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Training
● Architecture: Describes Parameter 

Interactions

● Parameters: a few MB to GB

● Use input and expected output (“labels”) 
to learn prominent features from training 
data

● Knowledge about training data is 
contained in the optimized parameters

● Don’t forget to bring a fleet of high-end 
GPUs

● Run once/rarely
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Inference

● Take optimized parameters

● Run them on unseen input

● Obtain a prediction

● Lightweight

● Runs millions of times



Machine Learning’s Energy Problem



How fast are ML models growing?

● Explosion of model complexity and required compute through deep learning
● From doubling every 22 months before ca. 2010 to doubling every 5 months
● Why? More data + bigger models + more training = Better performance



Sevilla et al., Compute Trends Across Three Eras of Machine Learning (2022)



The Saarland – but for energy

● Proposed reference for energy: 
1 standard wind turbine 

● 5 MW rated power output

● 2,500 full load hours
(2021, onshore, northern Germany) [1]

● 12.5 GWh annual output (= 1 )🌬
could supply 5000 2-person households

[1] Statista, Anzahl der Wind-Volllaststunden nach typischen Standorten für Windenergieanlagen in Deutschland im Jahr 2021



Energy Cost of Training

● Between 400MWh and 1,300MWh [1] for training a ~200B Parameter LLM

● 0.032 to 0.1   (1.5 to 5.5 weeks of wind turbine energy production)🌬

● Computer Vision: ca. 9MWh for a large model [2] (6h of wind turbine output)

[1] Luccioni et al., Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model (2022)
[2] ViT-H14/JFT, 60k training hours on TPUv3 @ 110W per core + 33% estimated system overhead



Maslej et al., Artificial Intelligence Index Report (2023)



Inference Cost

● Low for most applications (Image Detection, Speech Recognition, …)

● State-of-the art LLMs require significant infrastructure & energy, even for inference

● Guess-timate of ChatGPT’s daily energy consumption for inference1: 

– Estimated 28,936 A100 GPUs [1] (400W TDP each, 50% utilization)

– 33% overhead for RAM, CPUs, etc. [2]

– 185 MWh daily (0.015  / 5.5 days of operation at average annual output)🌬

1 without embodied emissions of equipment, etc.
[1] Patel, D. & Ahmad, A., The Inference Cost Of Search Disruption – Large Language Model Cost Analysis (2023)
[2] Luccioni et al., Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model (2022)



Where does all the energy go?



Where does all the energy go?

John von Neumann (1903-1957)



Von Neumann Architecture
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separate
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● “Von Neumann Bottleneck”





The Energy Cost of the Von Neumann bottleneck

● Moving data around is energy-intensive

● Neural Networks move a lot of data around

Jouppi et al., Ten Lessons From Three Generations Shaped Google’s TPUv4i (2021)



Shrinking networks for inference
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Quantization

● Training done in 16-bit floating-point

● Convert parameters to 8-bit (or less) 
Integer for inference

● Slight loss in performance, but:

– Half the memory footprint

– Easier to build hardware for

● Changes maths, but not too much
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Pruning

● Parameters are dense and highly 
regular

● Likely a lot of redundancy

● Pruning removes least important 
elements (based on some 
heuristic)

● Up to ~50% of elements can 
typically be removed without 
noticeable accuracy loss 



Mixture of Experts

Mario Casciano, Wikimedia, CC BY-SA 3.0
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Mixture of Experts

● Gating function and several sub-networks 
(“experts”) are optimized during training

● Gating function forwards input to only 
some of the experts at runtime

● Results are combined
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Knowledge Distillation

● Train a large teacher model first

● Then train a smaller student model on the 
probability outputs of the teacher

● “Hidden knowledge” of teacher helps 
student learn better than direct training



Adapting existing models



Transfer Learning

● Adapt a pre-trained for a new task with a small dataset
● Freeze feature detection (colors, edges, primitive shapes)
● Only train the classifier (part that generates the prediction)
● Mostly useful for simpler tasks



Low-Rank Adaptation

● Freeze original parameters frozen

● Additionally transform input through A and B

● A and B only have a small number of 
learnable parameters

● Can be merged with original parameters



Higher efficiency reduces energy 
consumption

...right?



NO.

William Stanley Jevons
(1835 - 1882)



Summary

● Energy consumption is already an issue, especially with LLMs

● 10× scaling every 2 years means that this will likely get worse in the near future

● Running down-scaled models locally is almost always an option

● Training cuttinge-edge models from scratch is out of reach for everyone but the largest 
corporations. Adapting models is not.

www.etrommer.de
@jadeaffenjaeger@mastodon.online
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