Kernel Tracing With eBPF

Unlocking God Mode on Linux

Jeff Dileo Andy Olsen
@chaosdatumz @QOlsen_

35C3

nccgroup®

Who are we?

Jeff Dileo (@chaosdatumz)

® Unix aficionado
® Agent of chaos

® Consultant / Research Director @ NCC Group
® | like to do terrible things to/with/in:

® programs | QOO000

® Janguages

® runtimes

¢ memory oooox |
® kernels

® packets A TRAINER JTEFF

[) bytes wants to battl|let

[)

Andy Olsen (@0Olsen)

Ultimate frisbee enthusiast
Amateur chiptune artist
Security Consultant @ NCC Group

Il ne parle pas Frangais

Outline

® eBPF

® Tracing with eBPF

® Defensive eBPF

® eBPF Secure Coding Gotchas
® Offensive eBPF

® Q&A

eBPF — Background

® “extended” BPF

eBPF — Background

® “extended” BPF
® But what is BPF?

eBPF — BPF

® Berkeley Packet Filter

® Limited instruction set for a bytecode virtual machine

® Qriginally created to implement FAST programmatic network filtering in kernel

® has a few (2) 32-bit registers (and a hidden frame pointer)

® |oad/store, conditional jump (forward), add/sub/mul/div/mod, neg/and/or/xor, bitshift
® tcpdump -i any -n 'tcp[tcpflags] & (tcp-syn|tcp-ack) != 0

(000) 1dh [14]
(001) jeq #0x800 jt 2 jf 10
(002) ldb [25]

(003) jeq #0x6 jt 4 jf 10
(004) ldh [22]

(005) jset #OX1Fff jt 10 jf 6
(006) ldxb 4% ([16]&0xf)

(007) ldb [x + 29]

(008) jset #0x12 jt 9 jf 10
(009) ret #262144

(010) ret #0

eBPF — eBPF

® “extended” Berkeley Packet Filter

® “designed to be JITed with one to one mapping”

® “originally designed with the possible goal in mind to write programs in ’'restricted C””

® socket filters, packet processing, tracing, internal backend for "classic” BPF, and more...

® File descriptor-based API through bpf (2) syscall
® Provide:
® An array of bytecode instructions
® Type of eBPF program (e.g. BPF_PROG_TYPE SOCKET FILTER, BPF_PROG TYPE KPROBE, etc.)
® Other type-specific metadata
® Receive:
® (on success) A file descriptor referring to the in-kernel compiled eBPF program

® The power of eBPF is really in the kernel APIs that will accept an eBPF descriptor and plug it
into things

eBPF — eBPF

static int add_lookup_instructions(BPFProgram *p, int map_fd, int protocol, bool is_ingress, int verdict) {

struct bpf_insn insn[] = {
BPF_JMP_IMM(BPF JNE, BPF REG 7, htobel6(protocol), 0),

BPF_MOV64 REG(BPF REG 1, BPF REG 6),

BPF_MOV32 IMM(BPF REG 2, addr offset),

BPF_MOV64 REG(BPF REG 3, BPF REG 10),

BPF_ALU64 IMM(BPF ADD, BPF REG 3, -addr size),

BPF_MOV32_ IMM(BPF REG 4, addr size),

BPF_RAW_INSN(BPF JMP | BPF CALL, 0, 0, 0, BPF FUNC_skb load bytes),

BPF LD MAP_FD(BPF REG 1, map fd),
BPF_MOV64 REG(BPF REG 2, BPF REG 10),

BPF_ALU64 IMM(BPF_ADD, BPF REG 2, -addr size - sizeof(uint32 t)),
BPF ST MEM(BPF W, BPF REG 2, 0, addr size * 8),

BPF_RAW_INSN(BPF_JMP | BPF CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF REG 0, 0, 1),

BPF_ALU32 IMM(BPF OR, BPF REG 8, verdict),

Listing 1: systemd/src/core/bpf-firewall.c

eBPF — Important BPF to eBPF Changes

® now 10 64-bit registers, directly mapped to HW CPU registers
® RO: return value from in-kernel function, and exit value for eBPF program
® R1-R5: arguments from eBPF program to in-kernel function
® R6-R9: callee saved registers that in-kernel function will preserve
® R10: read-only frame pointer to access stack
® new bpf call instruction
® HW-based register passing convention for zero overhead calls from/to other kernel functions
® Used to call other eBPF programs and "helper” functions
® Bytecode validator ("verifier”)

® Helper functions
® Set of native kernel functions exposed to eBPF code
® Context-dependent (e.g. packet processing eBPF cannot call kernel memory read helper)
® Argument registers validated against call spec for each helper function

Why eBPF?

® HIGH PERFORMANCE in-plane packet processing

Why eBPF?

® (safe) HIGH PERFORMANCE in-plane packet processing

Why eBPF?

® (safe) HIGH PERFORMANCE in-plane packet processing

® network tunneling

Why eBPF?

® (safe) HIGH PERFORMANCE in-plane packet processing
® network tunneling

® custom iptables rules

Why eBPF?

(safe) HIGH PERFORMANCE in-planekernel packetprocessing programmatic operations
® network tunneling

® custom iptables rules

syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

Why eBPF?

(safe) HIGH PERFORMANCE in-planekernel packetprocessing programmatic operations
® network tunneling

® custom iptables rules

syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

® Reduce need for buggy kernel modules

Why eBPF?

(safe) HIGH PERFORMANCE in-planekernel packetprocessing programmatic operations
® network tunneling

® custom iptables rules

syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)

® Reduce need for buggy kernel modules

Why eBPF?

® (safe) HIGH PERFORMANCE in-planekernel packet-processing programmatic operations
® network tunneling

® custom iptables rules

® syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)
® Reduce need for buggy kernel modules

® firewall subsystem with rules implemented entirely in eBPF

Why eBPF?

® (safe) HIGH PERFORMANCE in-planekernel packet-processing programmatic operations
® network tunneling

® custom iptables rules

® syscall filtering (mix of classic [for now] BPF for seccomp, eBPF for cgroups shenanigans)
® Reduce need for buggy kernel modules

® firewall subsystem with rules implemented entirely in eBPF

As more eBPF features have been added in newer kernel versions,
the "why” of eBPF has changed retroactivively

Why eBPF? — OK, but really, why?

® eBPF is different things to different people
® Personally, we like being able to selectively instrument an entire OS without making it crawl

® The title of this talk is "Kernel Tracing With eBPF” :)

Why eBPF? — OK, but really, why?

eBPF is different things to different people

® Personally, we like being able to selectively instrument an entire OS without making it crawl

The title of this talk is "Kernel Tracing With eBPF” :)

® eBPF has the potential to give DTrace a run for its money

Why eBPF? — OK, but really, why?

eBPF is different things to different people
® Personally, we like being able to selectively instrument an entire OS without making it crawl

The title of this talk is "Kernel Tracing With eBPF” :)

® eBPF has the potential to give DTrace a run for its money
® The power of DTrace is in its providers (event/data sources)
® Linux will not likely gain such unified facilities

Why eBPF? — OK, but really, why?

® eBPF is different things to different people
® Personally, we like being able to selectively instrument an entire OS without making it crawl
® The title of this talk is "Kernel Tracing With eBPF” :)
® eBPF has the potential to give DTrace a run for its money
® The power of DTrace is in its providers (event/data sources)
® Linux will not likely gain such unified facilities

® eBPF is more programmatic, but lower level
® |t provides a base to build more complicated analysis tooling on

Why eBPF? — OK, but really, why?

® eBPF is different things to different people
® Personally, we like being able to selectively instrument an entire OS without making it crawl
® The title of this talk is "Kernel Tracing With eBPF” :)

® eBPF has the potential to give DTrace a run for its money
® The power of DTrace is in its providers (event/data sources)
® Linux will not likely gain such unified facilities
® eBPF is more programmatic, but lower level
® |t provides a base to build more complicated analysis tooling on

® DTrace is amazing at one-off human-driven system analysis

® But eBPF enables very efficient dynamic always-on whole system analysis

Let’s talk about tracing

Tracing — An Introduction

® "Tracing” is a concept
® Wikipedia describes it as
"a specialized use of logging to record information about a program’s execution”

® Generally considered developer-centric logging

® Often involves very low-level logging of very low-level information

Tracing — An Introduction

® "Tracing” is a concept

Wikipedia describes it as

”

"a specialized use of logging to record information about a program’s execution

Generally considered developer-centric logging

® Often involves very low-level logging of very low-level information

This distinction is unhelpful and misses the point

Tracing — Why is Tracing Useful?

Tracing — Why is Tracing Useful?

® |tisn’t (for us)

Tracing — Why is Tracing Useful?

® |tisn’t (for us)

® What is useful is "dynamic tracing”

Dynamic Tracing — An Introduction

® Two main kinds of dynamic tracing
® Dynamically enabling/disabling existing logging functionality
® Dynamically adding logging functionality that wasn’t there before

Dynamic Tracing — An Introduction

® Two main kinds of dynamic tracing
® Dynamically enabling/disabling existing logging functionality
® Dynamically adding logging functionality that wasn’t there before

® \We mostly care about the latter

Dynamic Tracing — An Introduction

® Two main kinds of dynamic tracing

® Dynamically enabling/disabling existing logging functionality

® Dynamically adding logging functionality that wasn’t there before
® \We mostly care about the latter

® But the "logging” isn’t really that important

Dynamic Tracing — An Introduction

® Two main kinds of dynamic tracing

® Dynamically enabling/disabling existing logging functionality

® Dynamically adding logging functionality that wasn’t there before
® \We mostly care about the latter

® But the "logging” isn’t really that important
® What's important is the implementation and its capabilities

Dynamic Tracing — An Introduction

® Two main kinds of dynamic tracing

® Dynamically enabling/disabling existing logging functionality

® Dynamically adding logging functionality that wasn’t there before
® \We mostly care about the latter

® But the "logging” isn’t really that important

® What's important is the implementation and its capabilities

® \We don’t care about dynamic tracing as much as the dynamic instrumentation implementing it

Dynamic Tracing — An Introduction

® Two main kinds of dynamic tracing
® Dynamically enabling/disabling existing logging functionality
® Dynamically adding logging functionality that wasn’t there before
® \We mostly care about the latter
® But the "logging” isn’t really that important
® What’s important is the implementation and its capabilities
® \We don’t care about dynamic tracing as much as the dynamic instrumentation implementing it
® Two main kinds of dynamic instrumentation

® Function hooking
® |nstruction instrumentation (assembly, bytecode, etc.)

Depending on the instrumentation target, a function hooking APl may be implemented through
some amount of instruction modification/instrumentation

Instrumenting Linux With eBPF
For Fun and Profit

Jeff Dileo Andy Olsen
@chaosdatumz @QOlsen_

nccgroup®

Linux Tracing — A Purposefully Over-Summarized History

2004: kprobes/kretprobes

2008: ftrace

2009: perf_events

2009: tracepoints

2012: uprobes

2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing — A Purposefully Over-Summarized History

® 2004: kprobes/kretprobes

® |njects jumps into function entry/exit points that go to hook code
® |f jumps can'’t safely be inserted, falls back to breakpoints and single-stepping from entry to exit
® API originally exposed to kernel code/kernel modules

2008: ftrace
2009: perf_events

2009: tracepoints
2012: uprobes
2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing — A Purposefully Over-Summarized History

2004: kprobes/kretprobes

2008: ftrace
® Provides a filesystem-based userland API to perform various tracing/profiling

2009: perf_events

® 2009: tracepoints

2012: uprobes

2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing — A Purposefully Over-Summarized History

2004: kprobes/kretprobes

2008: ftrace

2009: perf_events
® Does a whole bunch of awesome profiling stuff outside the scope of this talk

® 2009: tracepoints
2012: uprobes
2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing — A Purposefully Over-Summarized History

2004: kprobes/kretprobes
2008: ftrace

2009: perf_events

2009: tracepoints
® Enable-able logging functions that pack log content into documented structs

2012: uprobes
2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing — A Purposefully Over-Summarized History

2004: kprobes/kretprobes
2008: ftrace
2009: perf_events

2009: tracepoints
® 2012: uprobes

® Essentially kprobes applied to userspace memory

2015-present: eBPF tracing integration (Linux 4.1+)

Linux Tracing — A Purposefully Over-Summarized History

2004: kprobes/kretprobes
2008: ftrace

2009: perf_events

® 2009: tracepoints

2012: uprobes
2015-present: eBPF tracing integration (Linux 4.1+)

® Combined mecha super robot

eBPF Voltron

® eBPF is being integrated with many different kernel technologies, especially the tracing ones
® Core concepts:

® Attach eBPF program to a data source using perf_events APl or bpf(2)
® Use perf_events ring buffer or memory-mapped eBPF maps as output

® eBPF maps can also be updated from userspace to provide input

eBPF Voltron

® eBPF is being integrated with many different kernel technologies, especially the tracing ones

® Core concepts:

® Attach eBPF program to a data source using perf_events APl or bpf(2)
® Use perf_events ring buffer or memory-mapped eBPF maps as output

® eBPF maps can also be updated from userspace to provide input

® Sources:
® K(ret)probes
® y(ret)probes
® tracepoints
® raw tracepoints

eBPF Voltron — Source Attachment

® K(ret)probes (old):

1.

2.
3.
4.

5.
6.

bpf(2) to create a kprobe eBPF program (BPF_PROG_LOAD)
Use ftrace/tracefs API to register a k(ret)probe
Read /1id file from it to get kprobe ID
perf event open(&attr, <pid>, -1, -1, PERF_FLAG FD CLOEXEC)
® struct perf_event attr attr;
® attr.type = PERF _TYPE TRACEPOINT;
® attr.config = <kprobe id>;
ioctl(<perf fd>, PERF_EVENT IOC SET BPF, <bpf fd>)
ioctl(<perf fd>, PERF_EVENT IOC ENABLE, 0)

® K(ret)probes (new):

1.
2.

3.

bpf(2) to create a kprobe eBPF program (BPF_PROG_LOAD)
perf event open(&attr, <pid>, -1, -1, PERF_FLAG FD CLOEXEC)
® attr.type = 6; // magic number
® attr.kprobe func = <addr of str>;
® attr.probe offset = <off>; // if attr.kprobe func != NULL
® attr.kprobe_addr = <addr>; // if attr.kprobe func == NULL
Follow steps 4-6 from above

eBPF Voltron — Source Attachment

® u(ret)probes (old/new):

® Basically identical to the previous slide with minor modifications
® fracepoints

® Basically identical to the old k(ret)probe attachment

® raw tracepoints

1. bpf(2) to create a raw tracepoint eBPF program (BPF_PROG LOAD)
2. bpf(2) to attach BPF fd to tracepoint by name (BPF_RAW_TRACEPOINT OPEN)

Using eBPF — How (Not) to eBPF

® Don't write eBPF bytecode assembly by hand

® |tis hard
® |t is basically impossible to do anything more than simple arithmetic and a few comparisons
® |tis not well supported by glibc (not that anything modern is)

Using eBPF — How (Not) to eBPF

® Don't write eBPF bytecode assembly by hand
® |tis hard
It is basically impossible to do anything more than simple arithmetic and a few comparisons
It is not well supported by glibc (not that anything modern is)
It is highly error prone

Using eBPF — How to eBPF

® Use bcc (BPF Compiler Collection)

® https://github.com/iovisor/bcc
® Framework for compiling C into eBPF (using LLVM APIs) and hooking it up to sources

https://github.com/iovisor/bcc

Using eBPF — How to eBPF

® Use bcc (BPF Compiler Collection)

® https://github.com/iovisor/bcc
® Framework for compiling C into eBPF (using LLVM APIs) and hooking it up to sources

® This talk is not "about” bcc, but it's the only thing mature enough to suit our purposes
® As with most modern and useful Linux things:

® No official userland API other than syscalls

Syscall documentation is lacking/wrong

Multi-syscall operations are essentially undocumented

No support from glibc (everything is generally done with the syscall() wrapper)
One real consumer of the API, often with varying levels of documentation

Kernel APIs often written to support the one consumer, often by the same developers

® bcc is the only real option
® Everything else either uses at least some of it as a library or cribs from their code

https://github.com/iovisor/bcc

Building Tracing Tools With BCC

® Primarily a Python API, with underlying C/C++ layers to call lower level APIs

® Usually a whole tool is a single Python file

® eBPF C code is generally a Python string

® General structure of bce-based tracers is the following:

1.

ook wd

Python imports

Large Python string containing eBPF C code, possibly using custom templating
Argument parsing to codegen templated parts of the eBPF C code

Python ctypes struct definitions for eBPF C defined types

Userspace Python callback handlers for events generated by eBPF C

BCC API calls to compile the C code, attach it to sources, and register event handlers

Building Tracing Tools With BCC

® Usually a whole tool is a single Python file
® bcc doesn’t handle C #include ""s super well

® Can be done with special function kwargs
® But need to specify the full path because the default base dir is weird

@k Wb

Let's write some code!

from bcc import BPF
program = """
#include <asm/ptrace.h> // for struct pt regs
#include <linux/types.h> // for mode t

int kprobe sys open(struct pt regs *ctx,
char user* pathname, int flags, mode t mode) {
bpf trace printk("sys open called.\\n");
return 0;

}

b = BPF(text=program)
b.trace print()

$ sudo python code/3-hello-open-world-1.py

There’s no output! What went wrong?

glibc

from bcc import BPF
program = """
#include <asm/ptrace.h> // for struct pt regs
#include <linux/types.h> // for mode t

int kprobe sys open(struct pt regs *ctx,
char _ user* pathname, int flags, mode t mode) {
bpf trace printk("sys open called.\\n");
return 0;

int kprobe sys openat(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode t mode) {
bpf trace printk("sys openat called.\\n");
return 0;

}

b = BPF(text=program)
b.trace print()

$ sudo python code/3-hello-open-world-2.py

gnome-shell-13250
gnome-shell-13250
systemd-1
systemd-journal-339
systemd-journal-339
systemd-journal-339
systemd-1
systemd-1
irgbalance-676
irgbalance-676
gnome-shell-13250
gnome-shell-13250
gnome-control-c-19963
irgbalance-676
irgbalance-676
zsh-14892
zsh-14892
zsh-14892
zsh-14892

[001]
[001]
[000]
[000]
[000]
[000]
[000]
[000]
[000]
[000]
[000]
[000]
[001]
[000]
[000]
[001]
[001]
[001]
[001]

.. 318129.
.. 318130.
.. 318130.
.. 318130.
.. 318130.
.. 318130.
.. 318130.
.. 318130.
.. 319219.
.. 319219.
.. 319224,
.. 319224,
.. 319227.
.. 319229.
.. 319229.
.. 319235.
.. 319235.
.. 319235.

. 319235.

936224:
022664:
193712:
194966:
194999:
195317:
210087:
210151:
767122:
767449:
120910:
121005:
287377:
760427:
760747:
284734:
284914:
285157:
285166:

0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:

sys_openat
sys _openat
sys_openat
sys_openat
sys _openat
sys_openat
sys_openat
sys_openat
sys_openat
sys_openat
sys_openat
Ssys_openat
sys_openat
sys_openat
sys_openat
sys_openat
sys_openat
sys_openat
sys_openat

called.
called.
called.
called.
called.
called.
called.
called.
called.
called.
called.
called.
called.
called.
called.
called.
called.
called.
called.

Let’s generalize this code a bit...

from bcc import BPF
program = """
#include <asm/ptrace.h> // for struct pt regs
#include <linux/types.h> // for mode t

int kprobe do sys open(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode t mode) {
bpf trace printk("do_sys open called: %s\\n", pathname);
return 0;

}

b = BPF(text=program)
b.trace print()

$ sudo python code/3-hello-open-world-3.py

irgbalance-676
irgbalance-676
gnome-shell-13250
systemd-1
systemd-1
systemd-journal-339
systemd-journal-339
systemd-journal-339
systemd-journal-339
systemd-journal-339
systemd-journal-339
systemd-journal-339
systemd-journal-339

systemd-journal-339

[000]
[000]
[000]
[000]
[000]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]

[001]

.. 319659.
.. 319659.
.. 319661.
.. 319668.
.. 319668.
.. 319668.
.. 319668.
.. 319668.
.. 319668.
.. 319668.
.. 319668.
.. 319668.
. 319668.
-extra-fields:dbus.service

. 319668.

cd4d5eaal9lc4be38b778d3203fbbbbb

systemd-journal-339

[001]

. 319668.

751235:
751685:
369193:
190947:
193370:
194160:
194253:
194276:
194319:
194335:
194349:
194363:
194406:

194449:

194801:

0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:

0x00000001:

0x00000001:

cd4d5eaal9lc4be38b778d3203fb6bbb/system. journa

systemd-1
systemd-1
systemd-1
systemd-1

[000]
[000]
[000]
[000]

. 319668.213534: 0x00000001:
. 319668.213615: 0x00000001:
. 319668.213634: 0x00000001:
. 319668.213687: 0x00000001:

/system.slice/systemd-timedated.service/c

do_sys_open
do_sys open
do_sys_open
do_sys open
do_sys_open
do_sys open
do_sys_open
do_sys_open
do_sys_open
do_sys_open
do_sys open
do_sys_open
do_sys open

do_sys_open
do_sys_open
do_sys_open
do_sys open

do_sys_open
do_sys open

called:
called:
called:
called:
called:
called:
called:
called:
called:
called:
called:
called:
called:

called:
called:
called:
called:

called:
called:

/proc/interrupts
/proc/stat
/proc/self/stat
/proc/33172/cgroup
/proc/664/cgroup
/proc/679/comm
/proc/679/cmdline
/proc/679/status
/proc/679/attr/current
/proc/679/sessionid
/proc/679/1loginuid
/proc/679/cgroup
/run/systemd/units/log

/var/log/journal/
/run/log/journal/
/proc/33172/comm
/proc/33172/comm

/proc/33172/cgroup
/sys/fs/cgroup/unified

bpf trace printk() Considered Harmful

® bpf trace printk() is like ftrace

® One log buffer shared across the whole system

bpf trace printk() Considered Harmful

® bpf trace printk() is like ftrace
® One log buffer shared across the whole system

® Messages from different tracers will be received by each other

bpf trace printk() Considered Harmful

® bpf trace printk() is like ftrace

One log buffer shared across the whole system
® Messages from different tracers will be received by each other

® eBPF programs get unloaded on owner process termination

There is a race condition between termination, kprobe hits, and kprobe detach/eBPF unload

bpf trace printk() Considered Harmful

® bpf trace printk() is like ftrace

® One log buffer shared across the whole system

® Messages from different tracers will be received by each other

® eBPF programs get unloaded on owner process termination

® There is a race condition between termination, kprobe hits, and kprobe detach/eBPF unload
® Messages stick around until read

® The next process to open the log will get existing undelivered messages

#include <asm/ptrace.h> // for struct pt_regs
#include <bcc/proto.h> // pulls in types.h
#include <linux/limits.h> // for PATH MAX

BPF_PERF_OUTPUT (output);

typedef struct notify {
uint64_t pid;
uint8_t data[PATH MAX];
} notify t;
BPF_PERCPU_ARRAY (notify array, notify t, 1);

int kprobe do sys open(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode_t mode) {
int i = 0;
notify t* n = notify_array.lookup(&i);
if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid tgid() >> 32);
bpf probe read str(&n->data[0], PATH MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify t));

return 0;

#include <asm/ptrace.h>
#include <bcc/proto.h>
#include <linux/limits.h>

BPF_PERF_OUTPUT (output); // creates a table for pushing custom events to userspace via ring buffer

typedef struct notify {
uint64_t pid;
uint8_t data[PATH MAX];
} notify t;
BPF_PERCPU_ARRAY (notify array, notify t, 1);

int kprobe do sys open(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode_t mode) {
int i = 0;
notify t* n = notify array.lookup(&i);
if (!n) return 0;

n->pid = (u32) (bpf_get current_pid_tgid() >> 32);
bpf probe read str(&n->data[0], PATH MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify t));

return 0;

#include <asm/ptrace.h>
#include <bcc/proto.h>
#include <linux/limits.h>

BPF_PERF_OUTPUT (output);

typedef struct notify {

uint64_t pid;

uint8_t data[PATH MAX]; // uint8 t to prevent ctypes from "optimizing" out copy of char[] in userspace
} notify t;
BPF_PERCPU_ARRAY(notify array, notify t, 1); // creates a per-cpu TLS bpf table for off-stack scratch space

// we need this b/c PATH MAX is 4096 and the bpf stack 512 bytes
int kprobe do sys open(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode_t mode) {

int i = 0;

notify t* n = notify array.lookup(&i);

if (!n) return 0;

n->pid = (u32) (bpf_get current_pid_tgid() >> 32);
bpf probe read str(&n->data[0], PATH MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify t));

return 0;

#include <asm/ptrace.h>
#include <bcc/proto.h>
#include <linux/limits.h>

BPF_PERF_OUTPUT (output);

typedef struct notify {
uint64_t pid;
uint8_t data[PATH MAX];
} notify t;
BPF_PERCPU_ARRAY (notify array, notify t, 1);

int kprobe do sys open(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode_t mode)
int i = 0; // key (array index) into our 1-element scratch-space table
notify t* n = notify array.lookup(&i); // try to get slot for key
if ('n) return 0; // if no slot found, bail

n->pid = (u32) (bpf_get current_pid_tgid() >> 32);
bpf probe read str(&n->data[0], PATH MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify t));

return 0;

#include <asm/ptrace.h>
#include <bcc/proto.h>
#include <linux/limits.h>

BPF_PERF_OUTPUT (output);

typedef struct notify {
uint64_t pid;
uint8_t data[PATH MAX];
} notify t;
BPF_PERCPU_ARRAY (notify array, notify t, 1);

int kprobe do sys open(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode_t mode) {
int i = 0;
notify t* n = notify array.lookup(&i);
if (!n) return 0;

n->pid = (u32) (bpf_get current_pid_tgid() >> 32); // get pid of calling process from bpf helper
bpf probe read str(&n->data[0], PATH MAX, pathname); // copy pathname into scratch space

output.perf_submit(ctx, n, sizeof(notify t));

return 0;

#include <asm/ptrace.h>
#include <bcc/proto.h>
#include <linux/limits.h>

BPF_PERF_OUTPUT (output);

typedef struct notify {
uint64_t pid;
uint8_t data[PATH MAX];
} notify t;
BPF_PERCPU_ARRAY (notify array, notify t, 1);

int kprobe do sys open(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode_t mode) {
int i = 0;
notify t* n = notify array.lookup(&i);
if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid tgid() >> 32);
bpf probe read str(&n->data[0], PATH MAX, pathname);

output.perf submit(ctx, n, sizeof(notify t)); // copy scratch space down to userspace code

return 0;

from _ future__ import absolute_import, division, print_function, unicode literals
import sys, ctypes

from bcc import BPF

text = "t e

class notify_ t(ctypes.Structure): # match layout of eBPF C's notify t struct
_fields = [("pid", ctypes.c uint64),
("data", ctypes.c_uint8+*4096),]

def handle_event(cpu, data, size):
try:
notify = ctypes.cast(data, ctypes.POINTER(notify t)).contents
data_s = ctypes.cast(notify.data, ctypes.c_char p).value
print("{}: {}".format(notify.pid, data s))
except KeyboardInterrupt:
sys.exit(0)

b = BPF(text=text)
b["output"].open_perf_buffer(handle_event)

while True:
try:
b.kprobe poll()
except KeyboardInterrupt:
sys.exit(0)

from _ future__ import absolute_import, division, print_function, unicode literals
import sys, ctypes

from bcc import BPF

text = "t

class notify t(ctypes.Structure):
fields = [("pid", ctypes.c_uint64),
("data", ctypes.c_uint8+*4096),]

def handle event(cpu, data, size): # handler called on receiving data from eBPF C ‘output.perf submit()"
try:
notify = ctypes.cast(data, ctypes.POINTER(notify t)).contents
data_s = ctypes.cast(notify.data, ctypes.c_char p).value
print("{}: {}".format(notify.pid, data_s))
except KeyboardInterrupt:
sys.exit(0)

b = BPF(text=text)
b["output"].open_perf buffer(handle event) # register handler to eBPF C 'BPF PERF OUTPUT(output); table

while True:
try:
b.kprobe poll()
except KeyboardInterrupt:
sys.exit(0)

from _ future__ import absolute_import, division, print_function, unicode literals
import sys, ctypes

from bcc import BPF

text = "t e

class notify t(ctypes.Structure):
_fields = [("pid", ctypes.c uint64),
("data", ctypes.c_uint8+*4096),]

def handle_event(cpu, data, size):
try:
notify = ctypes.cast(data, ctypes.POINTER(notify t)).contents # cast raw byte pointer to notify t
data_s = ctypes.cast(notify.data, ctypes.c_char p).value # cast buffer to NUL-terminated C string
print("{}: {}".format(notify.pid, data s))
except KeyboardInterrupt:
sys.exit(0)

b = BPF(text=text)
b["output"].open_perf_buffer(handle_event)

while True:
try:
b.kprobe poll()
except KeyboardInterrupt:
sys.exit(0)

from _ future__ import absolute_import, division, print_function, unicode literals
import sys, ctypes

from bcc import BPF

text = "t e

class notify t(ctypes.Structure):
_fields = [("pid", ctypes.c uint64),
("data", ctypes.c_uint8+*4096),]

def handle_event(cpu, data, size):
try:
notify = ctypes.cast(data, ctypes.POINTER(notify t)).contents
data_s = ctypes.cast(notify.data, ctypes.c_char p).value
print("{}: {}".format(notify.pid, data s))
except KeyboardInterrupt:
sys.exit(0)

b = BPF(text=text)
b["output"].open_perf_buffer(handle_event)

while True:
try:
b.kprobe poll() # poll for perf events from kprobes, call event handlers for events
except KeyboardInterrupt:
sys.exit(0)

So how does all of this actually work?

bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_PERF_EVENT_ARRAY, keyfsize=4, value_size=4, max_entries=128,

map_flags=0, inner _map_ fd=0, ...}, 72) =
bpf (BPF_MAP_CREATE, {map_ type=BPF_MAP_TYPE_ PERCPU ARRAY key 51ze 4, value size=4104, max_entries=1,
map_flags=0, 1nner_map_fd 0, ...}, 72) =

bpf (BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_KPROBE, insn_cnt=29, insns=0x7f04a0c697d0, license="GPL",
log_level=0, log _size=0, log buf=0, kern_version=266002, prog_ flags=0, ...}, 72) =

openat (AT _FDCWD, "/sys/kernel/debug/tracing/kprobe_events", O WRONLY|O APPEND) =

getpid() = 43676
write(6, "p:kprobes/p do_sys open bcc 4367"..., 45) =
close(6) =0

openat (AT_FDCWD, "/sys/kernel/debug/trac1ng/events/kprobes/p do_sys_open_bcc_43676/id", 0 RDONLY) =
read(6, "1982\n", 4096) =5
close(6) =0
perf_event_open({type=PERF_TYPE_TRACEPOINT, size=0 /* PERF_ATTR SIZE ??? */, config=1982, ...},
-1, 0, -1, PERF_FLAG FD CLOEXEC)
ioctl(6, PERF_EVENT IOC SET BPF, 0x5) =0
ioctl(6, PERF_EVENT IOC ENABLE, 0) =0

perf_event_open({type=PERF_TYPE _SOFTWARE, size=0, config=PERF7C0UNT75W78PF70UTPUT, T O
-1, 0, -1, PERF_FLAG_FD_CLOEXEC) =
ioctl(8, PERF_EVENT_IOC_ENABLE, 0) =0
bpf(BPFiMAP7UPDATE7ELEM {map_fd=3, key=0x7f049aafalal, value=0x7f04%9aafae20, flags=BPF_ANY}, 72) =
perf_event_open({type=PERF_TYPE_SOFTWARE, size=0, config=PERF_COUNT_SW_BPF_OUTPUT, ...},
-1, 1, -1, PERF_FLAG_FD_CLOEXEC) =
ioctl(9, PERF_EVENT_IOC_ENABLE, 0) =0
bpf (BPF_MAP_UPDATE_ELEM, {map_fd=3, key=0x7f049aafae20, value=0x7f049aafa®a0d, flags=BPF_ANY}, 72) =
poll([{fd=9, events=POLLIN}, {fd=8, events=POLLIN}], 2, -1) = 1 ([{fd=9, revents=POLLIN}])

write(1l, "13250: /proc/self/stat\n", 2313250: /proc/self/stat
) =23

#include <asm/ptrace.h>
#include <bcc/proto.h>
#include <linux/limits.h>

BPF_PERF_OUTPUT (output); // creates a table for pushing custom events to userspace via ring buffer

typedef struct notify {
uint64_t pid;
uint8_t data[PATH MAX];
} notify t;
BPF_PERCPU_ARRAY (notify array, notify t, 1);

int kprobe do sys open(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode_t mode) {
int i = 0;
notify t* n = notify array.lookup(&i);
if (!n) return 0;

n->pid = (u32) (bpf_get current_pid_tgid() >> 32);
bpf probe read str(&n->data[0], PATH MAX, pathname);

output.perf_submit(ctx, n, sizeof(notify t));

return 0;

// Table for pushing custom events to userspace via ring buffer
#define BPF_PERF_OUTPUT(name) \
struct _name## table t { \
int key; \
u32 leaf; \
/* map.perf submit(ctx, data, data size) */ \
int (*perf_submit) (void *, void *, u32); \
int (*perf_submit skb) (void *, u32, void *, u32); \
u32 max_entries; \
FFEAN
__attribute ((section("maps/perf output"))) \
struct _name## table t name = { .max_entries =0 }

Listing 2: bcc/src/cc/export/helpers.h

BCC — Behind the Curtain

® The previous struct/instance is fake

It is nothing more than fancy typing to please the first compiler pass

All operations on it get replaced through LLVM-based codegen

This is a common idiom in codegen-based APls

#include <asm/ptrace.h>
#include <bcc/proto.h>
#include <linux/limits.h>

BPF_PERF_OUTPUT (output);

typedef struct notify {
uint64_t pid;
uint8_t data[PATH MAX];
} notify t;
BPF_PERCPU_ARRAY (notify array, notify t, 1);

int kprobe do sys open(struct pt regs *ctx,
int dirfd, char _ user* pathname, int flags, mode_t mode) {
int i = 0;
notify t* n = notify array.lookup(&i);
if (!n) return 0;

n->pid = (u32)(bpf_get_current_pid tgid() >> 32);
bpf probe read str(&n->data[0], PATH MAX, pathname);

output.perf submit(ctx, n, sizeof(notify t)); // copy scratch space down to userspace code

return 0;

} else if (memb name == "perf submit") {
string name = Ref->getDecl()->getName();
string argd = rewriter_.getRewrittenText(expansionRange(Call->getArg(0)->getSourceRange()));
string args other = rewriter .getRewrittenText(expansionRange(SourceRange(GET BEGINLOC(Call->getArg(1l)),
GET_ENDLOC(Call->getArg(2)))));

txt = "bpf_perf_event output(" + arg® + ", bpf_pseudo_fd(1l, " + fd + ")";
txt += ", CUR CPU IDENTIFIER, " + args other + ")";

Listing 3: bcc/src/cc/frontends/clang/b_frontend action.cc

BCC — Behind the Curtain

® The bpf perf event output() eBPF helper when passed CUR_CPU_IDENTIFIER
(really BPF_F_CURRENT_CPU) will pull a kernel-internal struct perf_event* out of the
eBPF table (itself a BPF_MAP_TYPE PERF_EVENT_ ARRAY) using the current CPU as the index

® This works because the BPF_MAP_UPDATE_ ELEM bpf(2) syscalls set index 0 and 1 with
perf_event file descriptors

bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_PERF_EVENT_ARRAY, keyfsize=4, value_size=4, max_entries=128,

map_flags=0, inner _map_ fd=0, ...}, 72) =
bpf (BPF_MAP_CREATE, {map_ type=BPF_MAP_TYPE_ PERCPU ARRAY key 51ze 4, value size=4104, max_entries=1,
map_flags=0, 1nner_map_fd 0, ...}, 72) =

bpf (BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_KPROBE, insn_cnt=29, insns=0x7f04a0c697d0, license="GPL",
log_level=0, log _size=0, log buf=0, kern_version=266002, prog_ flags=0, ...}, 72) =

openat (AT_FDCWD, "/sys/kernel/debug/tracing/kprobe events", 0 WRONLY|O APPEND) =

getpid() = 43676
write(6, "p:kprobes/p do_sys open bcc 4367"..., 45) =
close(6) =0

openat (AT_FDCWD, "/sys/kernel/debug/trac1ng/events/kprobes/p do_sys _open_bcc_43676/id", 0 RDONLY) =
read(6, "1982\n", 4096) =5
close(6) =0
perf_event_open({type=PERF_TYPE_TRACEPOINT, size=0 /* PERF_ATTR SIZE ??? */, config=1982, ...},
-1, 0, -1, PERF_FLAG FD CLOEXEC)
ioctl(6, PERF_EVENT IOC SET BPF, 0x5) =0
ioctl(6, PERF_EVENT IOC ENABLE, 0) =0

perf_event_open({type=PERF_TYPE_SOFTWARE, size=0, config=PERF7COUNTiswiBPF70UTPUT, T O
-1, 0, -1, PERF_FLAG_FD_CLOEXEC) =
ioctl(8, PERF_EVENT_IOC_ENABLE, 0) =0
bpf (BPF_MAP_UPDATE_ELEM, {map fd=3, key=0x7f049aafafab, value=0x7f049aafae20, flags=BPF ANY}, 72) =
perf_event_open({type=PERF_TYPE_SOFTWARE, size=0, config=PERF_COUNT_SW_BPF_OUTPUT, ...},
-1, 1, -1, PERF_FLAG_FD_CLOEXEC) =
ioctl(9, PERF_EVENT_IOC_ENABLE, 0) =0
bpf (BPF_MAP_UPDATE_ELEM, {map_fd=3, key=0x7f049aafae20, value=0x7f049aafa0a0, flags=BPF_ANY}, 72) =
poll([{fd=9, events=POLLIN}, {fd=8, events=POLLIN}], 2, -1) = 1 ([{fd=9, revents=POLLIN}])

write(1l, "13250: /proc/self/stat\n", 2313250: /proc/self/stat
) =23

And now for something different...

eBPF Validator Hell

® To make eBPF “safe,” the Linux kernel validates all eBPF code before loading it
® eBPF code is not allowed to "loop” or jump backwards (to prevent infinite loops)

eBPF Validator Hell

® To make eBPF “safe,” the Linux kernel validates all eBPF code before loading it
® eBPF code is not allowed to "loop” or jump backwards (to prevent infinite loops)

® But even if your "code” doesn’t have loops, the validator may reject it

eBPF Validator Hell

® To make eBPF “safe,” the Linux kernel validates all eBPF code before loading it
® eBPF code is not allowed to "loop” or jump backwards (to prevent infinite loops)

® But even if your "code” doesn’t have loops, the validator may reject it

® Calls need to be static inline as jumping to a function and returning is considered a "loop”

eBPF Validator Hell

® To make eBPF “safe,” the Linux kernel validates all eBPF code before loading it

® eBPF code is not allowed to "loop” or jump backwards (to prevent infinite loops)

® But even if your "code” doesn’t have loops, the validator may reject it

® Calls need to be static inline as jumping to a function and returning is considered a "loop”
® Compiler optimizations are both a blessing and curse for eBPF code

® Unrolling loops under some circumstances and adding them in others

eBPF Validator Hell

® To make eBPF “safe,” the Linux kernel validates all eBPF code before loading it

® eBPF code is not allowed to "loop” or jump backwards (to prevent infinite loops)

® But even if your "code” doesn’t have loops, the validator may reject it

Calls need to be static inline as jumping to a function and returning is considered a "loop’
Compiler optimizations are both a blessing and curse for eBPF code
® Unrolling loops under some circumstances and adding them in others

® The validator also validates helper calls to ensure they are passed "safe” arguments

eBPF Validator Hell

® To make eBPF “safe,” the Linux kernel validates all eBPF code before loading it
® eBPF code is not allowed to "loop” or jump backwards (to prevent infinite loops)

® But even if your "code” doesn’t have loops, the validator may reject it

Calls need to be static inline as jumping to a function and returning is considered a "loop’
Compiler optimizations are both a blessing and curse for eBPF code

® Unrolling loops under some circumstances and adding them in others
® The validator also validates helper calls to ensure they are passed "safe” arguments

® This "logic” is often not thorough enough to properly determine value bounds

eBPF Validator Hell

® To make eBPF “safe,” the Linux kernel validates all eBPF code before loading it
® eBPF code is not allowed to "loop” or jump backwards (to prevent infinite loops)

® But even if your "code” doesn’t have loops, the validator may reject it
® Calls need to be static inline as jumping to a function and returning is considered a "loop”

® Compiler optimizations are both a blessing and curse for eBPF code
® Unrolling loops under some circumstances and adding them in others

® The validator also validates helper calls to ensure they are passed "safe” arguments
® This "logic” is often not thorough enough to properly determine value bounds

® Trying to make them obvious is hard as the optimizer will often optimize out "superfluous”
checks

eBPF Validator Hell

® To make eBPF “safe,” the Linux kernel validates all eBPF code before loading it
® eBPF code is not allowed to "loop” or jump backwards (to prevent infinite loops)

® But even if your "code” doesn’t have loops, the validator may reject it
® Calls need to be static inline as jumping to a function and returning is considered a "loop”

® Compiler optimizations are both a blessing and curse for eBPF code
® Unrolling loops under some circumstances and adding them in others

® The validator also validates helper calls to ensure they are passed "safe” arguments

® This "logic” is often not thorough enough to properly determine value bounds

® Trying to make them obvious is hard as the optimizer will often optimize out "superfluous”
checks

® Additionally, updating BCC (or the Linux kernel) may potentially result in the validator rejecting
once working eBPF C

Some validator errors are downright spooky

We have seen code be rejected or accepted
based on whether a function returned a bool or a size t (0 or 1)

We have seen code be rejected or accepted

based on whether a function returned a bool or a size t (0 or 1)
that was being stored in a uint8_t

Surviving eBPF Validator Hell — Correcting the Validator

® At one point, we got really mad at the validator rejecting correct code

® So we wrote a kernel module to neuter its checks

Surviving eBPF Validator Hell — Correcting the Validator

® At one point, we got really mad at the validator rejecting correct code
® So we wrote a kernel module to neuter its checks

® |t turned out that the validator is poorly written and tightly coupled to the interpreter

Surviving eBPF Validator Hell — Correcting the Validator

® At one point, we got really mad at the validator rejecting correct code

® So we wrote a kernel module to neuter its checks

It turned out that the validator is poorly written and tightly coupled to the interpreter

® You can't skip the verifier because they also tweak and configure the eBPF program

Surviving eBPF Validator Hell — Correcting the Validator

® At one point, we got really mad at the validator rejecting correct code

® So we wrote a kernel module to neuter its checks

It turned out that the validator is poorly written and tightly coupled to the interpreter

® You can't skip the verifier because they also tweak and configure the eBPF program

Instead, you need surgical hooks into it that skip certain checks and set fake "safe” bounds

Surviving eBPF Validator Hell — yolo-ebpf

® PoC kernel module with a custom function hooking implementation that disables a number of
eBPF validator checks

Caveats:
® x86_64-only
® |t probably doesn’t work with current kernel versions
® Unsafe eBPF will potentially crash your kernel

® We’'ll be making the code available anyway to prove a point

Please don’t use this code in production

Surviving eBPF Validator Hell — Tips and Tricks

® |nitialize your memory
® |f you put a struct on the stack and fill it in, you may not be able to perf submit it to userspace
® The validator doesn'’t like when you try to send uninitialized memory to userspace, including that
of padding
® Eliminate uninitialized padding:
® By carefully organizing your struct fields
By increasing/decreasing the size of struct fields
By adding padding fields (or unions) and initializing them
By clobbering it with 0s
With __ attribute ((__packed_))

Surviving eBPF Validator Hell — Tips and Tricks

® |nitialize your memory

® [oop elimination
® You will quickly find that you cann’t even ‘memset(3)‘ among other things
® Unroll all loops

#pragma unroll
for (size t i=0; i < sizeof(arr); i++) {
arr[i] = 0;

}

® |nline all calls

static inline void foo() {
// do stuff
}

Surviving eBPF Validator Hell — Tips and Tricks

® |nitialize your memory
® | oop elimination
® Reimplement kernel code in eBPF valid ways
® bcec tries to codegen dereferences of non-eBPF memory region pointers into
bpf probe read() calls
® |t often has problems with nested scopes and chained field accesses and fails to convert such
code
® Aot of static inline kernel functions run afoul of the second
® Due to this, they must often be re-implemented with manual bpf probe read() calls

Surviving eBPF Validator Hell — Tips and Tricks

® |nitialize your memory
® | oop elimination
® Reimplement kernel code in eBPF valid ways
® Ratcheting
® |f you need to implement a ring buffer,
you will need logic to wrap the index
® The validator does not like explicit cases that do this wrap,
even if also checked in default case
® Do itonly in the default case

u32 pos = UINT32 MAX;

int key = 0;

sync = sync_buf.lookup(&key) ;
if (!sync) return 0;

pos = 0;
switch (sync->next) {
case 0: {
pos = 0;
sync->next
break;
}i
case 1: {
pos = 1;
sync->next = 2;
break;
};
default: {
pos = 0;
sync->next = 1;

[}
-

}
}

Surviving eBPF Validator Hell — Tips and Tricks

® |nitialize your memory
® | oop elimination
® Reimplement kernel code in eBPF valid ways

® Ratcheting

Dynamic structure parsing
® | ots of kernel data structures are dynamically sized and structured without using C arrays
® Best bet is to do a lot of loop unrolling of inlined steps to extract and process data
® Most important is to detect remaining data that could not be processed due to eBPF limitations

Surviving eBPF Validator Hell — Tips and Tricks

® |nitialize your memory

® | oop elimination

® Reimplement kernel code in eBPF valid ways
® Ratcheting

® Dynamic structure parsing

® Static data structures and algorithms

® Not really feasible to perform nested comparison operations in eBPF code (e.g. "is value in set?”)
® Sometimes this can be worked around by using eBPF map operations to implement comparisons
® Best bet is to statically codegen the C for complete structure walk for algorithm

Surviving eBPF Validator Hell — Tips and Tricks

® |nitialize your memory
® | oop elimination static inline
. . . void copy into _entry buffer(data_t* entry,
° _into_ | _
Reimplement kernel code in eBPF valid ways size t const len,
® Ratcheting char* base,
° . . u8 volatile* trunc) {
Dyn.amlc structure parsing . int 1= (int)len:
® Static data structures and algorithms if (1 <0) {
® Dynamic length byte copying 1=6;
® eBPF validator often fails to }
. . if (1 >= BUFFER_SIZE) {
ascertain variable bounds *trunc = 1;
® One pain point is attempting to use an }
externally sourced length value if (1 >= BUFFER_SIZE) {
: // the *- 1° is no longer needed with
with bpf_pr r
t ‘b.p _probe_read() L // current bcc on recent kernels
® Explicit checks often get optimized out 1 = BUFFER SIZE - 1;
® We've found the following code works, }
seemingly because using static inline bpf_probe_read(entry->buffer, 1, base);

functions prevents certain compiler assumptions ¥

Surviving eBPF Validator Hell — Tips and Tricks

Initialize your memory

Loop elimination

Reimplement kernel code in eBPF valid ways

Ratcheting

Dynamic structure parsing

Static data structures and algorithms

Dynamic length byte copying

Enable debug output and know why your code works when it shouldn’t
® bce can dump out eBPF bytecode annotated with source lines

® Reading through it when errors occur (or not) can be very helpful

® Often, code is not itself eBPF friendly, but optimized into a compliant form
[]

[]

But adding new code may break compiler assertions needed to optimize
So a small change can cause cascading changes that anger the validator

Good luck!

Defensive eBPF?

® Can eBPF be used for defense?

Defensive eBPF?

® Can eBPF be used for defense?
® Why not?

® eBPF is fast, supposedly 10x faster than auditd
® We can improve the state of auditing the entire system using just eBPF

Defensive eBPF?

® Can eBPF be used for defense?

® Why not?
® eBPF is fast, supposedly 10x faster than auditd
® We can improve the state of auditing the entire system using just eBPF

® What could go wrong? ;)

Defensive eBPF?

® Can eBPF be used for defense?
® Why not?
® eBPF is fast, supposedly 10x faster than auditd
® \We can improve the state of auditing the entire system using just eBPF

What could go wrong? ;)

® | et’s give this a try

Defensive eBPF?

® \What does security monitoring software do?
® Watches everything

program executions

file accesses

network traffic
administrative operations

Defensive eBPF?

® \What does security monitoring software do?
® Watches everything

program executions

file accesses

® network traffic

® administrative operations

® eBPF kprobes can do all of these things

Defensive eBPF?

Why would eBPF be good for this?

® Tracing eBPF programs can see all the things

They can hook into any kernel function

Observe all user and kernel space memory

And much more

Defensive eBPF? — Loop-Free Security Monitoring

® | et's implement some trivial security monitoring tasks using eBPF
® To begin, let's watch for file executions from nonstandard directories

® For simplicity, we’ll just hook the execve (2) syscall
® We'll also ignore mmap (2) (used for shared libraries)

Defensive eBPF? — Loop-Free Security Monitoring

® | et's implement some trivial security monitoring tasks using eBPF
® To begin, let's watch for file executions from nonstandard directories

® For simplicity, we’ll just hook the execve (2) syscall
® We'll also ignore mmap (2) (used for shared libraries)

from bcc import BPF

program = """

int kprobe sys execve(struct pt regs *ctx){
bpf trace printk("execve called.\\n");
return 0;

}

b = BPF(text=program)
b.trace print()

Defensive eBPF? — An attempt at executable whitelisting

Let’'s compare the supplied file path against standard directories

Because of all the issues with eBPF’s limitations, we will just process a static number of bytes

® For example, we will start by comparing the first four bytes of the path

® compare against /opt, /bin, /sbi, /usr
® |f it starts with /usr we’'ll continue checking the path

® |t could be /usr/bin, /usr/sbin, /usr/local/sbin, /usr/local/bin

® We could check the path like this to only do processing as we need to

In the following example, we’re only checking against /bin to keep it super simple

from bcc import BPF

prog = """

#include <uapi/linux/ptrace.h>

#include <linux/sched.h>

#include <linux/fs.h>

int kprobe sys execve(struct pt regs *ctx, const char
char bin[] = "/bin";
#pragma unroll
for (int i = 0; 1 < 4; i++)

if(bin[i] != filename[i]){
bpf trace printk("exec outside /bin\\n");
return 0;
}
return 0;

}

b = BPF(text=prog)
b.trace print()

__user *filename){

Defensive eBPF? — An attempt at executable whitelisting

® Can we detect unusual execve(2) syscalls from a web application?

® |et's imagine we have a simple web app

® A wrapper around ping
® |t takes in an IP address from user input and runs ping on it

® What could go wrong? ;)

® We want to know if it's executing anything other than the ping binary
® For simplicity, it does not fork(2) before execve(2) as the fork-tracking logic is a bit

complicated

#include <uapi/linux/ptrace.h>
int kprobe sys execve(struct pt regs *ctx, const char _ user *filename){
size_t pid = (u32)(bpf get current pid tgid() >> 32);
#ifdef PID
if(pid '= PID)
return 0;
#endif
char tmp[400];
int length = bpf probe read str(&tmp[0], 400, filename);
char ping[] = "/bin/ping";
if(length != 8){
bpf trace printk("exec of %s\\n", filename);
return 0;
}
#pragma unroll
for (int i = 0; i < 8; i++)
if(ping[i] !'= filename[i]){
bpf_trace_printk("exec of %s\\n", filename);
return 0;
}

return 0;

Defensive eBPF? — Loop-Free Security Monitoring

® \We are now monitoring file executions
® Next we’ll watch for file opens from a specific directory
® This time we’'ll hook the open(2) syscall

Defensive eBPF? — Loop-Free Security Monitoring

® \We are now monitoring file executions
® Next we’ll watch for file opens from a specific directory
® This time we’'ll hook the open(2) syscall

from bcc import BPF

program = """

int kprobe do sys open(struct pt regs *ctx){
bpf trace printk("sys open called.\\n");
return 0;

}

b = BPF(text=program)

b.trace print()

Defensive eBPF? — An attempt at file monitoring

® How about we try to detect when a process open(2)s afilein /root ?
® |et's compare the file path prefix to /root
® We'll use the filename parameter of open(2)
® Again, we use an unrolled loop to check the first several (5) bytes

from bcc import BPF

prog = """

#include <uapi/linux/ptrace.h>

int kprobe do sys open(struct pt regs *ctx, int dfd, const char user *filename){
char root[] = "/root";
#pragma unroll
for(int i = 0; i < 5; i++)

if(root[i] !'= filename[i])
return 0;
bpf trace printk("attempted access: %s\\n", filename);
return 0;

}

b = BPF(text=prog)
b.trace print()

We have a confession to make

Defensive eBPF — Security-Free Security Monitoring

® All of the previous examples are insecure

Defensive eBPF — Security-Free Security Monitoring

® All of the previous examples are dangerously insecure

eBPF Gotchas

® Just because eBPF cannot crash the kernel does not mean that it is safe

® |ts limitations in fact make it harder to write secure eBPF code

eBPF Gotchas — Race Conditions

® Time-of-Check-to-Time-of-Use (TOCTTOU)
® A common vulnerability in kernel code and anything using kprobes
® Exacerbated by eBPF limitations

eBPF Gotchas — Race Conditions

® Time-of-Check-to-Time-of-Use (TOCTTOU)
® A common vulnerability in kernel code and anything using kprobes
® Exacerbated by eBPF limitations

® |f you kprobe a syscall
® User-supplied data you process may change by the time the kernel copies it to do the syscall

eBPF Gotchas — Race Conditions

® |t's relatively easy to test for
Start with a two-thread program

® First thread repeatedly copies two different filepaths into one char array
® Second thread repeatedly calls open(2) on that char array

We then kprobe the open(2) syscall and the getname_flags() internal kernel function

Then compare the two values obtained from each kprobe

[V < R R R O B OB R O R R < R OB B O OB R

.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418
.out-5418

[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]
[001]

O 0O 0O O O O 0 0 0 0 0 o Qo 0 a Q

4078.
4078.
4084.
4084.
4084.
4084.
4084.
4084.
4084.
4084.
4084.
4084.
4084.
4084.
4088.
4088.
4088.

020804
020805:
021083:
021088:
021089:
021089:
021090:
021091:
021091:
021092:
021093:
021093:
021094:
021095:
021279:
021284:
021285:

0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:
0x00000001:

do_sys open: /tmp/rupergood
getname flags: /tmp/realrgood
NOMATCH

do_sys open: /tmp/supelybad
getname flags: /tmp/reaerybad
NOMATCH

do_sys open: /tmp/supelybad
getname flags: /tmp/reaerybad
NOMATCH

do_sys open: /tmp/supelybad
getname flags: /tmp/reaerybad
NOMATCH

do_sys open: /tmp/supelybad
getname_flags: /tmp/reaerybad
NOMATCH

do_sys open: /tmp/supergood
getname_flags: /tmp/reallgood

eBPF Gotchas — Race Conditions

® How do we avoid this problem?

eBPF Gotchas — Race Conditions

® How do we avoid this problem?

Hook internal kernel functions rather than syscalls

Preferably a spot where desired value is already copied into kernel memory

® e.g. sys_execvevs. do_execveat common.isra.34

Alternatively, you use an LSM hook function (e.g. security bprm_set creds)

eBPF Gotchas — File Path Mishandling

® File paths, much like URIs, are slightly complicated
® |f you don’t carefully validate them, you might end up in trouble

® |et's rewind to our IDS/endpoint security example

® \What didn’t we take into account?

eBPF Gotchas — File Path Mishandling

® \We didn’t take into account how filenames work on Unix
® For example, what happens if the file isn’'t accessed via the absolute path?

eBPF Gotchas — File Path Mishandling

® \We didn’t take into account how filenames work on Unix
® For example, what happens if the file isn’'t accessed via the absolute path?
® Anopen(2) from inside the directory?

eBPF Gotchas — File Path Mishandling

® \We didn’t take into account how filenames work on Unix
® For example, what happens if the file isn’'t accessed via the absolute path?

® Anopen(2) from inside the directory?
® Anopen(2)on../../../root/<name>?

eBPF Gotchas — File Path Mishandling

® \We didn’t take into account how filenames work on Unix
® For example, what happens if the file isn’'t accessed via the absolute path?

® Anopen(2) from inside the directory?
® Anopen(2)on../../../root/<name>?
® Anexecve(2) on /bin/../tmp/fo0?

eBPF Gotchas — File Path Mishandling

® \We didn’t take into account how filenames work on Unix

® For example, what happens if the file isn’'t accessed via the absolute path?
® Anopen(2) from inside the directory?

Anopen(2)on../../../root/<name>?

An execve(2) on /bin/../tmp/fo0?

An open(2) on a symlink in /tmp?

® How can we fix those issues?

eBPF Gotchas — File Path Mishandling

® Things we could try:

® Compare value against a known set
® Attempt to canonicalize the path

eBPF Gotchas — File Path Mishandling

® Things we could try:
® Compare value against a known set
® Attempt to canonicalize the path
® Linux'sinternal struct file and struct path are complicated to parse from eBPF
® This adds to the amount of work eBPF has to do
® |t may not be even be possible to fully follow the object to recreate the path

eBPF Gotchas — File Path Mishandling

® Things we could try:
® Compare value against a known set
® Attempt to canonicalize the path
® Linux'sinternal struct file and struct path are complicated to parse from eBPF
® This adds to the amount of work eBPF has to do
® |t may not be even be possible to fully follow the object to recreate the path
® Try to find an internal function that has access to an absolute path?

® For example, the security bprm_set creds LSM hook

eBPF Gotchas — File Path Mishandling

® Things we could try:

® Compare value against a known set

® Attempt to canonicalize the path
® Linux'sinternal struct file and struct path are complicated to parse from eBPF
® This adds to the amount of work eBPF has to do
® |t may not be even be possible to fully follow the object to recreate the path

® Try to find an internal function that has access to an absolute path?
® For example, the security bprm_set creds LSM hook

This won’t work
The path string it receives is the same one from the user (i.e. not canonical, nor absolute)

We would still need to parse the structs

eBPF Gotchas — Parsing Externally-Supplied Binary Data

® bce has example code to use eBPF to do network monitoring

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

eBPF Gotchas — Parsing Externally-Supplied Binary Data

® bce has example code to use eBPF to do network monitoring
® We found that it didn’t properly calculate IP header offsets
® Specifically, it didn’t account for the fact that TCP options are variable-length

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

eBPF Gotchas — Parsing Externally-Supplied Binary Data

® bce has example code to use eBPF to do network monitoring
® We found that it didn’t properly calculate IP header offsets
® Specifically, it didn’t account for the fact that TCP options are variable-length

® |t was possible to spoof a TCP header in the options and bypass the checks it performed

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

eBPF Gotchas — Parsing Externally-Supplied Binary Data

® bce has example code to use eBPF to do network monitoring

We found that it didn’t properly calculate IP header offsets
® Specifically, it didn’t account for the fact that TCP options are variable-length

® |t was possible to spoof a TCP header in the options and bypass the checks it performed

® So we sent them a PoC

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

eBPF Gotchas — Parsing Externally-Supplied Binary Data

® bce has example code to use eBPF to do network monitoring

We found that it didn’t properly calculate IP header offsets
® Specifically, it didn’t account for the fact that TCP options are variable-length

® |t was possible to spoof a TCP header in the options and bypass the checks it performed

So we sent them a PoC

and a patch :)
® https://github.com/iovisor/bcc/commit/3d9b687

https://github.com/iovisor/bcc/commit/3d9b687dce246a54686bc385e28d190b6d640af0

diff --git a/examples/networking/http_filter/http-parse-complete.c \

b/examples/networking/http_filter/http-parse-complete.c PYZbs

index 61bb0f6a3..dff16b940 100644

--- a/examples/networking/http filter/http-parse-complete.c
+++ b/examples/networking/http filter/http-parse-complete.c
@@ -56,6 +56,19 @@ int http_filter(struct _ sk_buff *skb) {

Tt I T T Tk T T T T

struct Key key;
struct Leaf zero = {0};

//calculate ip header length

//value to multiply * 4

//e.g. ip->hlen = 5 ; IP Header Length = 5 x 4 byte = 20 byte
ip_header_length = ip->hlen << 2; //SHL 2 -> *4 multiply

//check ip header length against minimum

if (ip_header length < sizeof(*ip)) {
goto DROP;

//shift cursor forward for dynamic ip header size
void * = cursor_advance(cursor, (ip header length-sizeof(*ip)));
struct tcp t *tcp = cursor_advance(cursor, sizeof(*tcp));

//retrieve ip src/dest and port src/dest of current packet

eBPF Gotchas — Assuming Userspace Isn’t Evil

® |n general, values obtained from untrusted places (i.e. userspace) require strict validation

eBPF Gotchas — Assuming Userspace Isn’t Evil

® |n general, values obtained from untrusted places (i.e. userspace) require strict validation

® eBPF does not have a copy_from_user() helper function

eBPF Gotchas — Assuming Userspace Isn’t Evil

® |n general, values obtained from untrusted places (i.e. userspace) require strict validation

® eBPF does not have a copy_from_user() helper function
® |f you blindly run bpf_probe read() on a user-supplied pointer
® you may be tricked into reading kernel memory

eBPF Gotchas — Assuming Userspace Isn’t Evil

® |n general, values obtained from untrusted places (i.e. userspace) require strict validation
® eBPF does not have a copy_from_user() helper function
® |f you blindly run bpf_probe read() on a user-supplied pointer
® you may be tricked into reading kernel memory
® |nstead, you have to manually verify pointers

® This can be done by comparing against ((struct
task struct*)bpf get current task())->mm->highest vm end

® However, this will need to be broken up or the eBPF validator will reject it

Defensive eBPF?

® Can eBPF be used for defense?

® Why not?

Defensive eBPF?

® Can eBPF be used for defense?

® \Why not? directly
® eBPF’s limitations make it hard to use securely in general, let alone as a security mechanism

Defensive eBPF?

® Can eBPF be used for defense?

Why not? directly
eBPF'’s limitations make it hard to use securely in general, let alone as a security mechanism

Instead, eBPF is much more useful for tracking data as it flows through the system

unixdump

tcpdump for Unix domain sockets
® Originally created to reverse engineer ptrace(2)ing processes (e.g. Frida)

® Demonstrates our successful fight against eBPF validator
® Features:
® Captures full streams
Captures ancillary data messages (e.g. passed file descriptors)

Filter/exclude by PID or socket path
® Full support for abstract namespace, including binary "paths”

Link at end of slides :)

unixdump

Retrieves msghdr buffer contents and metadata from unix_stream sendmsg and
unix_dgram_sendmsg

® Uses a custom ring buffer to share data with userspace while limiting byte copies
® Uses python to generate C code dynamically

® CLI arguments to tweak C array sizes

unixdump — Code Generation

® Python is used to generate eBPF C code
® This allows us to tweak the eBPF program at "runtime” using defines and ifdefs

® Ring buffer size, pids to exclude, sun_path to filter on
® Increases performance by reducing the amount of events receiving heavier processing

® This also helps to get around loop restriction
® Can’t loop through an array of PIDs so we codegen a static C BST lookup

// generated by $ unixdump -x 1 2 3
static inline bool is excluded pid(u32 needle) {
if (needle == 2) {
return true;
}
if (needle < 2) {
if (needle == 1) {
return true;
}
return false;
} else {
if (needle == 3) {
return true;
}

return false;

unixdump — Code Generation

® \We use another percpu array of size 1 to store the current ring buffer slot

® \We can'’t loop, so we generate a ratcheting switch statement

def gen_ratchet_switch(sz):

preamble = '''switch (sync->next)

entry template = '''

case {}: {{
nxt = {};
sync->next = {};
break;
I3
end = "'
default: {
nxt = 0;
sync->next = 1;
}
}
out = ""

out += preamble
for i in range(sz):
out += entry template.format(i,
out += end
return out

i, i+1)

unixdump — Event Notification

® The ring buffer is an eBPF percpu array mapped to userspace

® |t holds large structs we fill with stream content

® The structs also have an in-use status field

® \We check the in-use flag is cleared in eBPF, set it, and notify userspace

® Userspace checks that the flag is set, processes the data, and clears the flag

® This prevents race conditions due to async updating of kernel-userspace mapped pages

If eBPF isn’t that good at defense, what else can we use it for?

Let’s talk about offense

Offensive eBPF

® | et's assume someone bad gets some privileges on a modern Linux system
® E.g. CAP_SYS ADMIN in a container (it's more common than you might think)

® What could they do with eBPF?

Offensive eBPF

® | et's assume someone bad gets some privileges on a modern Linux system
® E.g. CAP_SYS ADMIN in a container (it's more common than you might think)

® What could they do with eBPF?

® A lot actually

Offensive eBPF

® | et's assume someone bad gets some privileges on a modern Linux system
® E.g. CAP_SYS ADMIN in a container (it's more common than you might think)

What could they do with eBPF?
® A lot actually

® Tracing eBPF programs (kprobes, uprobes, tracepoints, raw tracepoints) can see everything

Offensive eBPF

® | et's assume someone bad gets some privileges on a modern Linux system
® E.g. CAP_SYS ADMIN in a container (it's more common than you might think)

® What could they do with eBPF?
® A lot actually
® Tracing eBPF programs (kprobes, uprobes, tracepoints, raw tracepoints) can see everything

® They can also write userspace memory

Offensive eBPF

® | et's assume someone bad gets some privileges on a modern Linux system
® E.g. CAP_SYS ADMIN in a container (it's more common than you might think)

What could they do with eBPF?

® A lot actually
® Tracing eBPF programs (kprobes, uprobes, tracepoints, raw tracepoints) can see everything

THEY CAN ALSO WRITE USERSPACE MEMORY

Offensive eBPF — The Rootkit Principle

® bpf probe write user()
® |Intended for use "to debug, divert, and manipulate execution of semi-cooperative processes”
® Enables writing to writable userspace memory
® Text
® Stack
® Heap
® Static data

® |s there anything useful in those memory regions?

Offensive eBPF — The Rootkit Principle

® bpf probe write user()
® |Intended for use "to debug, divert, and manipulate execution of semi-cooperative processes”
® Enables writing to writable userspace memory
° Text
® Stack
® Heap
® Static data
® |s there anything useful in those memory regions?

® Buffers for reading/writing data through syscalls

Offensive eBPF — The Rootkit Principle

® bpf probe write user()
® |Intended for use "to debug, divert, and manipulate execution of semi-cooperative processes”
® Enables writing to writable userspace memory
® Text
® Stack
® Heap
® Static data

® |s there anything useful in those memory regions?

Buffers for reading/writing data through syscalls
® What if we intercepted read(2)s on a sensitive file descriptor

Offensive eBPF — The Rootkit Principle

® bpf probe write user()
® |Intended for use "to debug, divert, and manipulate execution of semi-cooperative processes”
® Enables writing to writable userspace memory
® Text
® Stack
® Heap
® Static data

® |s there anything useful in those memory regions?

Buffers for reading/writing data through syscalls
® What if we intercepted read(2)s on a sensitive file descriptor
® That is used by a privileged process outside of the container?

Spoofing cron jobs with Conjob

® Cron auto-pwner
® Hooks all *stat(2) syscalls

® |fstat(2)-ing /etc/crontab, triggers kretprobe logic
® |n kretprobe, modifies the kernel-written struct stat to update the last modified time
® This triggers cron to reload the file

® Hooks openat(2) and close(2)

® |f openat(2)-ing /etc/crontab, triggers kretprobe logic
® |nopenat(2) kretprobe, saves the file descriptor returned to userspace
® In close(2) kprobe, clears the mapping if the /etc/crontab fd is closed

® Hooks read(2)

® |f read(2)-ing from a known /etc/crontab fd, triggers kretprobe logic
® |n kretprobe, modifies the kernel-written buffer to inject root commads at the beginning of the "file”

Demo

Conjob — Fun Facts

® Uses percpu maps to have kprobes and associated kretprobes communicate with each other
® Uses eBPF hash maps to have different pairs of k(ret)probes share fds with each other

® Uses the bpf ktime get ns() helperto keep /etc/crontab "recently updated”

What else can we do with eBPF?

Go for broke

Offensive eBPF — ROP 'til You Drop

® |f you'll recall, we can write to the stack

Offensive eBPF — ROP 'til You Drop

® |f you'll recall, we can write to the stack

® The stack has return addresses

Offensive eBPF — ROP 'til You Drop

® |f you'll recall, we can write to the stack
® The stack has return addresses

® \We can also read the stack and all of userspace memory

Offensive eBPF — ROP 'til You Drop

® |f you'll recall, we can write to the stack

The stack has return addresses
® \We can also read the stack and all of userspace memory

® \We can scan for the text section and shared libraries

glibcpwn — The fastest way to a man’s heart is through his init daemon

® Systemd auto-pwner

® Scans PID 1 memory for libc.so

® Backs up stack content at the return address for libc syscall stub
® |njects a ROP payload targeting 1ibc. so into the stack

® ROP payload calls glibc-internal dlopen(3) wrapper

® | oads malicious shared library into PID 1

® Completely cleans up after itself as if nothing happened

Demo

glibcpwn — Implementation Details Pt. 1

1. Hooks timerfd settime(2), a syscall systemd reliably calls once every minute
2. Scans forward from the stack-based struct itimerspec passed to the kernel

3. Looks for return address from timerfd settime(2) stub function

@ Follows each possible return address
@® Scans back for and parses jmp and call instructions
® Applies relative offsets and scans for syscall stub or PLT stub

® [f the latter, parses the jmp to get function start
4. Calculates offset to start of Libc.so

5. Returns stack return address and address of _ 1ibc_start _main to userland tracer code

glibcpwn — Implementation Details Pt. 2

N =

w

. Hooks timerfd settime(2) and close(2)
. In kretprobe for timerfd settime(2)

© Copies stack for safekeeping
@® Writes a ROP chain into return address
Kernel returns to userspace
timerfd settime(2) returns into ROP chain
@ Sets up rdi, rsi, rdx, rcx
@ Returnsinto libc_dlopen_mode to load shared library
® Setsraxto 3 (close(2))
@ Sets rdi to a magic negative value
@ Returns into raw syscall gadget
close(2) kprobe hit
@ Checks if fd matches magic value, writes most of original stack back
@® Does not write over remaining gadgets in original chain
@® Writes a new ROP chain past the end of where the stack originally was
Kernel returns to userspace

Last gadget shifts rsp to newly written ROP chain

glibcpwn — Implementation Details Pt. 3

1. New ROP chain fires

@ Writes back original stack values over the last original gadget
@® xor rax, rax to mark success for original timerfd settime(2) syscall
® Returns back to next instruction after syscall in timerfd settime(2) stub

2. Process execution continues as normal

glibcpwn — Fun Facts

® glibc is fairly stable, even between different versions on different distros
® All gadgets have identical or nigh-identical equivalents across the board

What else can we do with eBPF?

Use it as intended

eBPF Rootkits — Omniscience and Omnipotence

® Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel

eBPF Rootkits — Omniscience and Omnipotence

® Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel
® For example, it can prevent processes from:

eBPF Rootkits — Omniscience and Omnipotence

® Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel
® For example, it can prevent processes from:
® Listing running eBPF programs and kprobes

eBPF Rootkits — Omniscience and Omnipotence

® Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel
® For example, it can prevent processes from:

® Listing running eBPF programs and kprobes
® Creating eBPF kprobes

eBPF Rootkits — Omniscience and Omnipotence

® Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel
® For example, it can prevent processes from:

® Listing running eBPF programs and kprobes
® Creating eBPF kprobes
® Loading kernel modules

eBPF Rootkits — Omniscience and Omnipotence

® Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel
® For example, it can prevent processes from:

® Listing running eBPF programs and kprobes
Creating eBPF kprobes

Loading kernel modules
Phoning home about a detected compromise

eBPF Rootkits — Omniscience and Omnipotence

® Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel
® For example, it can prevent processes from:

® Listing running eBPF programs and kprobes
Creating eBPF kprobes

Loading kernel modules
Phoning home about a detected compromise

® This is important because using bpf_probe write user() causes a dmesg notification
® The only way to escape is to have read dmesg first and already had memory-mapped direct packet
1/0 configured to send an SOS without using a syscall

eBPF Rootkits — Omniscience and Omnipotence

® Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel
® For example, it can prevent processes from:

® Listing running eBPF programs and kprobes
Creating eBPF kprobes

Loading kernel modules
Phoning home about a detected compromise

® This is important because using bpf_probe write user() causes a dmesg notification

® The only way to escape is to have read dmesg first and already had memory-mapped direct packet
1/0 configured to send an SOS without using a syscall

® Even then, it's probably possible to use non-writing (k|u)probes to burn time until it can kill the process

eBPF Rootkits — Omniscience and Omnipotence

® Once eBPF is running in a kprobe, it can prevent processes from interacting with the kernel
® For example, it can prevent processes from:
® Listing running eBPF programs and kprobes
Creating eBPF kprobes
Loading kernel modules

Phoning home about a detected compromise
L]

This is important because using bpf _probe _write user() causes a dmesg notification

The only way to escape is to have read dmesg first and already had memory-mapped direct packet
1/0 configured to send an SOS without using a syscall

® Even then, it's probably possible to use non-writing (k|u)probes to burn time until it can kill the process
Also, bpf_override return() is supposed to allow eBPF kprobes to force a syscall to bail,

but it didn’t work for us when we tried it...

eBPF Rootkits — Nigh-Omnipresence

® The one downside of eBPF is that it needs to be tied to a running process to stay alive

eBPF Rootkits — Nigh-Omnipresence

® The one downside of eBPF is that it needs to be tied to a running process to stay alive

® \What if we could make our eBPF kprobes functionally immortal?

eBPF Rootkits — Anchor Pivoting

® Once you take over a process like PID 1, you can run rootkit eBPF kprobes from PID 1 itself

eBPF Rootkits — Anchor Pivoting

® Once you take over a process like PID 1, you can run rootkit eBPF kprobes from PID 1 itself

® This means they will stay alive until the system shuts down

eBPF Rootkits — Anchor Pivoting

® Once you take over a process like PID 1, you can run rootkit eBPF kprobes from PID 1 itself
® This means they will stay alive until the system shuts down

® And vice-versa if PID 1 crashes, so to does the system

eBPF Rootkits — Anchor Pivoting

® Once you take over a process like PID 1, you can run rootkit eBPF kprobes from PID 1 itself

® This means they will stay alive until the system shuts down

And vice-versa if PID 1 crashes, so to does the system

Which is great for us, because everyone will think systemd is being unstable as usual

Conclusion

® eBPF is useful for everyone

Conclusion

® eBPF is useful for everyone

® Except people trying to build IDS on top of it

Conclusion

® eBPF is useful for everyone
® Except people trying to build IDS on top of it

® |t needs to get much better at supporting that use case, and it simply isn’t there right now

Conclusion — Pleas to eBPF Kernel Devs

® Please add more helper functions:
® copy from user()
® To aid in reading tricky kernel data structures
® Like files/paths
® Direct string/memory comparison operations
® Also, memset(3)

Greetz — Thanks for the code and the blogs!

The BCC developers

Julia Evans

Brendan Gregg

Jessie Frazelle

You can’t hide from the future.

Questions?
Pull Requests?

https://github.com/nccgroup/ebpf

jeff.dileo@nccgroup.com andy.olsen@nccgroup.com
@chaosdatumz @@lsen

https://github.com/nccgroup/ebpf

Kernel Tracing With eBPF

Unlocking God Mode on Linux

Jeff Dileo Andy Olsen
@chaosdatumz @QOlsen_

35C3

nccgroup®

	About us
	eBPF
	eBPF
	Gotchas

