGE, ZPROCESS

Easy to remember query:
(copied from mvt)

 SELECT
 ZPROCESS.ZFIRSTTIMESTAMP,
 ZPROCESS.ZTIMESTAMP,
 ZPROCESS.ZPROCNAME,
 ZPROCESS.ZBUNDLENAME,
 ZPROCESS.Z_PK,
 ZLIVEUSAGE.ZWIFIIN,
 ZLIVEUSAGE.ZWIFIOUT,
 ZLIVEUSAGE.ZWWANIN,
 ZLIVEUSAGE.ZWWANOUT,
 ZLIVEUSAGE.Z_PK,
 ZLIVEUSAGE.ZHASPROCESS,
 ZLIVEUSAGE.ZTIMESTAMP
 FROM ZLIVEUSAGE
 LEFT JOIN ZPROCESS ON ZLIVEUSAGE.ZHASPROCESS = ZPROCESS.Z_PK
 UNION
 SELECT ZFIRSTTIMESTAMP, ZTIMESTAMP, ZPROCNAME, ZBUNDLENAME, Z_PK,
 NULL, NULL, NULL, NULL, NULL, NULL, NULL
 FROM ZPROCESS WHERE Z_PK NOT IN
 (SELECT ZHASPROCESS FROM ZLIVEUSAGE);

Catching iOS malware Part 1: Stalkerware
Data Usage
● Library/Databases/DataUsage.sqlite

● Interesting Table: ZLIVEUSAGE, ZPROCESS

mvt converts this to: "first_isodate": "2022-11-23
17:47:22.267285",
 "isodate": "2022-11-28
17:20:04.212211",
 "proc_name":
"mDNSResponder/ph.telegra.Telegraph",
 "bundle_id": "ph.telegra.Telegraph",
 "proc_id": 131,
 "wifi_in": 0.0,
 "wifi_out": 0.0,
 "wwan_in": 8940.0,
 "wwan_out": 4260.0,
 "live_id": 3110,
 "live_proc_id": 131,
 "live_isodate": "2022-11-23
17:47:22.266572"

Catching iOS malware Part 1: Stalkerware

Installed Applications

● Info.plist
● parse plists with plistutil
● bundle id is contained in

apple app store html source:

Catching iOS malware Part 1: Stalkerware

Installed Applications

● Info.plist
● parse plists with plistutil
● bundle id is contained in

apple app store html source:

https://apps.apple.com/de/app/teleg
ram-messenger/id686449807

Catching iOS malware Part 1: Stalkerware

Installed Applications

● Info.plist
● parse plists with plistutil
● bundle id is contained in

apple app store html source:

https://apps.apple.com/de/app/teleg
ram-messenger/id686449807

Catching iOS malware Part 1: Stalkerware
➜ included in
mvt

but: false
positives are
possible

Catching iOS malware Part 2: State-sponsored Spyware

Safari History, redirects (similar for Firefox, Chrome)
● Library/Safari/History.db

● history_items, history_visits

➜ browser redirects quickly after the original
request can be an indicator for network injection
attacks

➜ one click exploit URLs can be found here

Network Injection Attacks

Catching iOS malware Part 2: State-sponsored Spyware

Incomplete Trace Removals in DBs
● Which DB? It depends…

Example: (credit to Citizenlab[1])
● Pegasus deleted data usage entries in ZPROCESS but

not in ZLIVEUSAGE in 2021
● By checking for inconsistencies and anomalies you

can find indirect malware traces

[1] https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/

Catching iOS malware Part 2: State-sponsored Spyware
Data Usage

● Library/Databases/DataUsage.sqlite

● Interesting Table: ZLIVEUSAGE, ZPROCESS

Catching iOS malware Part 2: State-sponsored Spyware
Data Usage

● Library/Databases/DataUsage.sqlite

● Interesting Table: ZLIVEUSAGE, ZPROCESS

Easy to remember query:
(copied from mvt)

 SELECT
 ZPROCESS.ZFIRSTTIMESTAMP,
 ZPROCESS.ZTIMESTAMP,
 ZPROCESS.ZPROCNAME,
 ZPROCESS.ZBUNDLENAME,
 ZPROCESS.Z_PK,
 ZLIVEUSAGE.ZWIFIIN,
 ZLIVEUSAGE.ZWIFIOUT,
 ZLIVEUSAGE.ZWWANIN,
 ZLIVEUSAGE.ZWWANOUT,
 ZLIVEUSAGE.Z_PK,
 ZLIVEUSAGE.ZHASPROCESS,
 ZLIVEUSAGE.ZTIMESTAMP
 FROM ZLIVEUSAGE
 LEFT JOIN ZPROCESS ON ZLIVEUSAGE.ZHASPROCESS = ZPROCESS.Z_PK
 UNION
 SELECT ZFIRSTTIMESTAMP, ZTIMESTAMP, ZPROCNAME, ZBUNDLENAME, Z_PK,
 NULL, NULL, NULL, NULL, NULL, NULL, NULL
 FROM ZPROCESS WHERE Z_PK NOT IN
 (SELECT ZHASPROCESS FROM ZLIVEUSAGE);

Catching iOS malware Part 2: State-sponsored Spyware
Data Usage
● Library/Databases/DataUsage.sqlite

● Interesting Table: ZLIVEUSAGE, ZPROCESS

mvt converts this to: "first_isodate": "2022-11-23
17:47:22.267285",
 "isodate": "2022-11-28
17:20:04.212211",
 "proc_name":
"mDNSResponder/ph.telegra.Telegraph",
 "bundle_id": "ph.telegra.Telegraph",
 "proc_id": 131,
 "wifi_in": 0.0,
 "wifi_out": 0.0,
 "wwan_in": 8940.0,
 "wwan_out": 4260.0,
 "live_id": 3110,
 "live_proc_id": 131,
 "live_isodate": "2022-11-23
17:47:22.266572"

Catching iOS malware Part 2: State-sponsored Spyware
Time stamps of iOS Backups

● decrypt Backup with mvt-ios decrypt-backup

Catching iOS malware Part 2: State-sponsored Spyware
Time stamps of iOS Backups

● decrypt Backup with mvt-ios decrypt-backup

● Reconstruct backup to original paths.

○ https://github.com/inflex/ideviceunback

● In the backup folder, sort by timestamps

○ find -printf "%TY-%Tm-%Td %TT %p\n" | sort -n

● If you have an interesting time range, look there

Catching iOS malware Part 2: State-sponsored Spyware
Attack artifacts: Crash logs, Attachments

● Library/SMS/Attachments

○ Example: .gif files in FORCEDENTRY exploits[1] (credits to

Citizenlab!)

● Crashlogs can also contain interesting artifacts

○ many crashes of the same component in a short timeframe?

[1]: https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/

Catching iOS malware Part 2: State-sponsored Spyware
Correlation of events (in mvt timeline)

2022-09-13 10:04:11.890351Z Datausage IMTransferAgent/com.apple.datausage.messages (Bundle

ID: com.apple.datausage.messages, ID: 127) WIFI IN: 0.0, WIFI OUT: 0.0 - WWAN IN:

76281896.0, WWAN OUT: 100956502.0

2022-09-13 10:04:54.000000Z Manifest Library/SMS/Attachments/65/05 - MediaDomain

2022-09-13 10:05:14.744570Z Datausage BackupAgent (Bundle ID: , ID: 710) WIFI IN: 0.0, WIFI

OUT: 0.0 - WWAN IN: 734459.0, WWAN OUT: 287912.0

Source: https://securelist.com/operation-triangulation/109842/, Kaspersky

Example from Triangulation Case:

https://securelist.com/operation-triangulation/109842/

Attack Vectors: Zero Click Exploits

First step: Tracing points of contact

● Zero click exploits:
○ Goal of attackers ➜ get the device to process complex data

○ What are interesting targets?

■ Baseband

■ Messengers

■ Browsers

■ All apps that can be triggered to pull data / invites

■ Bluetooth, WiFi

Attack Vectors: One Click Exploits

First step: Tracing points of contact

● One click exploits

○ Attackers have to get the victim to interact with them / click a link

○ How can they reach the victim?

■ Messengers

■ E-mail

■ Content of web pages

● Advantage: Sometimes the victim might remember a “strange/unusual message”

Analysis for Android

➜Searching for possible indicators:

● Installed apps and their permissions
○ Accessibility Services
○ Full device management permissions

● Microphone and location indicators
● Root: new permissions
● running processes
● Apks and tier hashes
● check suspicious app installers
● URLs in WhatsApp messages

Analysis for Android: Installed Applications

● adb shell pm list packages -u -i -f

● check installer
○ com.google.android.packageinstaller
○ None
○ com.samsung.android.app.omcagent

Analysis for Android: Installed Applications

● adb shell pm list packages
○ -s system packages
○ -3 3rd party packages
○ -d disabled packages

Analysis for Android: Installed Applications

● adb shell dumpsys package com.example.package
○ firstInstallTime=2023-12-28 16:40:13
○ lastUpdateTime=2023-12-28 16:40:13
○ requested permissions:
○ android.permission.INTERNET
○ android.permission.ACCESS_NETWORK_STATE
○ android.permission.ACCESS_WIFI_STATE
○ android.permission.CHANGE_WIFI_MULTICAST_STATE
○ android.permission.CHANGE_NETWORK_STATE

Analysis for Android: Intents

● Intents notify apps when certain events occur
● adb shell dumpsys package com.example.package

● android.provider.Telephony.NEW_OUTGOING_SMS
● android.intent.action.DATA_SMS_RECEIVED
● android.intent.action.NEW_OUTGOING_CALL

Analysis for Android: Installed Applications MVT

● mvt-android check-adb --module Packages --output
/path/to/results/folder/

Analysis for Android: Download apk

● Get package name
○ adb shell pm list packages

● Get apk path
○ adb shell pm path com.example.package

● pull the apk
○ adb pull

/data/app/~~Ihc8WADRQ_Qi0w2SqZ7-Nw==/org.fdroid.fdroid-ENnqn
1o_sh9NYMd7fBbx4A==/base.apk

Analysis for Android: Download apk MVT

● mvt-android download-apks –output /path/to/apks/folder/
● MVT_VT_API_KEY=<key> mvt-android download-apks --output /path/to/folder

--virustotal

Analysis for Android: Accessibility Services

Analysis for Android: Accessibility Services

● adb shell dumpsys accessibility

Analysis for Android: Accessibility Services MVT

$ mvt-android check-adb --module DumpsysAccessibility
INFO [mvt.android.modules.adb.dumpsys_accessibility] Running module
DumpsysAccessibility...
INFO [mvt.android.modules.adb.dumpsys_accessibility] Found installed
accessibility service
"com.samsung.accessibility/.universalswitch.UniversalSwitchService"
INFO [mvt.android.modules.adb.dumpsys_accessibility] Found installed
accessibility service
"com.samsung.android.accessibility.talkback/com.samsung.android.marvin.talkba
ck.TalkBackService"
INFO [mvt.android.modules.adb.dumpsys_accessibility] Found installed
accessibility service "com.malicious.package/.bad.Service"

Analysis for Android: Running processes

● adb shell ps -A

Analysis for Android: Running processes MVT

● mvt-android check-adb --module Processes --output
/path/to/results/folder/

Questions ?

Workshop: 14:15

Stage H

Contact:

viktor.schlueter@reporter-ohne-grenzen.de

@schluevik@chaos.social

janik.besendorf@reporter-ohne-grenzen.de

@besendorf@chaos.social

mailto:viktor.schlueter@reporter-ohne-grenzen.de
mailto:janik.besendorf@reporter-ohne-grenzen.de

