
Place & Route on Silicon

a gentle introduction

37c3@tkramer.ch

 3/37

Today
● Place and Route
● How does the “silicon

compiler” work
● Not today: How to use it

 4/37

Motivation
● Most chips are

proprietary
– Obscurity
– Documentation?
– Firmware?
– Use, study, share,

improve?

 5/37

Motivation
● Create chips, open down to the layout?
● Yes, but

– Software vendors set rules (NDAs, restrictive licenses)
– NDAs for process design kits

● FOSS toolchain!
– Allows to implement novel ideas
– Accessible for small entities
– Useful for education

You cannot publish
your work

OK

 6/37

Why now?
● Many things happening recently

– US: Skywater’s open process design kit (PDK)
– US: Google, DARPA
– US: OpenRoad (free software place & route toolchain)
– Germany: IHP open source process design kit (PDK)
– EU: ChipsAct

● Tech vendors become more restrictive (personal opinion)
– Time to have alternatives

 7/37

Digital Chip Design Flow

Netlist

Design rules

Layout
(vector graphic)

Cell
Library

FoundryPlace & Route
Etc.

Logic
Synthesis

ChipThis talk

$$$

HDL
source
code

 8/37

Digital Circuits / Logic
● Logic “gates”

– small boolean
functions

– Inverter, AND, OR,
NAND, XOR, ...

CMOS inverter

NMOS Transistor

PMOS Transistor

In Out

 9/37

Digital Circuits / Logic
● Storage elements
● Update output on

clock edge

Clock

Data input Data output

Flip-Flop

 10/37

Digital Circuits / Logic
● Assemble gates to large circuits
● Up to millions of gates

A0
B0

S0

S1

C

A1

B1

 11/37

Row-Based Layouts

 12/37

Row-based layouts

power grid

standard cell row

 13/37

CMOS Layerstack
● Silicon, doping, poly-silicon

– Build transistors
– Ignore for place & route

● Metal layers and vias
– Build wires

silicon

transistor

metal
via

 14/37

Standard Cells

Out
InInIn

OutInInIn

T1

T2

V+

GND

In Out

T2

T1

 15/37

Standard Cells
● Simplify place & route

– Care about metal layers and pins only
– Forget about transistors

D

Clock

Q

Qn

 16/37

Place and Route
● Place components
● Create clock-tree
● Route regular nets
● Check and fix timing
● Verify

– Layout versus schematic (LVS)
– Design rule checks (DRC)

 17/37

Placement Problem
● Find positions for cells
● Optimize wire-length
● Constraints

– Components cannot
overlap

– Routing should be
possible

 18/37

Breaking Down the Problem
● Global placement

– Find approximate
locations for
components

– Allow small overlaps but
respect density

● Legalization
– Resolve overlaps
– Snap to grid

● Detail placement
– Local optimizations

 19/37

Example: Quadratic Placement
● Idea: connected cells attract each other

– Simulate a network of springs
– Ignore overlaps

● Minimize the sum of squared wire-
lengths

● “Analytic” placement
– Minimize a cost function
– Gradient descent

● Problem: high overlap

Fixed

 20/37

Example: Quadratic Placement
● Problem: high overlap
● Idea: add repulsive force

 21/37

Example: solve density constraint
● Idea: simulate

charged particles
● Repulsion reduces

overlap
● Used by “ePlace”

filler cells

 22/37

Effect of Electrostatic Repulsion

minimized quadratic
wire-length

solved density constraint

 23/37

Routing Problem
● Goal: Correct electrical

connections
● Constraint: layers, design rules

– Minimum spacing
– Minimum width
– Others (antenna rules, ...)

● Route special nets separately
– Supply voltages → power grid
– Clock → clock-tree synthesis

 24/37

Routing Problem
We have: We want:

 25/37

“Maze” Routing

 26/37

Breaking Down the Problem
● Global routing

– Find approximate
routes

– Relax design rules
– Resolve congestion

● Detail routing
– Final wiring
– Refine global routes
– Respect design rules

 27/37

Global Routing
● Find routes on coarse

grid

 28/37

Global Routing
● Example: Connect

the three pairs of pins
● Max. two wires can

cross between tiles

obstacle, capacity = 0
capacity = 2
cost = 1

 29/37

Global Routing
● “Pathfinder” algorithm

– Route all nets
– Increase costs for

congested edges
– Iterate

conflict
capacity = 2
usage = 3

 30/37

Global Routing
● Push routes away

from congested
regions

● Use result for detail
routing

 31/37

Detail routing
● Find final wiring
● Refine global routes

 32/37

Detail routing
● Convert global routes

to narrow lines
● Assign lines to tracks
● Minimize conflicts

 33/37

Detail routing
● Fill gaps by maze

routing
● Check rule violations
● Fix violations

 34/37

 35/37

Make Use of Empty Space

put capacitors

 36/37

More...
● “VLSI Physical Design: From Graph Partitioning to Timing

Closure”, Andrew B. Kahng
● Free Silicon Conference, Paris (f-si.org)
● OpenRoad (theopenroadproject.org)
● Coriolis (coriolis.lip6.fr)
● LunaPnR (nlnet.nl/project/Luna/)
● LibrEDA.org

 37/37

Thank you!

37c3@tkramer.ch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

