
Kernel Tracing With eBPF
Unlocking God Mode on Linux

.

.

35C3

Jeff Dileo

@chaosdatumz

Andy Olsen

@0lsen_

Who are we?

Jeff Dileo (@chaosdatumz)
• Unix aficionado

• Agent of chaos

• Consultant / Research Director @ NCC Group

• I like to do terrible things to/with/in:

• programs

• languages

• runtimes

• memory

• kernels

• packets

• bytes

• ...

Andy Olsen (@0lsen_)
• Ultimate frisbee enthusiast

• Amateur chiptune artist

• Security Consultant @ NCC Group

• Il ne parle pas Français

Outline

• eBPF

• Tracing with eBPF

• Defensive eBPF

• eBPF Secure Coding Gotchas

• Offensive eBPF

• Q&A

eBPF — Background

• ”extended” BPF

• But what is BPF?

eBPF — Background

• ”extended” BPF

• But what is BPF?

eBPF — BPF

• Berkeley Packet Filter

• Limited instruction set for a bytecode virtual machine

• Originally created to implement FAST programmatic network filtering in kernel

• has a few (2) 32-bit registers (and a hidden frame pointer)

• load/store, conditional jump (forward), add/sub/mul/div/mod, neg/and/or/xor, bitshift

• tcpdump -i any -n 'tcp[tcpflags] & (tcp-syn|tcp-ack) != 0'

(000) ldh [14]

(001) jeq #0x800 jt 2 jf 10

(002) ldb [25]

(003) jeq #0x6 jt 4 jf 10

(004) ldh [22]

(005) jset #0x1fff jt 10 jf 6

(006) ldxb 4*([16]&0xf)

(007) ldb [x + 29]

(008) jset #0x12 jt 9 jf 10

(009) ret #262144

(010) ret #0

eBPF — eBPF

• ”extended” Berkeley Packet Filter

• ”designed to be JITed with one to one mapping”

• ”originally designed with the possible goal in mind to write programs in ’restricted C’”

• socket filters, packet processing, tracing, internal backend for ”classic” BPF, and more...

• File descriptor-based API through bpf(2) syscall

• Provide:

• An array of bytecode instructions

• Type of eBPF program (e.g. BPF_PROG_TYPE_SOCKET_FILTER, BPF_PROG_TYPE_KPROBE, etc.)

• Other type-specific metadata

• Receive:

• (on success) A file descriptor referring to the in-kernel compiled eBPF program

• The power of eBPF is really in the kernel APIs that will accept an eBPF descriptor and plug it

into things

eBPF — eBPF
static int add_lookup_instructions(BPFProgram *p, int map_fd, int protocol, bool is_ingress, int verdict) {

...

struct bpf_insn insn[] = {

BPF_JMP_IMM(BPF_JNE, BPF_REG_7, htobe16(protocol), 0),

...

BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),

BPF_MOV32_IMM(BPF_REG_2, addr_offset),

BPF_MOV64_REG(BPF_REG_3, BPF_REG_10),

BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -addr_size),

BPF_MOV32_IMM(BPF_REG_4, addr_size),

BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes),

...

BPF_LD_MAP_FD(BPF_REG_1, map_fd),

BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),

BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -addr_size - sizeof(uint32_t)),

BPF_ST_MEM(BPF_W, BPF_REG_2, 0, addr_size * 8),

BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),

BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),

BPF_ALU32_IMM(BPF_OR, BPF_REG_8, verdict),

};

...

Listing 1: systemd/src/core/bpf-firewall.c

eBPF — Important BPF to eBPF Changes

• now 10 64-bit registers, directly mapped to HW CPU registers

• R0: return value from in-kernel function, and exit value for eBPF program

• R1-R5: arguments from eBPF program to in-kernel function

• R6-R9: callee saved registers that in-kernel function will preserve

• R10: read-only frame pointer to access stack

• new bpf_call instruction

• HW-based register passing convention for zero overhead calls from/to other kernel functions

• Used to call other eBPF programs and ”helper” functions

• Bytecode validator (”verifier”)

• Helper functions

• Set of native kernel functions exposed to eBPF code

• Context-dependent (e.g. packet processing eBPF cannot call kernel memory read helper)

• Argument registers validated against call spec for each helper function

Why eBPF?

• HIGH PERFORMANCE in-plane packet processing

• network tunneling

• custom iptables rules

• syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

• Reduce need for kernel modules

• firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the ”why” of eBPF has changed retroactivively

Why eBPF?

• (safe) HIGH PERFORMANCE in-plane packet processing

• network tunneling

• custom iptables rules

• syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

• Reduce need for kernel modules

• firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the ”why” of eBPF has changed retroactivively

Why eBPF?

• (safe) HIGH PERFORMANCE in-plane packet processing

• network tunneling

• custom iptables rules

• syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

• Reduce need for kernel modules

• firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the ”why” of eBPF has changed retroactivively

Why eBPF?

• (safe) HIGH PERFORMANCE in-plane packet processing

• network tunneling

• custom iptables rules

• syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

• Reduce need for kernel modules

• firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the ”why” of eBPF has changed retroactivively

Why eBPF?

• (safe) HIGH PERFORMANCE in-planekernel packet processing programmatic operations

• network tunneling

• custom iptables rules

• syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

• Reduce need for kernel modules

• firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the ”why” of eBPF has changed retroactivively

Why eBPF?

• (safe) HIGH PERFORMANCE in-planekernel packet processing programmatic operations

• network tunneling

• custom iptables rules

• syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

• Reduce need for buggy kernel modules

• firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the ”why” of eBPF has changed retroactivively

Why eBPF?

• (safe) HIGH PERFORMANCE in-planekernel packet processing programmatic operations

• network tunneling

• custom iptables rules

• syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

• Reduce need for buggy kernel modules

• firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the ”why” of eBPF has changed retroactivively

Why eBPF?

• (safe) HIGH PERFORMANCE in-planekernel packet processing programmatic operations

• network tunneling

• custom iptables rules

• syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

• Reduce need for buggy kernel modules

• firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the ”why” of eBPF has changed retroactivively

Why eBPF?

• (safe) HIGH PERFORMANCE in-planekernel packet processing programmatic operations

• network tunneling

• custom iptables rules

• syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

• Reduce need for buggy kernel modules

• firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the ”why” of eBPF has changed retroactivively

Why eBPF? — OK, but really, why?

• eBPF is different things to different people

• Personally, we like being able to selectively instrument an entire OS without making it crawl

• The title of this talk is ”Kernel Tracing With eBPF” :)

• eBPF has the potential to give DTrace a run for its money

• The power of DTrace is in its providers (event/data sources)

• Linux will not likely gain such unified facilities

• eBPF is more programmatic, but lower level

• It provides a base to build more complicated analysis tooling on

• DTrace is amazing at one-off human-driven system analysis

• But eBPF enables very efficient dynamic always-on whole system analysis

Why eBPF? — OK, but really, why?

• eBPF is different things to different people

• Personally, we like being able to selectively instrument an entire OS without making it crawl

• The title of this talk is ”Kernel Tracing With eBPF” :)

• eBPF has the potential to give DTrace a run for its money

• The power of DTrace is in its providers (event/data sources)

• Linux will not likely gain such unified facilities

• eBPF is more programmatic, but lower level

• It provides a base to build more complicated analysis tooling on

• DTrace is amazing at one-off human-driven system analysis

• But eBPF enables very efficient dynamic always-on whole system analysis

Why eBPF? — OK, but really, why?

• eBPF is different things to different people

• Personally, we like being able to selectively instrument an entire OS without making it crawl

• The title of this talk is ”Kernel Tracing With eBPF” :)

• eBPF has the potential to give DTrace a run for its money

• The power of DTrace is in its providers (event/data sources)

• Linux will not likely gain such unified facilities

• eBPF is more programmatic, but lower level

• It provides a base to build more complicated analysis tooling on

• DTrace is amazing at one-off human-driven system analysis

• But eBPF enables very efficient dynamic always-on whole system analysis

Why eBPF? — OK, but really, why?

• eBPF is different things to different people

• Personally, we like being able to selectively instrument an entire OS without making it crawl

• The title of this talk is ”Kernel Tracing With eBPF” :)

• eBPF has the potential to give DTrace a run for its money

• The power of DTrace is in its providers (event/data sources)

• Linux will not likely gain such unified facilities

• eBPF is more programmatic, but lower level

• It provides a base to build more complicated analysis tooling on

• DTrace is amazing at one-off human-driven system analysis

• But eBPF enables very efficient dynamic always-on whole system analysis

Why eBPF? — OK, but really, why?

• eBPF is different things to different people

• Personally, we like being able to selectively instrument an entire OS without making it crawl

• The title of this talk is ”Kernel Tracing With eBPF” :)

• eBPF has the potential to give DTrace a run for its money

• The power of DTrace is in its providers (event/data sources)

• Linux will not likely gain such unified facilities

• eBPF is more programmatic, but lower level

• It provides a base to build more complicated analysis tooling on

• DTrace is amazing at one-off human-driven system analysis

• But eBPF enables very efficient dynamic always-on whole system analysis

Let’s talk about tracing

Tracing — An Introduction

• ”Tracing” is a concept

• Wikipedia describes it as

”a specialized use of logging to record information about a program’s execution”

• Generally considered developer-centric logging

• Often involves very low-level logging of very low-level information

• This distinction is unhelpful and misses the point

Tracing — An Introduction

• ”Tracing” is a concept

• Wikipedia describes it as

”a specialized use of logging to record information about a program’s execution”

• Generally considered developer-centric logging

• Often involves very low-level logging of very low-level information

• This distinction is unhelpful and misses the point

Tracing — Why is Tracing Useful?

• It isn’t (for us)

• What is useful is ”dynamic tracing”

Tracing — Why is Tracing Useful?

• It isn’t (for us)

• What is useful is ”dynamic tracing”

Tracing — Why is Tracing Useful?

• It isn’t (for us)

• What is useful is ”dynamic tracing”

Dynamic Tracing — An Introduction

• Two main kinds of dynamic tracing

• Dynamically enabling/disabling existing logging functionality

• Dynamically adding logging functionality that wasn’t there before

• We mostly care about the latter

• But the ”logging” isn’t really that important

• What’s important is the implementation and its capabilities

• We don’t care about dynamic tracing as much as the dynamic instrumentation implementing it

• Two main kinds of dynamic instrumentation

• Function hooking

• Instruction instrumentation (assembly, bytecode, etc.)

• Depending on the instrumentation target, a function hooking API may be implemented through

some amount of instruction modification/instrumentation

Dynamic Tracing — An Introduction

• Two main kinds of dynamic tracing

• Dynamically enabling/disabling existing logging functionality

• Dynamically adding logging functionality that wasn’t there before

• We mostly care about the latter

• But the ”logging” isn’t really that important

• What’s important is the implementation and its capabilities

• We don’t care about dynamic tracing as much as the dynamic instrumentation implementing it

• Two main kinds of dynamic instrumentation

• Function hooking

• Instruction instrumentation (assembly, bytecode, etc.)

• Depending on the instrumentation target, a function hooking API may be implemented through

some amount of instruction modification/instrumentation

Dynamic Tracing — An Introduction

• Two main kinds of dynamic tracing

• Dynamically enabling/disabling existing logging functionality

• Dynamically adding logging functionality that wasn’t there before

• We mostly care about the latter

• But the ”logging” isn’t really that important

• What’s important is the implementation and its capabilities

• We don’t care about dynamic tracing as much as the dynamic instrumentation implementing it

• Two main kinds of dynamic instrumentation

• Function hooking

• Instruction instrumentation (assembly, bytecode, etc.)

• Depending on the instrumentation target, a function hooking API may be implemented through

some amount of instruction modification/instrumentation

Dynamic Tracing — An Introduction

• Two main kinds of dynamic tracing

• Dynamically enabling/disabling existing logging functionality

• Dynamically adding logging functionality that wasn’t there before

• We mostly care about the latter

• But the ”logging” isn’t really that important

• What’s important is the implementation and its capabilities

• We don’t care about dynamic tracing as much as the dynamic instrumentation implementing it

• Two main kinds of dynamic instrumentation

• Function hooking

• Instruction instrumentation (assembly, bytecode, etc.)

• Depending on the instrumentation target, a function hooking API may be implemented through

some amount of instruction modification/instrumentation

Dynamic Tracing — An Introduction

• Two main kinds of dynamic tracing

• Dynamically enabling/disabling existing logging functionality

• Dynamically adding logging functionality that wasn’t there before

• We mostly care about the latter

• But the ”logging” isn’t really that important

• What’s important is the implementation and its capabilities

• We don’t care about dynamic tracing as much as the dynamic instrumentation implementing it

• Two main kinds of dynamic instrumentation

• Function hooking

• Instruction instrumentation (assembly, bytecode, etc.)

• Depending on the instrumentation target, a function hooking API may be implemented through

some amount of instruction modification/instrumentation

Dynamic Tracing — An Introduction

• Two main kinds of dynamic tracing

• Dynamically enabling/disabling existing logging functionality

• Dynamically adding logging functionality that wasn’t there before

• We mostly care about the latter

• But the ”logging” isn’t really that important

• What’s important is the implementation and its capabilities

• We don’t care about dynamic tracing as much as the dynamic instrumentation implementing it

• Two main kinds of dynamic instrumentation

• Function hooking

• Instruction instrumentation (assembly, bytecode, etc.)

• Depending on the instrumentation target, a function hooking API may be implemented through

some amount of instruction modification/instrumentation

Instrumenting Linux With eBPF
For Fun and Profit

.

.Jeff Dileo

@chaosdatumz

Andy Olsen

@0lsen_

Linux Tracing—APurposefully Over-Summarized History

• 2004: kprobes/kretprobes

• 2008: ftrace

• 2009: perf_events

• 2009: tracepoints

• 2012: uprobes

• 2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing—APurposefully Over-Summarized History

• 2004: kprobes/kretprobes

• Injects jumps into function entry/exit points that go to hook code

• If jumps can’t safely be inserted, falls back to breakpoints and single-stepping from entry to exit

• API originally exposed to kernel code/kernel modules

• 2008: ftrace

• 2009: perf_events

• 2009: tracepoints

• 2012: uprobes

• 2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing—APurposefully Over-Summarized History

• 2004: kprobes/kretprobes

• 2008: ftrace

• Provides a filesystem-based userland API to perform various tracing/profiling

• 2009: perf_events

• 2009: tracepoints

• 2012: uprobes

• 2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing—APurposefully Over-Summarized History

• 2004: kprobes/kretprobes

• 2008: ftrace

• 2009: perf_events

• Does a whole bunch of awesome profiling stuff outside the scope of this talk

• 2009: tracepoints

• 2012: uprobes

• 2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing—APurposefully Over-Summarized History

• 2004: kprobes/kretprobes

• 2008: ftrace

• 2009: perf_events

• 2009: tracepoints

• Enable-able logging functions that pack log content into documented structs

• 2012: uprobes

• 2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing—APurposefully Over-Summarized History

• 2004: kprobes/kretprobes

• 2008: ftrace

• 2009: perf_events

• 2009: tracepoints

• 2012: uprobes

• Essentially kprobes applied to userspace memory

• 2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing—APurposefully Over-Summarized History

• 2004: kprobes/kretprobes

• 2008: ftrace

• 2009: perf_events

• 2009: tracepoints

• 2012: uprobes

• 2015-present: eBPF tracing integration (Linux 4.1+)

• Combined mecha super robot

eBPF Voltron

• eBPF is being integrated with many different kernel technologies, especially the tracing ones

• Core concepts:

• Attach eBPF program to a data source using perf_events API or bpf(2)
• Use perf_events ring buffer or memory-mapped eBPF maps as output

• eBPF maps can also be updated from userspace to provide input

• Sources:

• k(ret)probes

• u(ret)probes

• tracepoints

• raw tracepoints

eBPF Voltron

• eBPF is being integrated with many different kernel technologies, especially the tracing ones

• Core concepts:

• Attach eBPF program to a data source using perf_events API or bpf(2)
• Use perf_events ring buffer or memory-mapped eBPF maps as output

• eBPF maps can also be updated from userspace to provide input

• Sources:

• k(ret)probes

• u(ret)probes

• tracepoints

• raw tracepoints

eBPF Voltron — Source Attachment

• k(ret)probes (old):

1. bpf(2) to create a kprobe eBPF program (BPF_PROG_LOAD)

2. Use ftrace/tracefs API to register a k(ret)probe

3. Read /id file from it to get kprobe ID

4. perf_event_open(&attr, <pid>, -1, -1, PERF_FLAG_FD_CLOEXEC)
• struct perf_event_attr attr;

• attr.type = PERF_TYPE_TRACEPOINT;

• attr.config = <kprobe_id>;

5. ioctl(<perf_fd>, PERF_EVENT_IOC_SET_BPF, <bpf_fd>)

6. ioctl(<perf_fd>, PERF_EVENT_IOC_ENABLE, 0)

• k(ret)probes (new):

1. bpf(2) to create a kprobe eBPF program (BPF_PROG_LOAD)

2. perf_event_open(&attr, <pid>, -1, -1, PERF_FLAG_FD_CLOEXEC)
• attr.type = 6; // magic number

• attr.kprobe_func = <addr of str>;

• attr.probe_offset = <off>; // if attr.kprobe_func != NULL

• attr.kprobe_addr = <addr>; // if attr.kprobe_func == NULL

3. Follow steps 4-6 from above

eBPF Voltron — Source Attachment

• u(ret)probes (old/new):

• Basically identical to the previous slide with minor modifications

• tracepoints

• Basically identical to the old k(ret)probe attachment

• raw tracepoints

1. bpf(2) to create a raw tracepoint eBPF program (BPF_PROG_LOAD)

2. bpf(2) to attach BPF fd to tracepoint by name (BPF_RAW_TRACEPOINT_OPEN)

Using eBPF — How (Not) to eBPF

• Don’t write eBPF bytecode assembly by hand

• It is hard

• It is basically impossible to do anything more than simple arithmetic and a few comparisons

• It is not well supported by glibc (not that anything modern is)

• It is highly error prone

Using eBPF — How (Not) to eBPF

• Don’t write eBPF bytecode assembly by hand

• It is hard

• It is basically impossible to do anything more than simple arithmetic and a few comparisons

• It is not well supported by glibc (not that anything modern is)

• It is highly error prone

Using eBPF — How to eBPF

• Use bcc (BPF Compiler Collection)

• https://github.com/iovisor/bcc

• Framework for compiling C into eBPF (using LLVM APIs) and hooking it up to sources

• This talk is not ”about” bcc, but it’s the only thing mature enough to suit our purposes

• As with most modern and useful Linux things:

• No official userland API other than syscalls

• Syscall documentation is lacking/wrong

• Multi-syscall operations are essentially undocumented

• No support from glibc (everything is generally done with the syscall() wrapper)

• One real consumer of the API, often with varying levels of documentation

• Kernel APIs often written to support the one consumer, often by the same developers

• ...

• bcc is the only real option

• Everything else either uses at least some of it as a library or cribs from their code

https://github.com/iovisor/bcc

Using eBPF — How to eBPF

• Use bcc (BPF Compiler Collection)

• https://github.com/iovisor/bcc

• Framework for compiling C into eBPF (using LLVM APIs) and hooking it up to sources

• This talk is not ”about” bcc, but it’s the only thing mature enough to suit our purposes

• As with most modern and useful Linux things:

• No official userland API other than syscalls

• Syscall documentation is lacking/wrong

• Multi-syscall operations are essentially undocumented

• No support from glibc (everything is generally done with the syscall() wrapper)

• One real consumer of the API, often with varying levels of documentation

• Kernel APIs often written to support the one consumer, often by the same developers

• ...

• bcc is the only real option

• Everything else either uses at least some of it as a library or cribs from their code

https://github.com/iovisor/bcc

Building Tracing Tools With BCC

• Primarily a Python API, with underlying C/C++ layers to call lower level APIs

• Usually a whole tool is a single Python file

• eBPF C code is generally a Python string

• General structure of bcc-based tracers is the following:

1. Python imports

2. Large Python string containing eBPF C code, possibly using custom templating

3. Argument parsing to codegen templated parts of the eBPF C code

4. Python ctypes struct definitions for eBPF C defined types

5. Userspace Python callback handlers for events generated by eBPF C

6. BCC API calls to compile the C code, attach it to sources, and register event handlers

Building Tracing Tools With BCC

• Primarily a Python API, with underlying C/C++ layers to call lower level APIs

• Usually a whole tool is a single Python file

• bcc doesn’t handle C #include ""s super well

• Can be done with special function kwargs

• But need to specify the full path because the default base dir is weird

• eBPF C code is generally a Python string

• General structure of bcc-based tracers is the following:

1. Python imports

2. Large Python string containing eBPF C code, possibly using custom templating

3. Argument parsing to codegen templated parts of the eBPF C code

4. Python ctypes struct definitions for eBPF C defined types

5. Userspace Python callback handlers for events generated by eBPF C

6. BCC API calls to compile the C code, attach it to sources, and register event handlers

Let’s write some code!

from bcc import BPF

program = """

#include <asm/ptrace.h> // for struct pt_regs

#include <linux/types.h> // for mode_t

int kprobe__sys_open(struct pt_regs *ctx,

char __user* pathname, int flags, mode_t mode) {

bpf_trace_printk("sys_open called.\\n");

return 0;

}

"""

b = BPF(text=program)

b.trace_print()

$ sudo python code/3-hello-open-world-1.py

...

There’s no output! What went wrong?

glibc

from bcc import BPF

program = """

#include <asm/ptrace.h> // for struct pt_regs

#include <linux/types.h> // for mode_t

int kprobe__sys_open(struct pt_regs *ctx,

char __user* pathname, int flags, mode_t mode) {

bpf_trace_printk("sys_open called.\\n");

return 0;

}

int kprobe__sys_openat(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

bpf_trace_printk("sys_openat called.\\n");

return 0;

}

"""

b = BPF(text=program)

b.trace_print()

$ sudo python code/3-hello-open-world-2.py

gnome-shell-13250 [001] 318129.936224: 0x00000001: sys_openat called.

gnome-shell-13250 [001] 318130.022664: 0x00000001: sys_openat called.

systemd-1 [000] 318130.193712: 0x00000001: sys_openat called.

systemd-journal-339 [000] 318130.194966: 0x00000001: sys_openat called.

systemd-journal-339 [000] 318130.194999: 0x00000001: sys_openat called.

systemd-journal-339 [000] 318130.195317: 0x00000001: sys_openat called.

systemd-1 [000] 318130.210087: 0x00000001: sys_openat called.

systemd-1 [000] 318130.210151: 0x00000001: sys_openat called.

irqbalance-676 [000] 319219.767122: 0x00000001: sys_openat called.

irqbalance-676 [000] 319219.767449: 0x00000001: sys_openat called.

gnome-shell-13250 [000] 319224.120910: 0x00000001: sys_openat called.

gnome-shell-13250 [000] 319224.121005: 0x00000001: sys_openat called.

gnome-control-c-19963 [001] 319227.287377: 0x00000001: sys_openat called.

irqbalance-676 [000] 319229.760427: 0x00000001: sys_openat called.

irqbalance-676 [000] 319229.760747: 0x00000001: sys_openat called.

zsh-14892 [001] 319235.284734: 0x00000001: sys_openat called.

zsh-14892 [001] 319235.284914: 0x00000001: sys_openat called.

zsh-14892 [001] 319235.285157: 0x00000001: sys_openat called.

zsh-14892 [001] 319235.285166: 0x00000001: sys_openat called.

...

Let’s generalize this code a bit...

from bcc import BPF

program = """

#include <asm/ptrace.h> // for struct pt_regs

#include <linux/types.h> // for mode_t

int kprobe__do_sys_open(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

bpf_trace_printk("do_sys_open called: %s\\n", pathname);

return 0;

}

"""

b = BPF(text=program)

b.trace_print()

$ sudo python code/3-hello-open-world-3.py

irqbalance-676 [000] 319659.751235: 0x00000001: do_sys_open called: /proc/interrupts

irqbalance-676 [000] 319659.751685: 0x00000001: do_sys_open called: /proc/stat

gnome-shell-13250 [000] 319661.369193: 0x00000001: do_sys_open called: /proc/self/stat

systemd-1 [000] 319668.190947: 0x00000001: do_sys_open called: /proc/33172/cgroup

systemd-1 [000] 319668.193370: 0x00000001: do_sys_open called: /proc/664/cgroup

systemd-journal-339 [001] 319668.194160: 0x00000001: do_sys_open called: /proc/679/comm

systemd-journal-339 [001] 319668.194253: 0x00000001: do_sys_open called: /proc/679/cmdline

systemd-journal-339 [001] 319668.194276: 0x00000001: do_sys_open called: /proc/679/status

systemd-journal-339 [001] 319668.194319: 0x00000001: do_sys_open called: /proc/679/attr/current

systemd-journal-339 [001] 319668.194335: 0x00000001: do_sys_open called: /proc/679/sessionid

systemd-journal-339 [001] 319668.194349: 0x00000001: do_sys_open called: /proc/679/loginuid

systemd-journal-339 [001] 319668.194363: 0x00000001: do_sys_open called: /proc/679/cgroup

systemd-journal-339 [001] 319668.194406: 0x00000001: do_sys_open called: /run/systemd/units/log

-extra-fields:dbus.service

systemd-journal-339 [001] 319668.194449: 0x00000001: do_sys_open called: /var/log/journal/

cd4d5eaa191c4be38b778d3203fb6bbb

systemd-journal-339 [001] 319668.194801: 0x00000001: do_sys_open called: /run/log/journal/

cd4d5eaa191c4be38b778d3203fb6bbb/system.journa

systemd-1 [000] 319668.213534: 0x00000001: do_sys_open called: /proc/33172/comm

systemd-1 [000] 319668.213615: 0x00000001: do_sys_open called: /proc/33172/comm

systemd-1 [000] 319668.213634: 0x00000001: do_sys_open called: /proc/33172/cgroup

systemd-1 [000] 319668.213687: 0x00000001: do_sys_open called: /sys/fs/cgroup/unified

/system.slice/systemd-timedated.service/c

...

bpf_trace_printk() Considered Harmful

• bpf_trace_printk() is like ftrace

• One log buffer shared across the whole system

• Messages from different tracers will be received by each other

• eBPF programs get unloaded on owner process termination

• There is a race condition between termination, kprobe hits, and kprobe detach/eBPF unload

• Messages stick around until read

• The next process to open the log will get existing undelivered messages

bpf_trace_printk() Considered Harmful

• bpf_trace_printk() is like ftrace

• One log buffer shared across the whole system

• Messages from different tracers will be received by each other

• eBPF programs get unloaded on owner process termination

• There is a race condition between termination, kprobe hits, and kprobe detach/eBPF unload

• Messages stick around until read

• The next process to open the log will get existing undelivered messages

bpf_trace_printk() Considered Harmful

• bpf_trace_printk() is like ftrace

• One log buffer shared across the whole system

• Messages from different tracers will be received by each other

• eBPF programs get unloaded on owner process termination

• There is a race condition between termination, kprobe hits, and kprobe detach/eBPF unload

• Messages stick around until read

• The next process to open the log will get existing undelivered messages

bpf_trace_printk() Considered Harmful

• bpf_trace_printk() is like ftrace

• One log buffer shared across the whole system

• Messages from different tracers will be received by each other

• eBPF programs get unloaded on owner process termination

• There is a race condition between termination, kprobe hits, and kprobe detach/eBPF unload

• Messages stick around until read

• The next process to open the log will get existing undelivered messages

#include <asm/ptrace.h> // for struct pt_regs

#include <bcc/proto.h> // pulls in types.h

#include <linux/limits.h> // for PATH_MAX

BPF_PERF_OUTPUT(output);

typedef struct notify {

uint64_t pid;

uint8_t data[PATH_MAX];

} notify_t;

BPF_PERCPU_ARRAY(notify_array, notify_t, 1);

int kprobe__do_sys_open(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

int i = 0;

notify_t* n = notify_array.lookup(&i);

if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid_tgid() >> 32);

bpf_probe_read_str(&n->data[0], PATH_MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify_t));

return 0;

}

#include <asm/ptrace.h>

#include <bcc/proto.h>

#include <linux/limits.h>

BPF_PERF_OUTPUT(output); // creates a table for pushing custom events to userspace via ring buffer

typedef struct notify {

uint64_t pid;

uint8_t data[PATH_MAX];

} notify_t;

BPF_PERCPU_ARRAY(notify_array, notify_t, 1);

int kprobe__do_sys_open(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

int i = 0;

notify_t* n = notify_array.lookup(&i);

if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid_tgid() >> 32);

bpf_probe_read_str(&n->data[0], PATH_MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify_t));

return 0;

}

#include <asm/ptrace.h>

#include <bcc/proto.h>

#include <linux/limits.h>

BPF_PERF_OUTPUT(output);

typedef struct notify {

uint64_t pid;

uint8_t data[PATH_MAX]; // uint8_t to prevent ctypes from "optimizing" out copy of char[] in userspace

} notify_t;

BPF_PERCPU_ARRAY(notify_array, notify_t, 1); // creates a per-cpu TLS bpf table for off-stack scratch space

// we need this b/c PATH_MAX is 4096 and the bpf stack 512 bytes

int kprobe__do_sys_open(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

int i = 0;

notify_t* n = notify_array.lookup(&i);

if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid_tgid() >> 32);

bpf_probe_read_str(&n->data[0], PATH_MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify_t));

return 0;

}

#include <asm/ptrace.h>

#include <bcc/proto.h>

#include <linux/limits.h>

BPF_PERF_OUTPUT(output);

typedef struct notify {

uint64_t pid;

uint8_t data[PATH_MAX];

} notify_t;

BPF_PERCPU_ARRAY(notify_array, notify_t, 1);

int kprobe__do_sys_open(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

int i = 0; // key (array index) into our 1-element scratch-space table

notify_t* n = notify_array.lookup(&i); // try to get slot for key

if (!n) return 0; // if no slot found, bail

n->pid = (u32)(bpf_get_current_pid_tgid() >> 32);

bpf_probe_read_str(&n->data[0], PATH_MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify_t));

return 0;

}

#include <asm/ptrace.h>

#include <bcc/proto.h>

#include <linux/limits.h>

BPF_PERF_OUTPUT(output);

typedef struct notify {

uint64_t pid;

uint8_t data[PATH_MAX];

} notify_t;

BPF_PERCPU_ARRAY(notify_array, notify_t, 1);

int kprobe__do_sys_open(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

int i = 0;

notify_t* n = notify_array.lookup(&i);

if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid_tgid() >> 32); // get pid of calling process from bpf helper

bpf_probe_read_str(&n->data[0], PATH_MAX, pathname); // copy pathname into scratch space

output.perf_submit(ctx, n, sizeof(notify_t));

return 0;

}

#include <asm/ptrace.h>

#include <bcc/proto.h>

#include <linux/limits.h>

BPF_PERF_OUTPUT(output);

typedef struct notify {

uint64_t pid;

uint8_t data[PATH_MAX];

} notify_t;

BPF_PERCPU_ARRAY(notify_array, notify_t, 1);

int kprobe__do_sys_open(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

int i = 0;

notify_t* n = notify_array.lookup(&i);

if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid_tgid() >> 32);

bpf_probe_read_str(&n->data[0], PATH_MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify_t)); // copy scratch space down to userspace code

return 0;

}

from __future__ import absolute_import, division, print_function, unicode_literals

import sys, ctypes

from bcc import BPF

text = """..."""

class notify_t(ctypes.Structure): # match layout of eBPF C's notify_t struct

fields = [("pid", ctypes.c_uint64),

("data", ctypes.c_uint8*4096),]

def handle_event(cpu, data, size):

try:

notify = ctypes.cast(data, ctypes.POINTER(notify_t)).contents

data_s = ctypes.cast(notify.data, ctypes.c_char_p).value

print("{}: {}".format(notify.pid, data_s))

except KeyboardInterrupt:

sys.exit(0)

b = BPF(text=text)

b["output"].open_perf_buffer(handle_event)

while True:

try:

b.kprobe_poll()

except KeyboardInterrupt:

sys.exit(0)

from __future__ import absolute_import, division, print_function, unicode_literals

import sys, ctypes

from bcc import BPF

text = """..."""

class notify_t(ctypes.Structure):

fields = [("pid", ctypes.c_uint64),

("data", ctypes.c_uint8*4096),]

def handle_event(cpu, data, size): # handler called on receiving data from eBPF C `output.perf_submit()`

try:

notify = ctypes.cast(data, ctypes.POINTER(notify_t)).contents

data_s = ctypes.cast(notify.data, ctypes.c_char_p).value

print("{}: {}".format(notify.pid, data_s))

except KeyboardInterrupt:

sys.exit(0)

b = BPF(text=text)

b["output"].open_perf_buffer(handle_event) # register handler to eBPF C `BPF_PERF_OUTPUT(output);` table

while True:

try:

b.kprobe_poll()

except KeyboardInterrupt:

sys.exit(0)

from __future__ import absolute_import, division, print_function, unicode_literals

import sys, ctypes

from bcc import BPF

text = """..."""

class notify_t(ctypes.Structure):

fields = [("pid", ctypes.c_uint64),

("data", ctypes.c_uint8*4096),]

def handle_event(cpu, data, size):

try:

notify = ctypes.cast(data, ctypes.POINTER(notify_t)).contents # cast raw byte pointer to notify_t

data_s = ctypes.cast(notify.data, ctypes.c_char_p).value # cast buffer to NUL-terminated C string

print("{}: {}".format(notify.pid, data_s))

except KeyboardInterrupt:

sys.exit(0)

b = BPF(text=text)

b["output"].open_perf_buffer(handle_event)

while True:

try:

b.kprobe_poll()

except KeyboardInterrupt:

sys.exit(0)

from __future__ import absolute_import, division, print_function, unicode_literals

import sys, ctypes

from bcc import BPF

text = """..."""

class notify_t(ctypes.Structure):

fields = [("pid", ctypes.c_uint64),

("data", ctypes.c_uint8*4096),]

def handle_event(cpu, data, size):

try:

notify = ctypes.cast(data, ctypes.POINTER(notify_t)).contents

data_s = ctypes.cast(notify.data, ctypes.c_char_p).value

print("{}: {}".format(notify.pid, data_s))

except KeyboardInterrupt:

sys.exit(0)

b = BPF(text=text)

b["output"].open_perf_buffer(handle_event)

while True:

try:

b.kprobe_poll() # poll for perf events from kprobes, call event handlers for events

except KeyboardInterrupt:

sys.exit(0)

So how does all of this actually work?

bpf(BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_PERF_EVENT_ARRAY, key_size=4, value_size=4, max_entries=128,

map_flags=0, inner_map_fd=0, ...}, 72) = 3

bpf(BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_PERCPU_ARRAY, key_size=4, value_size=4104, max_entries=1,

map_flags=0, inner_map_fd=0, ...}, 72) = 4

...

bpf(BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_KPROBE, insn_cnt=29, insns=0x7f04a0c697d0, license="GPL",

log_level=0, log_size=0, log_buf=0, kern_version=266002, prog_flags=0, ...}, 72) = 5

...

openat(AT_FDCWD, "/sys/kernel/debug/tracing/kprobe_events", O_WRONLY|O_APPEND) = 6

getpid() = 43676

write(6, "p:kprobes/p_do_sys_open_bcc_4367"..., 45) = 45

close(6) = 0

openat(AT_FDCWD, "/sys/kernel/debug/tracing/events/kprobes/p_do_sys_open_bcc_43676/id", O_RDONLY) = 6

read(6, "1982\n", 4096) = 5

close(6) = 0

perf_event_open({type=PERF_TYPE_TRACEPOINT, size=0 /* PERF_ATTR_SIZE_??? */, config=1982, ...},

-1, 0, -1, PERF_FLAG_FD_CLOEXEC) = 6

ioctl(6, PERF_EVENT_IOC_SET_BPF, 0x5) = 0

ioctl(6, PERF_EVENT_IOC_ENABLE, 0) = 0

...

perf_event_open({type=PERF_TYPE_SOFTWARE, size=0, config=PERF_COUNT_SW_BPF_OUTPUT, ...},

-1, 0, -1, PERF_FLAG_FD_CLOEXEC) = 8

ioctl(8, PERF_EVENT_IOC_ENABLE, 0) = 0

bpf(BPF_MAP_UPDATE_ELEM, {map_fd=3, key=0x7f049aafa0a0, value=0x7f049aafae20, flags=BPF_ANY}, 72) = 0

perf_event_open({type=PERF_TYPE_SOFTWARE, size=0, config=PERF_COUNT_SW_BPF_OUTPUT, ...},

-1, 1, -1, PERF_FLAG_FD_CLOEXEC) = 9

ioctl(9, PERF_EVENT_IOC_ENABLE, 0) = 0

bpf(BPF_MAP_UPDATE_ELEM, {map_fd=3, key=0x7f049aafae20, value=0x7f049aafa0a0, flags=BPF_ANY}, 72) = 0

poll([{fd=9, events=POLLIN}, {fd=8, events=POLLIN}], 2, -1) = 1 ([{fd=9, revents=POLLIN}])

...

write(1, "13250: /proc/self/stat\n", 2313250: /proc/self/stat

) = 23

#include <asm/ptrace.h>

#include <bcc/proto.h>

#include <linux/limits.h>

BPF_PERF_OUTPUT(output); // creates a table for pushing custom events to userspace via ring buffer

typedef struct notify {

uint64_t pid;

uint8_t data[PATH_MAX];

} notify_t;

BPF_PERCPU_ARRAY(notify_array, notify_t, 1);

int kprobe__do_sys_open(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

int i = 0;

notify_t* n = notify_array.lookup(&i);

if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid_tgid() >> 32);

bpf_probe_read_str(&n->data[0], PATH_MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify_t));

return 0;

}

// Table for pushing custom events to userspace via ring buffer

#define BPF_PERF_OUTPUT(_name) \

struct _name##_table_t { \

int key; \

u32 leaf; \

/* map.perf_submit(ctx, data, data_size) */ \

int (*perf_submit) (void *, void *, u32); \

int (*perf_submit_skb) (void *, u32, void *, u32); \

u32 max_entries; \

}; \

__attribute__((section("maps/perf_output"))) \

struct _name##_table_t _name = { .max_entries = 0 }

Listing 2: bcc/src/cc/export/helpers.h

BCC — Behind the Curtain

• The previous struct/instance is fake

• It is nothing more than fancy typing to please the first compiler pass

• All operations on it get replaced through LLVM-based codegen

• This is a common idiom in codegen-based APIs

#include <asm/ptrace.h>

#include <bcc/proto.h>

#include <linux/limits.h>

BPF_PERF_OUTPUT(output);

typedef struct notify {

uint64_t pid;

uint8_t data[PATH_MAX];

} notify_t;

BPF_PERCPU_ARRAY(notify_array, notify_t, 1);

int kprobe__do_sys_open(struct pt_regs *ctx,

int dirfd, char __user* pathname, int flags, mode_t mode) {

int i = 0;

notify_t* n = notify_array.lookup(&i);

if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid_tgid() >> 32);

bpf_probe_read_str(&n->data[0], PATH_MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify_t)); // copy scratch space down to userspace code

return 0;

}

} else if (memb_name == "perf_submit") {

string name = Ref->getDecl()->getName();

string arg0 = rewriter_.getRewrittenText(expansionRange(Call->getArg(0)->getSourceRange()));

string args_other = rewriter_.getRewrittenText(expansionRange(SourceRange(GET_BEGINLOC(Call->getArg(1)),

GET_ENDLOC(Call->getArg(2)))));

txt = "bpf_perf_event_output(" + arg0 + ", bpf_pseudo_fd(1, " + fd + ")";

txt += ", CUR_CPU_IDENTIFIER, " + args_other + ")";

}

Listing 3: bcc/src/cc/frontends/clang/b_frontend_action.cc

BCC — Behind the Curtain

• The bpf_perf_event_output() eBPF helper when passed CUR_CPU_IDENTIFIER

(really BPF_F_CURRENT_CPU) will pull a kernel-internal struct perf_event* out of the

eBPF table (itself a BPF_MAP_TYPE_PERF_EVENT_ARRAY) using the current CPU as the index

• This works because the BPF_MAP_UPDATE_ELEM bpf(2) syscalls set index 0 and 1 with

perf_event file descriptors

bpf(BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_PERF_EVENT_ARRAY, key_size=4, value_size=4, max_entries=128,

map_flags=0, inner_map_fd=0, ...}, 72) = 3

bpf(BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_PERCPU_ARRAY, key_size=4, value_size=4104, max_entries=1,

map_flags=0, inner_map_fd=0, ...}, 72) = 4

...

bpf(BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_KPROBE, insn_cnt=29, insns=0x7f04a0c697d0, license="GPL",

log_level=0, log_size=0, log_buf=0, kern_version=266002, prog_flags=0, ...}, 72) = 5

...

openat(AT_FDCWD, "/sys/kernel/debug/tracing/kprobe_events", O_WRONLY|O_APPEND) = 6

getpid() = 43676

write(6, "p:kprobes/p_do_sys_open_bcc_4367"..., 45) = 45

close(6) = 0

openat(AT_FDCWD, "/sys/kernel/debug/tracing/events/kprobes/p_do_sys_open_bcc_43676/id", O_RDONLY) = 6

read(6, "1982\n", 4096) = 5

close(6) = 0

perf_event_open({type=PERF_TYPE_TRACEPOINT, size=0 /* PERF_ATTR_SIZE_??? */, config=1982, ...},

-1, 0, -1, PERF_FLAG_FD_CLOEXEC) = 6

ioctl(6, PERF_EVENT_IOC_SET_BPF, 0x5) = 0

ioctl(6, PERF_EVENT_IOC_ENABLE, 0) = 0

...

perf_event_open({type=PERF_TYPE_SOFTWARE, size=0, config=PERF_COUNT_SW_BPF_OUTPUT, ...},

-1, 0, -1, PERF_FLAG_FD_CLOEXEC) = 8

ioctl(8, PERF_EVENT_IOC_ENABLE, 0) = 0

bpf(BPF_MAP_UPDATE_ELEM, {map_fd=3, key=0x7f049aafa0a0, value=0x7f049aafae20, flags=BPF_ANY}, 72) = 0

perf_event_open({type=PERF_TYPE_SOFTWARE, size=0, config=PERF_COUNT_SW_BPF_OUTPUT, ...},

-1, 1, -1, PERF_FLAG_FD_CLOEXEC) = 9

ioctl(9, PERF_EVENT_IOC_ENABLE, 0) = 0

bpf(BPF_MAP_UPDATE_ELEM, {map_fd=3, key=0x7f049aafae20, value=0x7f049aafa0a0, flags=BPF_ANY}, 72) = 0

poll([{fd=9, events=POLLIN}, {fd=8, events=POLLIN}], 2, -1) = 1 ([{fd=9, revents=POLLIN}])

...

write(1, "13250: /proc/self/stat\n", 2313250: /proc/self/stat

) = 23

And now for something different...

eBPF Validator Hell

• To make eBPF ”safe,” the Linux kernel validates all eBPF code before loading it

• eBPF code is not allowed to ”loop” or jump backwards (to prevent infinite loops)

• But even if your ”code” doesn’t have loops, the validator may reject it

• Calls need to be static inline as jumping to a function and returning is considered a ”loop”

• The validator also validates helper calls to ensure they are passed ”safe” arguments

• This ”logic” is often not thorough enough to properly determine value bounds

• Trying to make them obvious is hard as the optimizer will often optimize out ”superfluous”

checks

• Additionally, updating BCC (or the Linux kernel) may potentially result in the validator rejecting

once working eBPF C

eBPF Validator Hell

• To make eBPF ”safe,” the Linux kernel validates all eBPF code before loading it

• eBPF code is not allowed to ”loop” or jump backwards (to prevent infinite loops)

• But even if your ”code” doesn’t have loops, the validator may reject it

• Calls need to be static inline as jumping to a function and returning is considered a ”loop”

• The validator also validates helper calls to ensure they are passed ”safe” arguments

• This ”logic” is often not thorough enough to properly determine value bounds

• Trying to make them obvious is hard as the optimizer will often optimize out ”superfluous”

checks

• Additionally, updating BCC (or the Linux kernel) may potentially result in the validator rejecting

once working eBPF C

eBPF Validator Hell

• To make eBPF ”safe,” the Linux kernel validates all eBPF code before loading it

• eBPF code is not allowed to ”loop” or jump backwards (to prevent infinite loops)

• But even if your ”code” doesn’t have loops, the validator may reject it

• Calls need to be static inline as jumping to a function and returning is considered a ”loop”

• The validator also validates helper calls to ensure they are passed ”safe” arguments

• This ”logic” is often not thorough enough to properly determine value bounds

• Trying to make them obvious is hard as the optimizer will often optimize out ”superfluous”

checks

• Additionally, updating BCC (or the Linux kernel) may potentially result in the validator rejecting

once working eBPF C

eBPF Validator Hell

• To make eBPF ”safe,” the Linux kernel validates all eBPF code before loading it

• eBPF code is not allowed to ”loop” or jump backwards (to prevent infinite loops)

• But even if your ”code” doesn’t have loops, the validator may reject it

• Calls need to be static inline as jumping to a function and returning is considered a ”loop”

• Compiler optimizations are both a blessing and curse for eBPF code

• Unrolling loops under some circumstances and adding them in others

• The validator also validates helper calls to ensure they are passed ”safe” arguments

• This ”logic” is often not thorough enough to properly determine value bounds

• Trying to make them obvious is hard as the optimizer will often optimize out ”superfluous”

checks

• Additionally, updating BCC (or the Linux kernel) may potentially result in the validator rejecting

once working eBPF C

eBPF Validator Hell

• To make eBPF ”safe,” the Linux kernel validates all eBPF code before loading it

• eBPF code is not allowed to ”loop” or jump backwards (to prevent infinite loops)

• But even if your ”code” doesn’t have loops, the validator may reject it

• Calls need to be static inline as jumping to a function and returning is considered a ”loop”

• Compiler optimizations are both a blessing and curse for eBPF code

• Unrolling loops under some circumstances and adding them in others

• The validator also validates helper calls to ensure they are passed ”safe” arguments

• This ”logic” is often not thorough enough to properly determine value bounds

• Trying to make them obvious is hard as the optimizer will often optimize out ”superfluous”

checks

• Additionally, updating BCC (or the Linux kernel) may potentially result in the validator rejecting

once working eBPF C

eBPF Validator Hell

• To make eBPF ”safe,” the Linux kernel validates all eBPF code before loading it

• eBPF code is not allowed to ”loop” or jump backwards (to prevent infinite loops)

• But even if your ”code” doesn’t have loops, the validator may reject it

• Calls need to be static inline as jumping to a function and returning is considered a ”loop”

• Compiler optimizations are both a blessing and curse for eBPF code

• Unrolling loops under some circumstances and adding them in others

• The validator also validates helper calls to ensure they are passed ”safe” arguments

• This ”logic” is often not thorough enough to properly determine value bounds

• Trying to make them obvious is hard as the optimizer will often optimize out ”superfluous”

checks

• Additionally, updating BCC (or the Linux kernel) may potentially result in the validator rejecting

once working eBPF C

eBPF Validator Hell

• To make eBPF ”safe,” the Linux kernel validates all eBPF code before loading it

• eBPF code is not allowed to ”loop” or jump backwards (to prevent infinite loops)

• But even if your ”code” doesn’t have loops, the validator may reject it

• Calls need to be static inline as jumping to a function and returning is considered a ”loop”

• Compiler optimizations are both a blessing and curse for eBPF code

• Unrolling loops under some circumstances and adding them in others

• The validator also validates helper calls to ensure they are passed ”safe” arguments

• This ”logic” is often not thorough enough to properly determine value bounds

• Trying to make them obvious is hard as the optimizer will often optimize out ”superfluous”

checks

• Additionally, updating BCC (or the Linux kernel) may potentially result in the validator rejecting

once working eBPF C

eBPF Validator Hell

• To make eBPF ”safe,” the Linux kernel validates all eBPF code before loading it

• eBPF code is not allowed to ”loop” or jump backwards (to prevent infinite loops)

• But even if your ”code” doesn’t have loops, the validator may reject it

• Calls need to be static inline as jumping to a function and returning is considered a ”loop”

• Compiler optimizations are both a blessing and curse for eBPF code

• Unrolling loops under some circumstances and adding them in others

• The validator also validates helper calls to ensure they are passed ”safe” arguments

• This ”logic” is often not thorough enough to properly determine value bounds

• Trying to make them obvious is hard as the optimizer will often optimize out ”superfluous”

checks

• Additionally, updating BCC (or the Linux kernel) may potentially result in the validator rejecting

once working eBPF C

Some validator errors are downright spooky

We have seen code be rejected or accepted

based on whether a function returned a bool or a size_t (0 or 1)

that was being stored in a uint8_t

We have seen code be rejected or accepted

based on whether a function returned a bool or a size_t (0 or 1)
that was being stored in a uint8_t

Surviving eBPFValidator Hell—Correcting the Validator

• At one point, we got really mad at the validator rejecting correct code

• So we wrote a kernel module to neuter its checks

• It turned out that the validator is poorly written and tightly coupled to the interpreter

• You can’t skip the verifier because they also tweak and configure the eBPF program

• Instead, you need surgical hooks into it that skip certain checks and set fake ”safe” bounds

Surviving eBPFValidator Hell—Correcting the Validator

• At one point, we got really mad at the validator rejecting correct code

• So we wrote a kernel module to neuter its checks

• It turned out that the validator is poorly written and tightly coupled to the interpreter

• You can’t skip the verifier because they also tweak and configure the eBPF program

• Instead, you need surgical hooks into it that skip certain checks and set fake ”safe” bounds

Surviving eBPFValidator Hell—Correcting the Validator

• At one point, we got really mad at the validator rejecting correct code

• So we wrote a kernel module to neuter its checks

• It turned out that the validator is poorly written and tightly coupled to the interpreter

• You can’t skip the verifier because they also tweak and configure the eBPF program

• Instead, you need surgical hooks into it that skip certain checks and set fake ”safe” bounds

Surviving eBPFValidator Hell—Correcting the Validator

• At one point, we got really mad at the validator rejecting correct code

• So we wrote a kernel module to neuter its checks

• It turned out that the validator is poorly written and tightly coupled to the interpreter

• You can’t skip the verifier because they also tweak and configure the eBPF program

• Instead, you need surgical hooks into it that skip certain checks and set fake ”safe” bounds

Surviving eBPF Validator Hell — yolo-ebpf

• PoC kernel module with a custom function hooking implementation that disables a number of

eBPF validator checks

• Caveats:

• x86_64-only

• It probably doesn’t work with current kernel versions

• Unsafe eBPF will potentially crash your kernel

• We’ll be making the code available anyway to prove a point

• Please don’t use this code in production

Surviving eBPF Validator Hell — Tips and Tricks

• Initialize your memory
• If you put a struct on the stack and fill it in, you may not be able to perf_submit it to userspace

• The validator doesn’t like when you try to send uninitialized memory to userspace, including that

of padding
• Eliminate uninitialized padding:

• By carefully organizing your struct fields

• By increasing/decreasing the size of struct fields

• By adding padding fields (or unions) and initializing them

• By clobbering it with 0s

• With __attribute__((__packed__))

• Loop elimination

• Reimplement kernel code in eBPF valid ways

• Ratcheting

• Dynamic structure parsing

• Static data structures and algorithms

• Dynamic length byte copying

• Enable debug output and know why your code works when it shouldn’t

Surviving eBPF Validator Hell — Tips and Tricks

• Initialize your memory

• Loop elimination
• You will quickly find that you cann’t even ‘memset(3)‘ among other things

• Unroll all loops

#pragma unroll

for (size_t i=0; i < sizeof(arr); i++) {

arr[i] = 0;

}

• Inline all calls

static inline void foo() {

// do stuff

}

• Reimplement kernel code in eBPF valid ways

• Ratcheting

• Dynamic structure parsing

• Static data structures and algorithms

• Dynamic length byte copying

• Enable debug output and know why your code works when it shouldn’t

Surviving eBPF Validator Hell — Tips and Tricks

• Initialize your memory

• Loop elimination

• Reimplement kernel code in eBPF valid ways
• bcc tries to codegen dereferences of non-eBPF memory region pointers into

bpf_probe_read() calls

• It often has problems with nested scopes and chained field accesses and fails to convert such

code

• A lot of static inline kernel functions run afoul of the second

• Due to this, they must often be re-implemented with manual bpf_probe_read() calls

• Ratcheting

• Dynamic structure parsing

• Static data structures and algorithms

• Dynamic length byte copying

• Enable debug output and know why your code works when it shouldn’t

Surviving eBPF Validator Hell — Tips and Tricks

• Initialize your memory

• Loop elimination

• Reimplement kernel code in eBPF valid ways

• Ratcheting

• If you need to implement a ring buffer,

you will need logic to wrap the index

• The validator does not like explicit cases that do this wrap,

even if also checked in default case

• Do it only in the default case

u32 pos = UINT32_MAX;

int key = 0;

sync = sync_buf.lookup(&key);

if (!sync) return 0;

pos = 0;

switch (sync->next) {

case 0: {

pos = 0;

sync->next = 1;

break;

};

case 1: {

pos = 1;

sync->next = 2;

break;

};

default: {

pos = 0;

sync->next = 1;

}

}

• Dynamic structure parsing

• Static data structures and algorithms

• Dynamic length byte copying

• Enable debug output and know why your code works when it shouldn’t

Surviving eBPF Validator Hell — Tips and Tricks

• Initialize your memory

• Loop elimination

• Reimplement kernel code in eBPF valid ways

• Ratcheting

• Dynamic structure parsing

• Lots of kernel data structures are dynamically sized and structured without using C arrays

• Best bet is to do a lot of loop unrolling of inlined steps to extract and process data

• Most important is to detect remaining data that could not be processed due to eBPF limitations

• Static data structures and algorithms

• Dynamic length byte copying

• Enable debug output and know why your code works when it shouldn’t

Surviving eBPF Validator Hell — Tips and Tricks

• Initialize your memory

• Loop elimination

• Reimplement kernel code in eBPF valid ways

• Ratcheting

• Dynamic structure parsing

• Static data structures and algorithms

• Not really feasible to perform nested comparison operations in eBPF code (e.g. ”is value in set?”)

• Sometimes this can be worked around by using eBPF map operations to implement comparisons

• Best bet is to statically codegen the C for complete structure walk for algorithm

• Dynamic length byte copying

• Enable debug output and know why your code works when it shouldn’t

Surviving eBPF Validator Hell — Tips and Tricks

• Initialize your memory

• Loop elimination

• Reimplement kernel code in eBPF valid ways

• Ratcheting

• Dynamic structure parsing

• Static data structures and algorithms

• Dynamic length byte copying
• eBPF validator often fails to

ascertain variable bounds

• One pain point is attempting to use an

externally sourced length value

with bpf_probe_read()

• Explicit checks often get optimized out

• We’ve found the following code works,

seemingly because using static inline

functions prevents certain compiler assumptions

static inline

void copy_into_entry_buffer(data_t* entry,

size_t const len,

char* base,

u8 volatile* trunc) {

int l = (int)len;

if (l < 0) {

l = 0;

}

if (l >= BUFFER_SIZE) {

*trunc = 1;

}

if (l >= BUFFER_SIZE) {

// the `- 1` is no longer needed with

// current bcc on recent kernels

l = BUFFER_SIZE - 1;

}

bpf_probe_read(entry->buffer, l, base);

}

• Enable debug output and know why your code works when it shouldn’t

Surviving eBPF Validator Hell — Tips and Tricks

• Initialize your memory

• Loop elimination

• Reimplement kernel code in eBPF valid ways

• Ratcheting

• Dynamic structure parsing

• Static data structures and algorithms

• Dynamic length byte copying

• Enable debug output and know why your code works when it shouldn’t

• bcc can dump out eBPF bytecode annotated with source lines

• Reading through it when errors occur (or not) can be very helpful

• Often, code is not itself eBPF friendly, but optimized into a compliant form

• But adding new code may break compiler assertions needed to optimize

• So a small change can cause cascading changes that anger the validator

Good luck!

Defensive eBPF?

• Can eBPF be used for defense?

• Why not?

• eBPF is fast, supposedly 10x faster than auditd

• We can improve the state of auditing the entire system using just eBPF

• What could go wrong? ;)

• Let’s give this a try

Defensive eBPF?

• Can eBPF be used for defense?

• Why not?

• eBPF is fast, supposedly 10x faster than auditd

• We can improve the state of auditing the entire system using just eBPF

• What could go wrong? ;)

• Let’s give this a try

Defensive eBPF?

• Can eBPF be used for defense?

• Why not?

• eBPF is fast, supposedly 10x faster than auditd

• We can improve the state of auditing the entire system using just eBPF

• What could go wrong? ;)

• Let’s give this a try

Defensive eBPF?

• Can eBPF be used for defense?

• Why not?

• eBPF is fast, supposedly 10x faster than auditd

• We can improve the state of auditing the entire system using just eBPF

• What could go wrong? ;)

• Let’s give this a try

Defensive eBPF?

• What does security monitoring software do?

• Watches everything

• program executions

• file accesses

• network traffic

• administrative operations

• eBPF kprobes can do all of these things

Defensive eBPF?

• What does security monitoring software do?

• Watches everything

• program executions

• file accesses

• network traffic

• administrative operations

• eBPF kprobes can do all of these things

Defensive eBPF?

• Why would eBPF be good for this?

• Tracing eBPF programs can see all the things

• They can hook into any kernel function

• Observe all user and kernel space memory

• And much more

Defensive eBPF? — Loop-Free Security Monitoring

• Let’s implement some trivial security monitoring tasks using eBPF

• To begin, let’s watch for file executions from nonstandard directories

• For simplicity, we’ll just hook the execve(2) syscall

• We’ll also ignore mmap(2) (used for shared libraries)

Defensive eBPF? — Loop-Free Security Monitoring

• Let’s implement some trivial security monitoring tasks using eBPF

• To begin, let’s watch for file executions from nonstandard directories

• For simplicity, we’ll just hook the execve(2) syscall

• We’ll also ignore mmap(2) (used for shared libraries)

from bcc import BPF

program = """

int kprobe__sys_execve(struct pt_regs *ctx){

bpf_trace_printk("execve called.\\n");

return 0;

}

"""

b = BPF(text=program)

b.trace_print()

Defensive eBPF?—An attempt at executable whitelisting

• Let’s compare the supplied file path against standard directories

• Because of all the issues with eBPF’s limitations, we will just process a static number of bytes

• For example, we will start by comparing the first four bytes of the path

• compare against /opt, /bin, /sbi, /usr
• If it starts with /usr we’ll continue checking the path

• It could be /usr/bin, /usr/sbin, /usr/local/sbin, /usr/local/bin

• We could check the path like this to only do processing as we need to

• In the following example, we’re only checking against /bin to keep it super simple

from bcc import BPF

prog = """

#include <uapi/linux/ptrace.h>

#include <linux/sched.h>

#include <linux/fs.h>

int kprobe__sys_execve(struct pt_regs *ctx, const char __user *filename){

char bin[] = "/bin";

#pragma unroll

for (int i = 0; i < 4; i++)

if(bin[i] != filename[i]){

bpf_trace_printk("exec outside /bin\\n");

return 0;

}

return 0;

}

"""

b = BPF(text=prog)

b.trace_print()

Defensive eBPF?—An attempt at executable whitelisting

• Can we detect unusual execve(2) syscalls from a web application?

• Let’s imagine we have a simple web app

• A wrapper around ping
• It takes in an IP address from user input and runs ping on it

• What could go wrong? ;)

• We want to know if it’s executing anything other than the ping binary

• For simplicity, it does not fork(2) before execve(2) as the fork-tracking logic is a bit

complicated

#include <uapi/linux/ptrace.h>

int kprobe__sys_execve(struct pt_regs *ctx, const char __user *filename){

size_t pid = (u32)(bpf_get_current_pid_tgid() >> 32);

#ifdef PID

if(pid != PID)

return 0;

#endif

char tmp[400];

int length = bpf_probe_read_str(&tmp[0], 400, filename);

char ping[] = "/bin/ping";

if(length != 8){

bpf_trace_printk("exec of %s\\n", filename);

return 0;

}

#pragma unroll

for (int i = 0; i < 8; i++)

if(ping[i] != filename[i]){

bpf_trace_printk("exec of %s\\n", filename);

return 0;

}

return 0;

}

Defensive eBPF? — Loop-Free Security Monitoring

• We are now monitoring file executions

• Next we’ll watch for file opens from a specific directory

• This time we’ll hook the open(2) syscall

Defensive eBPF? — Loop-Free Security Monitoring

• We are now monitoring file executions

• Next we’ll watch for file opens from a specific directory

• This time we’ll hook the open(2) syscall

from bcc import BPF

program = """

int kprobe__do_sys_open(struct pt_regs *ctx){

bpf_trace_printk("sys_open called.\\n");

return 0;

}

"""

b = BPF(text=program)

b.trace_print()

Defensive eBPF? — An attempt at file monitoring

• How about we try to detect when a process open(2)s a file in /root ?

• Let’s compare the file path prefix to /root

• We’ll use the filename parameter of open(2)

• Again, we use an unrolled loop to check the first several (5) bytes

from bcc import BPF

prog = """

#include <uapi/linux/ptrace.h>

int kprobe__do_sys_open(struct pt_regs *ctx, int dfd, const char __user *filename){

char root[] = "/root";

#pragma unroll

for(int i = 0; i < 5; i++)

if(root[i] != filename[i])

return 0;

bpf_trace_printk("attempted access: %s\\n", filename);

return 0;

}

"""

b = BPF(text=prog)

b.trace_print()

We have a confession to make

Defensive eBPF — Security-Free Security Monitoring

• All of the previous examples are insecure

Defensive eBPF — Security-Free Security Monitoring

• All of the previous examples are dangerously insecure

eBPF Gotchas

• Just because eBPF cannot crash the kernel does not mean that it is safe

• Its limitations in fact make it harder to write secure eBPF code

eBPF Gotchas — Race Conditions

• Time-of-Check-to-Time-of-Use (TOCTTOU)

• A common vulnerability in kernel code and anything using kprobes

• Exacerbated by eBPF limitations

• If you kprobe a syscall

• User-supplied data you process may change by the time the kernel copies it to do the syscall

eBPF Gotchas — Race Conditions

• Time-of-Check-to-Time-of-Use (TOCTTOU)

• A common vulnerability in kernel code and anything using kprobes

• Exacerbated by eBPF limitations

• If you kprobe a syscall

• User-supplied data you process may change by the time the kernel copies it to do the syscall

eBPF Gotchas — Race Conditions

• It’s relatively easy to test for

• Start with a two-thread program

• First thread repeatedly copies two different filepaths into one char array

• Second thread repeatedly calls open(2) on that char array

• We then kprobe the open(2) syscall and the getname_flags() internal kernel function

• Then compare the two values obtained from each kprobe

a.out-5418 [001] d... 4078.020804: 0x00000001: do_sys_open: /tmp/rupergood

a.out-5418 [001] d... 4078.020805: 0x00000001: getname_flags: /tmp/realrgood

a.out-5418 [001] d... 4084.021083: 0x00000001: NOMATCH

a.out-5418 [001] d... 4084.021088: 0x00000001: do_sys_open: /tmp/supelybad

a.out-5418 [001] d... 4084.021089: 0x00000001: getname_flags: /tmp/reaerybad

a.out-5418 [001] d... 4084.021089: 0x00000001: NOMATCH

a.out-5418 [001] d... 4084.021090: 0x00000001: do_sys_open: /tmp/supelybad

a.out-5418 [001] d... 4084.021091: 0x00000001: getname_flags: /tmp/reaerybad

a.out-5418 [001] d... 4084.021091: 0x00000001: NOMATCH

a.out-5418 [001] d... 4084.021092: 0x00000001: do_sys_open: /tmp/supelybad

a.out-5418 [001] d... 4084.021093: 0x00000001: getname_flags: /tmp/reaerybad

a.out-5418 [001] d... 4084.021093: 0x00000001: NOMATCH

a.out-5418 [001] d... 4084.021094: 0x00000001: do_sys_open: /tmp/supelybad

a.out-5418 [001] d... 4084.021095: 0x00000001: getname_flags: /tmp/reaerybad

a.out-5418 [001] d... 4088.021279: 0x00000001: NOMATCH

a.out-5418 [001] d... 4088.021284: 0x00000001: do_sys_open: /tmp/supergood

a.out-5418 [001] d... 4088.021285: 0x00000001: getname_flags: /tmp/reallgood

eBPF Gotchas — Race Conditions

• How do we avoid this problem?

• Hook internal kernel functions rather than syscalls

• Preferably a spot where desired value is already copied into kernel memory

• e.g. sys_execve vs. do_execveat_common.isra.34

• Alternatively, you use an LSM hook function (e.g. security_bprm_set_creds)

eBPF Gotchas — Race Conditions

• How do we avoid this problem?

• Hook internal kernel functions rather than syscalls

• Preferably a spot where desired value is already copied into kernel memory

• e.g. sys_execve vs. do_execveat_common.isra.34

• Alternatively, you use an LSM hook function (e.g. security_bprm_set_creds)

eBPF Gotchas — File Path Mishandling

• File paths, much like URIs, are slightly complicated

• If you don’t carefully validate them, you might end up in trouble

• Let’s rewind to our IDS/endpoint security example

• What didn’t we take into account?

eBPF Gotchas — File Path Mishandling

• We didn’t take into account how filenames work on Unix

• For example, what happens if the file isn’t accessed via the absolute path?

• An open(2) from inside the directory?

• An open(2) on ../../../root/<name>?

• An execve(2) on /bin/../tmp/foo?

• An open(2) on a symlink in /tmp?

• How can we fix those issues?

eBPF Gotchas — File Path Mishandling

• We didn’t take into account how filenames work on Unix

• For example, what happens if the file isn’t accessed via the absolute path?

• An open(2) from inside the directory?

• An open(2) on ../../../root/<name>?

• An execve(2) on /bin/../tmp/foo?

• An open(2) on a symlink in /tmp?

• How can we fix those issues?

eBPF Gotchas — File Path Mishandling

• We didn’t take into account how filenames work on Unix

• For example, what happens if the file isn’t accessed via the absolute path?

• An open(2) from inside the directory?

• An open(2) on ../../../root/<name>?

• An execve(2) on /bin/../tmp/foo?

• An open(2) on a symlink in /tmp?

• How can we fix those issues?

eBPF Gotchas — File Path Mishandling

• We didn’t take into account how filenames work on Unix

• For example, what happens if the file isn’t accessed via the absolute path?

• An open(2) from inside the directory?

• An open(2) on ../../../root/<name>?

• An execve(2) on /bin/../tmp/foo?

• An open(2) on a symlink in /tmp?

• How can we fix those issues?

eBPF Gotchas — File Path Mishandling

• We didn’t take into account how filenames work on Unix

• For example, what happens if the file isn’t accessed via the absolute path?

• An open(2) from inside the directory?

• An open(2) on ../../../root/<name>?

• An execve(2) on /bin/../tmp/foo?

• An open(2) on a symlink in /tmp?

• How can we fix those issues?

eBPF Gotchas — File Path Mishandling

• Things we could try:

• Compare value against a known set
• Attempt to canonicalize the path

• Linux’s internal struct file and struct path are complicated to parse from eBPF

• This adds to the amount of work eBPF has to do

• It may not be even be possible to fully follow the object to recreate the path

• Try to find an internal function that has access to an absolute path?

• For example, the security_bprm_set_creds LSM hook

• This won’t work

• The path string it receives is the same one from the user (i.e. not canonical, nor absolute)

• We would still need to parse the structs

eBPF Gotchas — File Path Mishandling

• Things we could try:

• Compare value against a known set
• Attempt to canonicalize the path

• Linux’s internal struct file and struct path are complicated to parse from eBPF

• This adds to the amount of work eBPF has to do

• It may not be even be possible to fully follow the object to recreate the path

• Try to find an internal function that has access to an absolute path?

• For example, the security_bprm_set_creds LSM hook

• This won’t work

• The path string it receives is the same one from the user (i.e. not canonical, nor absolute)

• We would still need to parse the structs

eBPF Gotchas — File Path Mishandling

• Things we could try:

• Compare value against a known set
• Attempt to canonicalize the path

• Linux’s internal struct file and struct path are complicated to parse from eBPF

• This adds to the amount of work eBPF has to do

• It may not be even be possible to fully follow the object to recreate the path

• Try to find an internal function that has access to an absolute path?

• For example, the security_bprm_set_creds LSM hook

• This won’t work

• The path string it receives is the same one from the user (i.e. not canonical, nor absolute)

• We would still need to parse the structs

eBPF Gotchas — File Path Mishandling

• Things we could try:

• Compare value against a known set
• Attempt to canonicalize the path

• Linux’s internal struct file and struct path are complicated to parse from eBPF

• This adds to the amount of work eBPF has to do

• It may not be even be possible to fully follow the object to recreate the path

• Try to find an internal function that has access to an absolute path?

• For example, the security_bprm_set_creds LSM hook

• This won’t work

• The path string it receives is the same one from the user (i.e. not canonical, nor absolute)

• We would still need to parse the structs

eBPFGotchas—Parsing Externally-Supplied Binary Data

• bcc has example code to use eBPF to do network monitoring

• We found that it didn’t properly calculate IP header offsets

• Specifically, it didn’t account for the fact that TCP options are variable-length

• It was possible to spoof a TCP header in the options and bypass the checks it performed

• So we sent them a PoC

• and a patch :)

• https://github.com/iovisor/bcc/commit/3d9b687

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

eBPFGotchas—Parsing Externally-Supplied Binary Data

• bcc has example code to use eBPF to do network monitoring

• We found that it didn’t properly calculate IP header offsets

• Specifically, it didn’t account for the fact that TCP options are variable-length

• It was possible to spoof a TCP header in the options and bypass the checks it performed

• So we sent them a PoC

• and a patch :)

• https://github.com/iovisor/bcc/commit/3d9b687

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

eBPFGotchas—Parsing Externally-Supplied Binary Data

• bcc has example code to use eBPF to do network monitoring

• We found that it didn’t properly calculate IP header offsets

• Specifically, it didn’t account for the fact that TCP options are variable-length

• It was possible to spoof a TCP header in the options and bypass the checks it performed

• So we sent them a PoC

• and a patch :)

• https://github.com/iovisor/bcc/commit/3d9b687

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

eBPFGotchas—Parsing Externally-Supplied Binary Data

• bcc has example code to use eBPF to do network monitoring

• We found that it didn’t properly calculate IP header offsets

• Specifically, it didn’t account for the fact that TCP options are variable-length

• It was possible to spoof a TCP header in the options and bypass the checks it performed

• So we sent them a PoC

• and a patch :)

• https://github.com/iovisor/bcc/commit/3d9b687

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

eBPFGotchas—Parsing Externally-Supplied Binary Data

• bcc has example code to use eBPF to do network monitoring

• We found that it didn’t properly calculate IP header offsets

• Specifically, it didn’t account for the fact that TCP options are variable-length

• It was possible to spoof a TCP header in the options and bypass the checks it performed

• So we sent them a PoC

• and a patch :)

• https://github.com/iovisor/bcc/commit/3d9b687

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

diff --git a/examples/networking/http_filter/http-parse-complete.c \

b/examples/networking/http_filter/http-parse-complete.c PYZbs

index 61bb0f0a3..dff16b940 100644

--- a/examples/networking/http_filter/http-parse-complete.c

+++ b/examples/networking/http_filter/http-parse-complete.c

@@ -56,6 +56,19 @@ int http_filter(struct __sk_buff *skb) {

struct Key key;

struct Leaf zero = {0};

+ //calculate ip header length

+ //value to multiply * 4

+ //e.g. ip->hlen = 5 ; IP Header Length = 5 x 4 byte = 20 byte

+ ip_header_length = ip->hlen << 2; //SHL 2 -> *4 multiply

+

+ //check ip header length against minimum

+ if (ip_header_length < sizeof(*ip)) {

+ goto DROP;

+ }

+

+ //shift cursor forward for dynamic ip header size

+ void *_ = cursor_advance(cursor, (ip_header_length-sizeof(*ip)));

+

struct tcp_t *tcp = cursor_advance(cursor, sizeof(*tcp));

//retrieve ip src/dest and port src/dest of current packet

eBPF Gotchas — Assuming Userspace Isn’t Evil

• In general, values obtained from untrusted places (i.e. userspace) require strict validation

• eBPF does not have a copy_from_user() helper function

• If you blindly run bpf_probe_read() on a user-supplied pointer

• you may be tricked into reading kernel memory

• Instead, you have to manually verify pointers

• This can be done by comparing against ((struct

task_struct*)bpf_get_current_task())->mm->highest_vm_end

• However, this will need to be broken up or the eBPF validator will reject it

eBPF Gotchas — Assuming Userspace Isn’t Evil

• In general, values obtained from untrusted places (i.e. userspace) require strict validation

• eBPF does not have a copy_from_user() helper function

• If you blindly run bpf_probe_read() on a user-supplied pointer

• you may be tricked into reading kernel memory

• Instead, you have to manually verify pointers

• This can be done by comparing against ((struct

task_struct*)bpf_get_current_task())->mm->highest_vm_end

• However, this will need to be broken up or the eBPF validator will reject it

eBPF Gotchas — Assuming Userspace Isn’t Evil

• In general, values obtained from untrusted places (i.e. userspace) require strict validation

• eBPF does not have a copy_from_user() helper function

• If you blindly run bpf_probe_read() on a user-supplied pointer

• you may be tricked into reading kernel memory

• Instead, you have to manually verify pointers

• This can be done by comparing against ((struct

task_struct*)bpf_get_current_task())->mm->highest_vm_end

• However, this will need to be broken up or the eBPF validator will reject it

eBPF Gotchas — Assuming Userspace Isn’t Evil

• In general, values obtained from untrusted places (i.e. userspace) require strict validation

• eBPF does not have a copy_from_user() helper function

• If you blindly run bpf_probe_read() on a user-supplied pointer

• you may be tricked into reading kernel memory

• Instead, you have to manually verify pointers

• This can be done by comparing against ((struct

task_struct*)bpf_get_current_task())->mm->highest_vm_end

• However, this will need to be broken up or the eBPF validator will reject it

Defensive eBPF?

• Can eBPF be used for defense?

• Why not?

• eBPF’s limitations make it hard to use securely in general, let alone as a security mechanism

• Instead, eBPF is much more useful for tracking data as it flows through the system

Defensive eBPF?

• Can eBPF be used for defense?

• Why not? directly

• eBPF’s limitations make it hard to use securely in general, let alone as a security mechanism

• Instead, eBPF is much more useful for tracking data as it flows through the system

Defensive eBPF?

• Can eBPF be used for defense?

• Why not? directly

• eBPF’s limitations make it hard to use securely in general, let alone as a security mechanism

• Instead, eBPF is much more useful for tracking data as it flows through the system

unixdump

• tcpdump for Unix domain sockets

• Originally created to reverse engineer ptrace(2)ing processes (e.g. Frida)

• Demonstrates our successful fight against eBPF validator

• Features:

• Captures full streams

• Captures ancillary data messages (e.g. passed file descriptors)

• Filter/exclude by PID or socket path

• Full support for abstract namespace, including binary ”paths”

• Link at end of slides :)

unixdump

• Retrieves msghdr buffer contents and metadata from unix_stream_sendmsg and

unix_dgram_sendmsg

• Uses a custom ring buffer to share data with userspace while limiting byte copies

• Uses python to generate C code dynamically

• CLI arguments to tweak C array sizes

unixdump — Code Generation

• Python is used to generate eBPF C code

• This allows us to tweak the eBPF program at ”runtime” using defines and ifdefs

• Ring buffer size, pids to exclude, sun_path to filter on

• Increases performance by reducing the amount of events receiving heavier processing

• This also helps to get around loop restriction

• Can’t loop through an array of PIDs so we codegen a static C BST lookup

// generated by $ unixdump -x 1 2 3

static inline bool is_excluded_pid(u32 needle) {

if (needle == 2) {

return true;

}

if (needle < 2) {

if (needle == 1) {

return true;

}

return false;

} else {

if (needle == 3) {

return true;

}

return false;

}

}

unixdump — Code Generation

• We use another percpu array of size 1 to store the current ring buffer slot

• We can’t loop, so we generate a ratcheting switch statement

def gen_ratchet_switch(sz):

preamble = '''switch (sync->next) {

'''

entry_template = '''

case {}: {{

nxt = {};

sync->next = {};

break;

}};

'''

end = '''

default: {

nxt = 0;

sync->next = 1;

}

}

'''

out = ""

out += preamble

for i in range(sz):

out += entry_template.format(i, i, i+1)

out += end

return out

unixdump — Event Notification

• The ring buffer is an eBPF percpu array mapped to userspace

• It holds large structs we fill with stream content

• The structs also have an in-use status field

• We check the in-use flag is cleared in eBPF, set it, and notify userspace

• Userspace checks that the flag is set, processes the data, and clears the flag

• This prevents race conditions due to async updating of kernel-userspace mapped pages

If eBPF isn’t that good at defense, what else can we use it for?

Let’s talk about offense

Offensive eBPF

• Let’s assume someone bad gets some privileges on a modern Linux system

• E.g. CAP_SYS_ADMIN in a container (it’s more common than you might think)

• What could they do with eBPF?

• A lot actually

• Tracing eBPF programs (kprobes, uprobes, tracepoints, raw tracepoints) can see everything

•

Offensive eBPF

• Let’s assume someone bad gets some privileges on a modern Linux system

• E.g. CAP_SYS_ADMIN in a container (it’s more common than you might think)

• What could they do with eBPF?

• A lot actually

• Tracing eBPF programs (kprobes, uprobes, tracepoints, raw tracepoints) can see everything

•

Offensive eBPF

• Let’s assume someone bad gets some privileges on a modern Linux system

• E.g. CAP_SYS_ADMIN in a container (it’s more common than you might think)

• What could they do with eBPF?

• A lot actually

• Tracing eBPF programs (kprobes, uprobes, tracepoints, raw tracepoints) can see everything

•

Offensive eBPF

• Let’s assume someone bad gets some privileges on a modern Linux system

• E.g. CAP_SYS_ADMIN in a container (it’s more common than you might think)

• What could they do with eBPF?

• A lot actually

• Tracing eBPF programs (kprobes, uprobes, tracepoints, raw tracepoints) can see everything

• They can also write userspace memory

Offensive eBPF

• Let’s assume someone bad gets some privileges on a modern Linux system

• E.g. CAP_SYS_ADMIN in a container (it’s more common than you might think)

• What could they do with eBPF?

• A lot actually

• Tracing eBPF programs (kprobes, uprobes, tracepoints, raw tracepoints) can see everything

• THEY CAN ALSO WRITE USERSPACE MEMORY

Offensive eBPF — The Rootkit Principle

• bpf_probe_write_user()

• Intended for use ”to debug, divert, and manipulate execution of semi-cooperative processes”
• Enables writing to writable userspace memory

• Text

• Stack

• Heap

• Static data

• Is there anything useful in those memory regions?

• Buffers for reading/writing data through syscalls

• What if we intercepted read(2)s on a sensitive file descriptor

• That is used by a privileged process outside of the container?

Offensive eBPF — The Rootkit Principle

• bpf_probe_write_user()

• Intended for use ”to debug, divert, and manipulate execution of semi-cooperative processes”
• Enables writing to writable userspace memory

• Text

• Stack

• Heap

• Static data

• Is there anything useful in those memory regions?

• Buffers for reading/writing data through syscalls

• What if we intercepted read(2)s on a sensitive file descriptor

• That is used by a privileged process outside of the container?

Offensive eBPF — The Rootkit Principle

• bpf_probe_write_user()

• Intended for use ”to debug, divert, and manipulate execution of semi-cooperative processes”
• Enables writing to writable userspace memory

• Text

• Stack

• Heap

• Static data

• Is there anything useful in those memory regions?

• Buffers for reading/writing data through syscalls

• What if we intercepted read(2)s on a sensitive file descriptor

• That is used by a privileged process outside of the container?

Offensive eBPF — The Rootkit Principle

• bpf_probe_write_user()

• Intended for use ”to debug, divert, and manipulate execution of semi-cooperative processes”
• Enables writing to writable userspace memory

• Text

• Stack

• Heap

• Static data

• Is there anything useful in those memory regions?

• Buffers for reading/writing data through syscalls

• What if we intercepted read(2)s on a sensitive file descriptor

• That is used by a privileged process outside of the container?

Spoofing cron jobs with Conjob

• Cron auto-pwner

• Hooks all *stat(2) syscalls

• If stat(2)-ing /etc/crontab, triggers kretprobe logic

• In kretprobe, modifies the kernel-written struct stat to update the last modified time

• This triggers cron to reload the file

• Hooks openat(2) and close(2)

• If openat(2)-ing /etc/crontab, triggers kretprobe logic

• In openat(2) kretprobe, saves the file descriptor returned to userspace

• In close(2) kprobe, clears the mapping if the /etc/crontab fd is closed

• Hooks read(2)

• If read(2)-ing from a known /etc/crontab fd, triggers kretprobe logic

• In kretprobe, modifies the kernel-written buffer to inject root commads at the beginning of the ”file”

Demo

Conjob — Fun Facts

• Uses percpu maps to have kprobes and associated kretprobes communicate with each other

• Uses eBPF hash maps to have different pairs of k(ret)probes share fds with each other

• Uses the bpf_ktime_get_ns() helper to keep /etc/crontab ”recently updated”

What else can we do with eBPF?

Go for broke

Offensive eBPF — ROP ’til You Drop

• If you’ll recall, we can write to the stack

• The stack has return addresses

• We can also read the stack and all of userspace memory

• We can scan for the text section and shared libraries

Offensive eBPF — ROP ’til You Drop

• If you’ll recall, we can write to the stack

• The stack has return addresses

• We can also read the stack and all of userspace memory

• We can scan for the text section and shared libraries

Offensive eBPF — ROP ’til You Drop

• If you’ll recall, we can write to the stack

• The stack has return addresses

• We can also read the stack and all of userspace memory

• We can scan for the text section and shared libraries

Offensive eBPF — ROP ’til You Drop

• If you’ll recall, we can write to the stack

• The stack has return addresses

• We can also read the stack and all of userspace memory

• We can scan for the text section and shared libraries

glibcpwn—The fastest way to a man’s heart is through his init daemon

• Systemd auto-pwner

• Scans PID 1 memory for libc.so

• Backs up stack content at the return address for libc syscall stub

• Injects a ROP payload targeting libc.so into the stack

• ROP payload calls glibc-internal dlopen(3) wrapper

• Loads malicious shared library into PID 1

• Completely cleans up after itself as if nothing happened

Demo

glibcpwn — Implementation Details Pt. 1

1. Hooks timerfd_settime(2), a syscall systemd reliably calls once every minute

2. Scans forward from the stack-based struct itimerspec passed to the kernel

3. Looks for return address from timerfd_settime(2) stub function

1 Follows each possible return address

2 Scans back for and parses jmp and call instructions

3 Applies relative offsets and scans for syscall stub or PLT stub

• If the latter, parses the jmp to get function start

4. Calculates offset to start of libc.so

5. Returns stack return address and address of __libc_start_main to userland tracer code

glibcpwn — Implementation Details Pt. 2

1. Hooks timerfd_settime(2) and close(2)

2. In kretprobe for timerfd_settime(2)

1 Copies stack for safekeeping

2 Writes a ROP chain into return address

3. Kernel returns to userspace

4. timerfd_settime(2) returns into ROP chain

1 Sets up rdi, rsi, rdx, rcx

2 Returns into __libc_dlopen_mode to load shared library

3 Sets rax to 3 (close(2))

4 Sets rdi to a magic negative value

5 Returns into raw syscall gadget

5. close(2) kprobe hit

1 Checks if fd matches magic value, writes most of original stack back

2 Does not write over remaining gadgets in original chain

3 Writes a new ROP chain past the end of where the stack originally was

6. Kernel returns to userspace

7. Last gadget shifts rsp to newly written ROP chain

glibcpwn — Implementation Details Pt. 3

1. New ROP chain fires

1 Writes back original stack values over the last original gadget

2 xor rax, rax to mark success for original timerfd_settime(2) syscall

3 Returns back to next instruction after syscall in timerfd_settime(2) stub

2. Process execution continues as normal

glibcpwn — Fun Facts

• glibc is fairly stable, even between different versions on different distros

• All gadgets have identical or nigh-identical equivalents across the board

What else can we do with eBPF?

Use it as intended

eBPF Rootkits — Omniscience and Omnipotence

• Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

• For example, it can prevent processes from:

• Listing running eBPF programs and kprobes

• Creating eBPF kprobes

• Loading kernel modules
• Phoning home about a detected compromise

• This is important because using bpf_probe_write_user() causes a dmesg notification

• The only way to escape is to have read dmesg first and already had memory-mapped direct packet

I/O configured to send an SOS without using a syscall

• Even then, it’s probably possible to use non-writing (k|u)probes to burn time until it can kill the process

• Also, bpf_override_return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Omniscience and Omnipotence

• Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

• For example, it can prevent processes from:

• Listing running eBPF programs and kprobes

• Creating eBPF kprobes

• Loading kernel modules
• Phoning home about a detected compromise

• This is important because using bpf_probe_write_user() causes a dmesg notification

• The only way to escape is to have read dmesg first and already had memory-mapped direct packet

I/O configured to send an SOS without using a syscall

• Even then, it’s probably possible to use non-writing (k|u)probes to burn time until it can kill the process

• Also, bpf_override_return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Omniscience and Omnipotence

• Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

• For example, it can prevent processes from:

• Listing running eBPF programs and kprobes

• Creating eBPF kprobes

• Loading kernel modules
• Phoning home about a detected compromise

• This is important because using bpf_probe_write_user() causes a dmesg notification

• The only way to escape is to have read dmesg first and already had memory-mapped direct packet

I/O configured to send an SOS without using a syscall

• Even then, it’s probably possible to use non-writing (k|u)probes to burn time until it can kill the process

• Also, bpf_override_return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Omniscience and Omnipotence

• Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

• For example, it can prevent processes from:

• Listing running eBPF programs and kprobes

• Creating eBPF kprobes

• Loading kernel modules
• Phoning home about a detected compromise

• This is important because using bpf_probe_write_user() causes a dmesg notification

• The only way to escape is to have read dmesg first and already had memory-mapped direct packet

I/O configured to send an SOS without using a syscall

• Even then, it’s probably possible to use non-writing (k|u)probes to burn time until it can kill the process

• Also, bpf_override_return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Omniscience and Omnipotence

• Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

• For example, it can prevent processes from:

• Listing running eBPF programs and kprobes

• Creating eBPF kprobes

• Loading kernel modules

• Phoning home about a detected compromise

• This is important because using bpf_probe_write_user() causes a dmesg notification

• The only way to escape is to have read dmesg first and already had memory-mapped direct packet

I/O configured to send an SOS without using a syscall

• Even then, it’s probably possible to use non-writing (k|u)probes to burn time until it can kill the process

• Also, bpf_override_return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Omniscience and Omnipotence

• Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

• For example, it can prevent processes from:

• Listing running eBPF programs and kprobes

• Creating eBPF kprobes

• Loading kernel modules
• Phoning home about a detected compromise

• This is important because using bpf_probe_write_user() causes a dmesg notification

• The only way to escape is to have read dmesg first and already had memory-mapped direct packet

I/O configured to send an SOS without using a syscall

• Even then, it’s probably possible to use non-writing (k|u)probes to burn time until it can kill the process

• Also, bpf_override_return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Omniscience and Omnipotence

• Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

• For example, it can prevent processes from:

• Listing running eBPF programs and kprobes

• Creating eBPF kprobes

• Loading kernel modules
• Phoning home about a detected compromise

• This is important because using bpf_probe_write_user() causes a dmesg notification

• The only way to escape is to have read dmesg first and already had memory-mapped direct packet

I/O configured to send an SOS without using a syscall

• Even then, it’s probably possible to use non-writing (k|u)probes to burn time until it can kill the process

• Also, bpf_override_return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Omniscience and Omnipotence

• Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

• For example, it can prevent processes from:

• Listing running eBPF programs and kprobes

• Creating eBPF kprobes

• Loading kernel modules
• Phoning home about a detected compromise

• This is important because using bpf_probe_write_user() causes a dmesg notification

• The only way to escape is to have read dmesg first and already had memory-mapped direct packet

I/O configured to send an SOS without using a syscall

• Even then, it’s probably possible to use non-writing (k|u)probes to burn time until it can kill the process

• Also, bpf_override_return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Omniscience and Omnipotence

• Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

• For example, it can prevent processes from:

• Listing running eBPF programs and kprobes

• Creating eBPF kprobes

• Loading kernel modules
• Phoning home about a detected compromise

• This is important because using bpf_probe_write_user() causes a dmesg notification

• The only way to escape is to have read dmesg first and already had memory-mapped direct packet

I/O configured to send an SOS without using a syscall

• Even then, it’s probably possible to use non-writing (k|u)probes to burn time until it can kill the process

• Also, bpf_override_return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Nigh-Omnipresence

• The one downside of eBPF is that it needs to be tied to a running process to stay alive

• What if we could make our eBPF kprobes functionally immortal?

eBPF Rootkits — Nigh-Omnipresence

• The one downside of eBPF is that it needs to be tied to a running process to stay alive

• What if we could make our eBPF kprobes functionally immortal?

eBPF Rootkits — Anchor Pivoting

• Once you take over a process like PID 1, you can run rootkit eBPF kprobes from PID 1 itself

• This means they will stay alive until the system shuts down

• And vice-versa if PID 1 crashes, so to does the system

• Which is great for us, because everyone will think systemd is being unstable as usual

eBPF Rootkits — Anchor Pivoting

• Once you take over a process like PID 1, you can run rootkit eBPF kprobes from PID 1 itself

• This means they will stay alive until the system shuts down

• And vice-versa if PID 1 crashes, so to does the system

• Which is great for us, because everyone will think systemd is being unstable as usual

eBPF Rootkits — Anchor Pivoting

• Once you take over a process like PID 1, you can run rootkit eBPF kprobes from PID 1 itself

• This means they will stay alive until the system shuts down

• And vice-versa if PID 1 crashes, so to does the system

• Which is great for us, because everyone will think systemd is being unstable as usual

eBPF Rootkits — Anchor Pivoting

• Once you take over a process like PID 1, you can run rootkit eBPF kprobes from PID 1 itself

• This means they will stay alive until the system shuts down

• And vice-versa if PID 1 crashes, so to does the system

• Which is great for us, because everyone will think systemd is being unstable as usual

Conclusion

• eBPF is useful for everyone

• Except people trying to build IDS on top of it

• It needs to get much better at supporting that use case, and it simply isn’t there right now

Conclusion

• eBPF is useful for everyone

• Except people trying to build IDS on top of it

• It needs to get much better at supporting that use case, and it simply isn’t there right now

Conclusion

• eBPF is useful for everyone

• Except people trying to build IDS on top of it

• It needs to get much better at supporting that use case, and it simply isn’t there right now

Conclusion — Pleas to eBPF Kernel Devs

• Please add more helper functions:

• copy_from_user()
• To aid in reading tricky kernel data structures

• Like files/paths

• Direct string/memory comparison operations

• Also, memset(3)

Greetz — Thanks for the code and the blogs!

• The BCC developers

• Julia Evans

• Brendan Gregg

• Jessie Frazelle

You can’t hide from the future.

Questions?
Pull Requests?
https://github.com/nccgroup/ebpf

jeff.dileo@nccgroup.com
@chaosdatumz

andy.olsen@nccgroup.com
@0lsen_

https://github.com/nccgroup/ebpf

Kernel Tracing With eBPF
Unlocking God Mode on Linux

.

.

35C3

Jeff Dileo

@chaosdatumz

Andy Olsen

@0lsen_

	About us
	eBPF
	eBPF
	Gotchas

