What is This? A Machine Learning Model for Ants?

How to shrink deep learning models, and why you would want to

ELIAS TROMMER / 37C3 / DAY 3

Lifecycle of a deep learning model

- Architecture: Describes Parameter
 Interactions
- Parameters: a few MB to GB

- Architecture: Describes Parameter
 Interactions
- Parameters: a few MB to GB
- Use input and expected output ("labels") to learn prominent features from training data

- Architecture: Describes Parameter
 Interactions
- Parameters: a few MB to GB
- Use input and expected output ("labels") to learn prominent features from training data
- Knowledge about training data is
 contained in the optimized parameters

- Architecture: Describes Parameter
 Interactions
- Parameters: a few MB to GB
- Use input and expected output ("labels") to learn prominent features from training data
- Knowledge about training data is contained in the optimized parameters
- Don't forget to bring a fleet of high-end GPUs
- Run once/rarely

You

show me an image of a computer scientist in the process of trying to understand the inner workings of a state-of-the-art artificial neural network

You

show me an image of a computer scientist in the process of trying to understand the inner workings of a state-of-the-art artificial neural network

• Take optimized parameters

- Take optimized parameters
- Run them on unseen input

- Take optimized parameters
- Run them on unseen input
- Obtain a prediction

- Take optimized parameters
- Run them on unseen input
- Obtain a prediction
- Lightweight
- Runs millions of times

Machine Learning's Energy Problem

How fast are ML models growing?

- Explosion of model complexity and required compute through deep learning
- From doubling every 22 months before ca. 2010 to **doubling every 5 months**
- Why? More data + bigger models + more training = Better performance

Training compute (FLOPs) of milestone Machine Learning systems over time n = 121

Sevilla et al., Compute Trends Across Three Eras of Machine Learning (2022)

The Saarland – but for energy

- Proposed reference for energy: 1 standard wind turbine
- 5 MW rated power output
- **2,500 full load hours** (2021, onshore, northern Germany) [1]
- 12.5 GWh annual output (= 1) could supply 5000 2-person households

Energy Cost of Training

- Between **400MWh** and **1,300MWh** [1] for training a ~200B Parameter LLM
- 0.032 to 0.1 [3] (1.5 to 5.5 weeks of wind turbine energy production)
- Computer Vision: ca. **9MWh** for a large model [2] (6h of wind turbine output)

[1] Luccioni et al., Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model (2022)
 [2] VIT-H14/JFT, 60k training hours on TPUv3 @ 110W per core + 33% estimated system overhead

CO2 Equivalent Emissions (Tonnes) by Selected Machine Learning Models and Real Life Examples, 2022

Source: Luccioni et al., 2022; Strubell et al., 2019 | Chart: 2023 Al Index Report

Maslej et al., Artificial Intelligence Index Report (2023)

Inference Cost

- Low for most applications (Image Detection, Speech Recognition, ...)
- State-of-the art LLMs require significant infrastructure & energy, even for inference
- Guess-timate of ChatGPT's daily energy consumption for inference¹:
 - Estimated **28,936 A100 GPUs** [1] (400W TDP each, 50% utilization)
 - 33% overhead for RAM, CPUs, etc. [2]
 - **185 MWh** daily (0.015 **187** / 5.5 days of operation at average annual output)

¹ without embodied emissions of equipment, etc.

[1] Patel, D. & Ahmad, A., The Inference Cost Of Search Disruption – Large Language Model Cost Analysis (2023)
[2] Luccioni et al., Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model (2022)

Where does all the energy go?

Where does all the energy go?

John von Neumann (1903-1957)

Von Neumann Architecture

- No distinction between code and data
- Computation and memory are separate
- Data must travel through the **bus**
- "Von Neumann Bottleneck"

Von Neumann Architecture

- No distinction between code and data
- Computation and memory are separate
- Data must travel through the **bus**
- "Von Neumann Bottleneck"

The Energy Cost of the Von Neumann bottleneck

Operation		Picojoules per Operation		
		45 nm	7 nm	45 / 7
+	Int 8	0.03	0.007	4.3
	Int 32	0.1	0.03	3.3
	BFloat 16		0.11	
	IEEE FP 16	0,4	0.16	2.5
	IEEE FP 32	0.9	0.38	2.4
×	Int 8	0.2	0.07	2.9
	Int 32	3.1	1.48	2.1
	BFloat 16		0.21	
	IEEE FP 16	1.1	0.34	3.2
	IEEE FP 32	3.7	1.31	2.8
SRAM	8 KB SRAM	10	7.5	1.3
	32 KB SRAM	20	8.5	2.4
	1 MB SRAM ¹	100	14	7.1
GeoMean ¹				2.6
DRAM		Circa 45 nm	Circa 7 nm	
	DDR3/4	1300	1300	1.0
	HBM2		250-450	
	GDDR6		350-480	

- Moving data around is energy-intensive
- Neural Networks move **a lot** of data around

Table 2. Energy per Operation: 45 nm [16] vs 7 nm. Memoryis pJ per 64-bit access.

Jouppi et al., Ten Lessons From Three Generations Shaped Google's TPUv4i (2021)

Shrinking networks for inference

Quantization

Quantization

• Training done in 16-bit floating-point

Quantization

- Training done in 16-bit floating-point
- Convert parameters to 8-bit (or less) Integer for inference
- Slight loss in performance, but:
 - Half the memory footprint
 - Easier to build hardware for
- Changes maths, but not too much

Pruning

Pruning

- Parameters are dense and highly regular
- Likely a lot of redundancy

112	-55	-11	-95
4	62	17	-15
74	32	-33	5
-3	72	-87	103

Pruning

- Parameters are dense and highly regular
- Likely a lot of redundancy
- Pruning removes least important elements (based on some heuristic)
- Up to ~50% of elements can typically be removed without noticeable accuracy loss

Mario Casciano, Wikimedia, CC BY-SA 3.0

• Gating function and several sub-networks ("experts") are optimized during training

- Gating function and several sub-networks ("experts") are optimized during training
- Gating function forwards input to only some of the experts at runtime

- Gating function and several sub-networks ("experts") are optimized during training
- Gating function forwards input to only some of the experts at runtime
- Results are combined

• Train a large **teacher** model first

- Train a large **teacher** model first
- Then train a smaller **student** model on the **probability outputs** of the teacher
- "Hidden knowledge" of teacher helps student learn better than direct training

- Train a large **teacher** model first
- Then train a smaller **student** model on the **probability outputs** of the teacher
- "Hidden knowledge" of teacher helps
 student learn better than direct training

Adapting existing models

Transfer Learning

- Adapt a pre-trained for a new task with a small dataset
- Freeze feature detection (colors, edges, primitive shapes)
- Only train the classifier (part that generates the prediction)
- Mostly useful for simpler tasks

Low-Rank Adaptation

- Freeze original parameters frozen
- Additionally transform input through A and B
- A and B only have a small number of learnable parameters
- Can be merged with original parameters

Higher efficiency reduces energy consumption

...right?

William Stanley Jevons (1835 - 1882)

Summary

- Energy consumption is **already an issue**, especially with LLMs
- 10× scaling every 2 years means that this will likely get worse in the near future
- Running down-scaled models **locally** is almost always an option
- **Training** cuttinge-edge models from scratch is out of reach for everyone but the largest corporations. **Adapting** models is not.

www.etrommer.de @jadeaffenjaeger@mastodon.online