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Today
● Place and Route
● How does the “silicon 

compiler” work
● Not today: How to use it
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Motivation
● Most chips are 

proprietary
– Obscurity
– Documentation?
– Firmware?
– Use, study, share, 

improve?
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Motivation
● Create chips, open down to the layout?
● Yes, but

– Software vendors set rules (NDAs, restrictive licenses)
– NDAs for process design kits

● FOSS toolchain!
– Allows to implement novel ideas
– Accessible for small entities
– Useful for education

You cannot publish 
your work

OK
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Why now?
● Many things happening recently

– US: Skywater’s open process design kit (PDK)
– US: Google, DARPA
– US: OpenRoad (free software place & route toolchain)
– Germany: IHP open source process design kit (PDK)
– EU: ChipsAct

● Tech vendors become more restrictive (personal opinion)
– Time to have alternatives



  7/37

Digital Chip Design Flow
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Digital Circuits / Logic
● Logic “gates”

– small boolean 
functions

– Inverter, AND, OR, 
NAND, XOR, ...

CMOS inverter

NMOS Transistor

PMOS Transistor

In Out
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Digital Circuits / Logic
● Storage elements
● Update output on 

clock edge

Clock

Data input Data output

Flip-Flop
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Digital Circuits / Logic
● Assemble gates to large circuits
● Up to millions of gates

A0
B0

S0

S1

C

A1

B1
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Row-Based Layouts
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Row-based layouts

power grid

standard cell row
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CMOS Layerstack
● Silicon, doping, poly-silicon

– Build transistors
– Ignore for place & route

● Metal layers and vias
– Build wires

silicon

transistor

metal
via
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Standard Cells
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Standard Cells
● Simplify place & route

– Care about metal layers and pins only
– Forget about transistors

D

Clock

Q

Qn
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Place and Route
● Place components
● Create clock-tree
● Route regular nets
● Check and fix timing
● Verify

– Layout versus schematic (LVS)
– Design rule checks (DRC)
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Placement Problem
● Find positions for cells
● Optimize wire-length
● Constraints

– Components cannot 
overlap

– Routing should be 
possible
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Breaking Down the Problem
● Global placement

– Find approximate 
locations for 
components

– Allow small overlaps but 
respect density

● Legalization
– Resolve overlaps
– Snap to grid

● Detail placement
– Local optimizations
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Example: Quadratic Placement
● Idea: connected cells attract each other

– Simulate a network of springs
– Ignore overlaps

● Minimize the sum of squared wire-
lengths

● “Analytic” placement
– Minimize a cost function
– Gradient descent

● Problem: high overlap

Fixed
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Example: Quadratic Placement
● Problem: high overlap
● Idea: add repulsive force
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Example: solve density constraint
● Idea: simulate 

charged particles
● Repulsion reduces 

overlap
● Used by “ePlace”

filler cells
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Effect of Electrostatic Repulsion

minimized quadratic
wire-length

solved density constraint
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Routing Problem
● Goal: Correct electrical 

connections
● Constraint: layers, design rules

– Minimum spacing
– Minimum width
– Others (antenna rules, ...)

● Route special nets separately
– Supply voltages → power grid
– Clock → clock-tree synthesis
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Routing Problem
We have: We want:
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“Maze” Routing
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Breaking Down the Problem
● Global routing

– Find approximate 
routes

– Relax design rules
– Resolve congestion

● Detail routing
– Final wiring
– Refine global routes
– Respect design rules
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Global Routing
● Find routes on coarse 

grid



  28/37

Global Routing
● Example: Connect 

the three pairs of pins
● Max. two wires can 

cross between tiles

obstacle, capacity = 0
capacity = 2
cost = 1
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Global Routing
● “Pathfinder” algorithm

– Route all nets
– Increase costs for 

congested edges
– Iterate

conflict
capacity = 2
usage = 3
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Global Routing
● Push routes away 

from congested 
regions

● Use result for detail 
routing



  31/37

Detail routing
● Find final wiring
● Refine global routes
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Detail routing
● Convert global routes 

to narrow lines
● Assign lines to tracks
● Minimize conflicts
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Detail routing
● Fill gaps by maze 

routing
● Check rule violations
● Fix violations
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Make Use of Empty Space

put capacitors
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More...
● “VLSI Physical Design: From Graph Partitioning to Timing 

Closure”, Andrew B. Kahng
● Free Silicon Conference, Paris (f-si.org)
● OpenRoad (theopenroadproject.org)
● Coriolis (coriolis.lip6.fr)
● LunaPnR (nlnet.nl/project/Luna/)
● LibrEDA.org



  37/37

Thank you!

37c3@tkramer.ch
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