What could possibly go wrong with
<insert x86 instruction here>?

Clémentine Maurice, Moritz Lipp

December 2016—33rd Chaos Communication Congress

Who we are

- Clémentine Maurice
- PhD in computer science, Postdoc @ Graz University Of Technology
- ¥ @BloodyTangerine

- % clementine.maurice@iaik.tugraz.at

https://twitter.com/BloodyTangerine
mailto:clementine.maurice@iaik.tugraz.at

Who we are

- Moritz Lipp
- PhD student @ Graz University Of Technology
- ¥ @mlgxyz

- & moritz.lipp@iaik.tugraz.at

https://twitter.com/mlqxyz
mailto:moritz.lipp@iaik.tugraz.at

Introduction

- title says this is a talk about x86 instructions but...

Introduction

- title says this is a talk about x86 instructions but...
- ... this is not a talk about software

Introduction

- title says this is a talk about x86 instructions but...
- ... this is not a talk about software

- assuming “safe” software

Introduction

- title says this is a talk about x86 instructions but...
- .. this is not a talk about software
- assuming “safe” software

- does not mean safe execution

Introduction

- title says this is a talk about x86 instructions but...
- ... thisis not a talk about software

- assuming “safe” software

- does not mean safe execution

- information leaks because of the underlying hardware

Introduction

- title says this is a talk about x86 instructions but...

- ... thisis not a talk about software

- assuming “safe” software

- does not mean safe execution

- information leaks because of the underlying hardware

— cache attacks without memory accesses and bypassing kernel ASLR

Introduction

- title says this is a talk about x86 instructions but...
- ... thisis not a talk about software
- assuming “safe” software
- does not mean safe execution
- information leaks because of the underlying hardware
— cache attacks without memory accesses and bypassing kernel ASLR

— cache attacks can also be mounted on ARM, not solely on x86

- Background

- mov — The beginning of cache attacks

- cLflush — Cache attacks without memory accesses
- prefetch — Lost in translation

- Bonus track — Even more instructions, even more attacks

Introduction

Caches on Intel CPUs

core0 corel core?2 core3
| LI1 | I_I1 | I_I1 | LI1 | - 11 and L2 are private
Dl

LLC LLC LLC LLC
slice 0 slice slice2 slice3

Caches on Intel CPUs

core0 corel core?2 core3
| LI1 | I_I1 | I_I1 | LI1 | - 11 and L2 are private
[e [2 |[2 |J[&] ring - last-level cache

LLC LLC LLC LLC
slice 0 slice slice2 slice3

Caches on Intel CPUs

core0 corel core?2 core3
| LI1 | I_I1 | I_I1 | LI1 | - 11 and L2 are private
‘ le ‘ ‘ le ‘ ‘ le ‘ ‘ le ‘ gﬂf - last-level cache
‘ ‘ ‘ ‘ 4/ - divided in slices
| | | |
LLC LLC LLC LLC
slice 0 slice1 slice2 slice3

Caches on Intel CPUs

core0 corel core?2 core3
[[[[)
B - 11 and L2 are private
I I I I]
‘ 5 ‘ ‘ > ‘ ‘ > ‘ ‘ > ‘ fing - last-level cache
‘ ‘ ‘ ‘ 4/ - divided in slices
- shared across cores
| | | |
LLC LLC LLC LLC
slice0 slice1 slice2 slice3

Caches on Intel CPUs

core0 corel core?2 core3
[[[[)
B - 11 and L2 are private
I I I I]
‘ 5 ‘ ‘ > ‘ ‘ > ‘ ‘ > ‘ fing - last-level cache
‘ ‘ ‘ ‘ 4/ - divided in slices
- shared across cores
! ! ‘ ‘ - inclusive
LLC LLC LLC LLC
slice0 slice1 slice2 slice3

Set-associative caches

0 16 17 25 26 Ell

Address ‘ ‘ Index ‘ Offset ‘

Cache

Set-associative caches

Address “ w Index ‘ Offset ‘

Cache set

\

Cache

Data loaded in a specific set depending on its address

Set-associative caches

Address “ w Index ‘ Offset ‘

way 0 way 3

Cache set

\

Cache

Data loaded in a specific set depending on its address

Several ways per set

Set-associative caches

Address ‘ | T [offset |
way 0 way 3
Cache set
~ .
[}
Cache line —— |+
Cache

Data loaded in a specific set depending on its address
Several ways per set

Cache line loaded in a specific way depending on the replacement policy

Three instructions

Three instructions

1. mov: accesses data in the main memory

Three instructions

1. mov: accesses data in the main memory

2. cLflush: removes cache line from the cache

Three instructions

1. mov: accesses data in the main memory
2. cLflush: removes cache line from the cache

3. prefetch: prefetches cache line for future use

Three instructions

1. mov: accesses data in the main memory
2. cLflush: removes cache line from the cache

3. prefetch: prefetches cache line for future use

That's all the assembly you need for today!

mov

MOV—Move

Opcode

88/r

REX +88/r
89/r

89/r

REXW +89/r
8A/r
REX+8A/r
8B /r

8B/r

REXW +8B/r
8C/r

REXW +8C/r

8E/r
REXW + 8E /r

AO
REX.W + AO
Al
Al
REX.W + A1

Instruction

MOV r/m8,r8

MoV r/ms”™" g™
MOV r/m16,r16
MOV r/m32,r32
MOV r/m64,r64
MOV r8r/m8

MOV r8***,r/m8***
MOV r16,/m16
MOV r32,r/m32
MOV r64,r/m64
MOV r/m16,Sreg**
MOV r/m64,Sreg**

MOV Sreg,r/m16**
MOV Sreg,r/m64**

MOV AL moffs8*
MOV AL moffs8*
MOV AX,moffs16*
MOV EAX,moffs32*
MOV RAX,moffs64*

Op/
En

MR
MR
MR
MR
MR
RM
RM
RM
RM
RM
MR
MR

RM
RM

FD
FD
FD
FD
FD

64-Bit
Mode

Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid

Valid
Valid

Valid
Valid
Valid
Valid
Valid

Compat/
Leg Mode

Valid
N.E.
Valid
Valid
N.E.
Valid
NE.
Valid
Valid
N.E.
Valid
Valid

Valid
Valid

Valid
NE.
Valid
Valid
N.E.

Description

Move r8to r/m8.
Move r8to r/m8.
Move r16to r/m16.
Move r32to r/m32.
Move r64 to r/m64.
Move r/m8to r8.
Move r/m8to r8.
Move r/mi16torié.
Move r/m32to r32.
Move r/m64 to r64.
Move segment register to r/m16.

Move zero extended 16-bit segment register
to r/m64.

Move r/m16 to segment register.

Move lower 16 bits of r/m64 to segment
register.

Move byte at (seg:offset) to AL.

Move byte at (offset) to AL.

Move word at (seg:offset) to AX.

Move doubleword at (seg:offset) to EAX.
Move quadword at (offset) to RAX.

mov

64-Bit Mode Exceptions

#GP(0)

#GP(selector)

#55(0)
#SS(selector)
#PF(fault-code)
#AC(0)

#UD

If the memory address is in a non-canonical form.
If an attempt is made to load SS register with NULL segment selector when CPL = 3.

If an attempt is made to load SS register with NULL segment selector when CPL < 3 and CPL #
RPL.

If segment selector index is outside descriptor table limits.
If the memory access to the descriptor table is non-canonical.

If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s
DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a nonwritable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or
readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

If the stack address is in a non-canonical form.

If the SS register is being loaded and the segment pointed to is marked not present.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

If attempt is made to load the CS register.

If the LOCK prefix is used. 10

mov—What could go wrong?

- lots of exceptions for mov

"

mov—What could go wrong?

- lots of exceptions for mov

- but accessing data loads it to the cache

"

mov—What could go wrong?

- lots of exceptions for mov
- but accessing data loads it to the cache

— side effects on computations!

"

CPU Registers 11 Cache L2 Cache Memory Disk storage

- Data can reside in

12

Memory Hierarchy

CPU Registers 11 Cache L2 Cache Memory Disk storage

- Data can reside in
- CPU registers

12

Memory Hierarchy

CPU Registers 11 Cache L2 Cache Memory Disk storage

- Data can reside in

- CPU registers
- Different levels of the CPU cache

12

Memory Hierarchy

CPU Registers 11 Cache L2 Cache Memory Disk storage

- Data can reside in

- CPU registers
- Different levels of the CPU cache
- Main memory

12

Memory Hierarchy

CPU Registers 11 Cache L2 Cache Memory Disk storage

- Data can reside in

- CPU registers

- Different levels of the CPU cache
- Main memory

- Disk storage

12

Timing differences

00 cache hits

107 F : .

10% - :

Number of accesses

1R N H NHHHHHHH HHHHHHHHHHHHHH ol 010 aallalls 1 o 000]

50 100 150 200 250 300 350 400
Access time [CPU cycles]

13

Cache attacks

- cache attacks — exploit timing differences of memory accesses

Cache attacks

- cache attacks — exploit timing differences of memory accesses

- attacker monitors which lines are accessed, not the content

Cache attacks

- cache attacks — exploit timing differences of memory accesses

- attacker monitors which lines are accessed, not the content
- covert channel: two processes communicating with each other
- not allowed to do so, e.g.,, across VMs

Cache attacks

- cache attacks — exploit timing differences of memory accesses

- attacker monitors which lines are accessed, not the content

- covert channel: two processes communicating with each other
- not allowed to do so, e.g.,, across VMs

- side-channel attack: one malicious process spies on benign processes
- e.g, steals crypto keys, spies on keystrokes

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

15

Cache attacks: Flush+Reload

T

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

15

Cache attacks: Flush+Reload

flushes

T

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

15

Cache attacks: Flush+Reload

loads data

E—

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line
Step 3: Victim loads the data

15

Cache attacks: Flush+Reload

rel

Oads dat,
I 3

—

T

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line
Step 3: Victim loads the data

Step 4: Attacker reloads the data 15

Cache attacks: Prime+Probe

—

Victim address space Cache Attacker address space

Cache attacks: Prime+Probe
{

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e,, fills, the cache (no shared memory)

Cache attacks: Prime+Probe

loads data

R

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e,, fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Cache attacks: Prime+Probe

loads data

e ——

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e,, fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Cache attacks: Prime+Probe

. —

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e,, fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e,, fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

Application #1

Covert Channel

Application #1: Covert channel

- Malicious privacy gallery app

Application #1: Covert channel

- Malicious privacy gallery app
- No permissions except accessing your images

Application #1: Covert channel

- Malicious privacy gallery app
- No permissions except accessing your images
- Malicious weather widget

Application #1: Covert channel

- Malicious privacy gallery app

- No permissions except accessing your images
- Malicious weather widget

- No permissions except accessing the Internet

The

> 1
‘ "Internet"

Application #1: Covert channel

- Malicious privacy gallery app

- No permissions except accessing your images
- Malicious weather widget

- No permissions except accessing the Internet

> D — g
covert “Internee”
channel

Application #1: Covert channel

- Malicious privacy gallery app

- No permissions except accessing your images
- Malicious weather widget

- No permissions except accessing the Internet

> D — g
covert “Internee”
channel

Application #1: Covert channel

- Malicious privacy gallery app

- No permissions except accessing your images
- Malicious weather widget

- No permissions except accessing the Internet

> D a— g
covert “Internee”
channel

Application #1: Covert channel

- sender and receiver agree on one set

Application #1: Covert channel

- sender and receiver agree on one set

- receiver probes the set continuously

Application #1: Covert channel

- sender and receiver agree on one set

- receiver probes the set continuously
- sender transmits ‘0" doing nothing
— lines of the receiver still in cache — fast access

Application #1: Covert channel

- sender and receiver agree on one set

- receiver probes the set continuously
- sender transmits ‘0" doing nothing
— lines of the receiver still in cache — fast access

- sender transmits '1" accessing addresses in the set
— evicts lines of the receiver — slow access

Application #1: Covert channel

- Prime+Probe: low requirements, works e.g.,, between VMs in Amazon EC2
error-free covert channel (40-75KBps) — SSH connection over the cache

VM 1 VM 2
——— 1 ——— 1
! TCP Client 1! TCP Server 1
1 (e.g. ssh) 1! (e.g. sshd) 1
1 A~ ! AL 1
1 Socket L Socket 8 1
1 11! . 1
II 5 TCP++File || II TCP<«>File . ||
1 - Pl . |
1 . $ File System 1! File System $: 1
! . 1! 1
I| D Covert Channel I. II Covert Channel ||
e P L > e A
| . Hypervisor g |

".. Prime+Probe Prime+Probe ‘.‘.
| 200000 Last Level Cache (LLC) ... |

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Romer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud”. In: NDSS'17. to appear. 2017.

20

Application #2
Crypto side-channel attack

21

Application #2: Crypto side-channel attack

- AES T-Tables: fast software implementation

22

Application #2: Crypto side-channel attack

- AES T-Tables: fast software implementation

- uses precomputed look-up tables

22

Application #2: Crypto side-channel attack

- AES T-Tables: fast software implementation

- uses precomputed look-up tables
- one-round known-plaintext attack by Osvik et al. (2006)
- p plaintext and k secret key

- intermediate state x(0 = (x{, ..., x{?) at each round r

- first round, accessed table indices are

X0 =p.ak foralli=0,...,15

22

Application #2: Crypto side-channel attack

- AES T-Tables: fast software implementation

- uses precomputed look-up tables
- one-round known-plaintext attack by Osvik et al. (2006)

- p plaintext and k secret key
- intermediate state x(0 = (x{, ..., x{?) at each round r
- first round, accessed table indices are

X0 =p.ak foralli=0,...,15

— recovering accessed table indices = recovering the key

22

Application #2: Crypto side-channel attack

monitoring which T-Table entry is accessed (kg = 0x00)

address

address

plaintext byte values

plaintext byte values

Flush+Reload Prime+Probe

23

Application #2: Crypto side-channel attack

- it's an old attack...

24

Application #2: Crypto side-channel attack

- it's an old attack...
- everything should be fixed by now...

24

Application #2: Crypto side-channel attack

- it's an old attack...
- everything should be fixed by now...
- Bouncy Castle on Android — default implementation uses T-Tables

- many implementations you find online use pre-computed values

24

Application #3
Spying on keystrokes

25

Application

- Flush+Reload: fine-grained attack — spy on keystrokes

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile Devices". In: USENIX Security Symposium. 2016

26

Application #3: Spying on keystrokes

- Flush+Reload: fine-grained attack — spy on keystrokes

Demo time!

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile Devices". In: USENIX Security Symposium. 2016

26

clflush

clflush—What could go wrong?

- cLflush: invalidates from every level the cache line containing the address

27

clflush—What could go wrong?

- cLflush: invalidates from every level the cache line containing the address
- in itself enables Flush+Reload attacks

27

clflush—What could go wrong?

- cLflush: invalidates from every level the cache line containing the address
- in itself enables Flush+Reload attacks

+ but there’s more!

27

clflush timing leakage: Part #1

core 0 coreT - clflush on cached data

i}

|

L2

inclusion

LLC

|

28

clflush timing leakage: Part #1

core 0 coreT - clflush on cached data

- goes to LLC, flushes line

i}

|

L2

LLC

clflush

|

28

clflush timing leakage: Part #1

core0 core

: —

L2

- clflush on cached data
- goes to LLC, flushes line

LLC

28

clflush timing leakage: Part #1

i}

L2

LLC

core0

core

clflush

- clflush on cached data

- goes to LLC, flushes line
- flushes line in L1-12

28

clflush timing leakage: Part #1

i}

L2

LLC

core0

core

- clflush on cached data

- goes to LLC, flushes line
- flushes line in L1-12
— slow

28

clflush timing leakage: Part #1

i}

L2

LLC

core0

core

- clflush on cached data

- goes to LLC, flushes line
- flushes line in L1-12
— slow

- cLflush on non-cached data

28

clflush timing leakage: Part #1

core 0 coreT - clflush on cached data

- goes to LLC, flushes line
u - flushes line in L1-12
— slow

L2

- cLflush on non-cached data
- goes to LLC, does nothing

LLC clflush

28

clflush timing leakage: Part #1

i}

L2

LLC

core0

core

- clflush on cached data

- goes to LLC, flushes line
- flushes line in L1-12
— slow

- cLflush on non-cached data

- goes to LLC, does nothing
— fast

28

clflush timing leakage: Part #1

Number of cases

—— lvy hit--- lvy miss Haswell hit Haswell miss — Sandy hit - - - Sandy miss

| | :
140 150 160
Execution time (in cycles)

170

L
190

200

29

It's only a few cycles, what could go wrong?!

- new cache attack: Flush+Flush

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA'16. 2016.

30

It's only a few cycles, what could go wrong?!

- new cache attack: Flush+Flush
- covert channels and side-channel attacks

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA'16. 2016.

30

It's only a few cycles, what could go wrong?!

- new cache attack: Flush+Flush
- covert channels and side-channel attacks

- stealthier than previous cache attacks

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA'16. 2016.

30

It's only a few cycles, what could go wrong?!

- new cache attack: Flush+Flush
- covert channels and side-channel attacks
- stealthier than previous cache attacks

- faster than previous cache attacks

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. [n: DIMVA'16. 2016.

30

New cache attack: Flush+Flush

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

31

New cache attack: Flush+Flush

T

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

31

New cache attack: Flush+Flush

flushes

T

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

31

New cache attack: Flush+Flush

loads data

E—

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line
Step 3: Victim loads the data

31

New cache attack: Flush+Flush

flushes

data

I 0
]

Victim address space Cache

Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line
Step 3: Victim loads the data

Step 4: Attacker flushes the data 3N

Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES — occur after data is flushed
2. CACHE_REFERENCES — occur when reaccessing memory

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters - CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32

Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES — occur after data is flushed
2. CACHE_REFERENCES — occur when reaccessing memory

.. without false positives

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters - CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32

Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES — occur after data is flushed
2. CACHE_REFERENCES — occur when reaccessing memory

.. without false positives

- heavy activity on the cache

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters - CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32

Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES — occur after data is flushed
2. CACHE_REFERENCES — occur when reaccessing memory

.. without false positives

- heavy activity on the cache

- also, very short loops of code — low pressure on the ITLB

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters - CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32

Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES — occur after data is flushed
2. CACHE_REFERENCES — occur when reaccessing memory

.. without false positives

- heavy activity on the cache
- also, very short loops of code — low pressure on the ITLB
— normalize the events by ITLB_RA+ITLB_RM

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters - CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32

Flush+Flush: Covert channel

technique packet size capacity receiver sender
(KBps) stealth stealth

Flush+Flush 28
Flush+Reload 28

33

Flush+Flush: Covert channel

technique packet size capacity receiver sender
(KBps) stealth stealth
Flush+Flush 28 496

Flush+Reload 28 298

33

Flush+Flush: Covert channel

technique packet size capacity receiver sender
(KBps) stealth stealth
Flush+Flush 28 496 v

Flush+Reload 28 298 X

33

Flush+Flush: Covert channel

technique packet size capacity receiver sender
(KBps) stealth stealth
Flush+Flush 28 496 v X

Flush+Reload 28 298 X X

33

Flush+Flush: Covert channel

technique packet size capacity receiver sender
(KBps) stealth stealth
Flush+Flush 28 496 v X

Flush+Reload 28 298 X X

33

Flush+Flush: Covert channel

technique packet size capacity receiver sender
(KBps) stealth stealth

Flush+Flush 28 496 v X

Flush+Reload 28 298 X X

Flush+Reload 4

Flush+Flush 4

Prime+Probe 4

33

Flush+Flush: Covert channel

technique packet size capacity receiver sender
(KBps) stealth stealth

Flush+Flush 28 496 v X

Flush+Reload 28 298 X X

Flush+Reload 4 54

Flush+Flush 4 52

Prime+Probe 4 34

33

Flush+Flush: Covert channel

technique packet size capacity receiver sender
(KBps) stealth stealth

Flush+Flush 28 496 v X

Flush+Reload 28 298 X X

Flush+Reload 4 54 X

Flush+Flush 4 52 v

Prime+Probe 4 34 X

33

Flush+Flush: Covert channel

technique packet size capacity receiver sender

(KBps) stealth stealth
Flush+Flush 28 496 v X
Flush+Reload 28 298

X X
Flush+Reload 4 54 X v
Flush+Flush 4 52 v v
Prime+Probe 4 34 X X

33

Flush+Flush: Covert channel

technique packet size capacity receiver sender

(KBps) stealth stealth
Flush+Flush 28 496 v X
Flush+Reload 28 298

X X
Flush+Reload 4 54 X v
Flush+Flush 4 52 v v
Prime+Probe 4 34 X X

33

Flush+Flush: Side channel on AES T-tables (1)

Number of encryptions to determine the upper 4 bits of a key byte

technique number of encryptions

Flush+Reload 250
Flush+Flush 350
Prime+Probe 4800

— same performance for Flush+Flush and Flush+Reload

34

Flush+Flush: Side channel on AES T-tables (2)

Stealthiness comparison on 256 million encryptions (synchronous attack)

technique time (s) stealth
Flush+Reload 215 X
Prime+Probe 234 X
Flush+Flush 163 Ve

— Flush+Flush is the only stealth spy process
— others need to be slowed down too much to be practical

35

A little bit more background
before continuing...

Last-level cache (1)

35 17

physical address tag set offset
30

"
2
\ 4
> [
line —]
slice 0 slice 1 slice 2 slice 3

37

Last-level cache (2)

- last-level cache — as many slices as cores
- undocumented hash function that maps a physical address to a slice

- designed for performance

physical address slice (0o,...,0k_1)

R &R .
For2tislices: 30 bits k bits

38

Let's go back to clflush!

clflush timing leakage: Part #2

- cLflush faster to reach a line on the local slice

40

clflush timing leakage: Part #2

- cLflush faster to reach a line on the local slice

——Core 0 ——Core1 Core 2 —— Core 3

10°

2 A/\/\A /

0 : .
140 142 144 1 150 4 156 158
Execution time (in cycles)

Number of cases
~
T

40

clflush timing leakage: Part #2

- map physical addresses to slices

41

clflush timing leakage: Part #2

- map physical addresses to slices
- one way to reverse-engineer the addressing function

41

clflush timing leakage: Part #2

- map physical addresses to slices
- one way to reverse-engineer the addressing function

- other way: using performance counters'

1 C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID'15. 2015

41

prefetch

prefetch instructions

prefetch fetches the line of data from memory containing the specified byte

6 prefetch instructions:

- prefetcht0: suggests CPU to load data into L1

- prefetchtl: suggests CPU to load data into L2

- prefetcht2: suggests CPU to load data into L3

- prefetchnta: suggests CPU to load data for non-temporal access
- prefetchw: suggests CPU to load data with intention to write

- prefetchwtl: suggests CPU to load vector data with intention to write

42

prefetch according to Intel

NOTE

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43

prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43

prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43

prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance

penalty.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43

prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (OL) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43

A little bit more background
before continuing...

Address translation

PML4
CR3 PMLAE 0
PMLAE 1
‘ PDPT
AN
> #:PMLAI SOPTEG
PMLA4E 511 PDP:T“
- Page Directory
AN
> #:PDPTI SDE 0
PDPTE 511 PD:E !
PDEﬁPDI Page Table
: PTE 0
PDE 511 PTF L

PTE #PT] + KIB Page

: Byte 0

— Byte 1

PTE 511 -

Offset

[PML&4I (9b) [PDPTI(9b) [PDI(9b) [PTI(9b) | Offset (12b) | Byte 4095

48-bit virtual address

45

Address translation caches

Core 0 Core 1
I T — I T
o
ITLB DTLB 2 ITLB DTLB
oy
T I ° T I
=
PDE cache = PDE cache
] 23]
(@]
PDPTE cache > PDPTE cache
I I
PML4E cache PML4E cache

[[

Page table structures in
system memory (DRAM)

46

Kernel is mapped in every process

Today’s operating systems:

Shared address space

User memory S ﬂ Kernel memory

context switch

47

Kernel Address Space Layout Randomization (KASLR)

Driver A

| P | |

Driver A (after reboot #1)

|)) 1 |

Driver A (after reboot #2)

| N |

- same driver, different offset at each boot

48

Kernel Address Space Layout Randomization (KASLR)

Driver A

| P | |

Driver A (after reboot #1)

|)) 1 |

Driver A (after reboot #2)

| N |

- same driver, different offset at each boot
- leaking kernel/driver addresses defeats KASLR

48

Kernel direct-physical map

Physical memory
0 max. phys.

247 gt

User Kernel

Virtual address space

- OS X, Linux, BSD, Xen PVM (Amazon EC2)

49

Kernel direct-physical map

Physical memory
0 max. phys.

247 gt

User Kernel

Virtual address space

- OS X, Linux, BSD, Xen PVM (Amazon EC2)

- not Windows

49

Let's go back to prefetch!

prefetch: Unusual instructions (1)

- tells the CPU “I might need that later”

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”". . In: CCS'16. 2016

51

prefetch: Unusual instructions (1)

- tells the CPU “I might need that later”
- hint—may be ignored by the CPU

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”". . In: CCS'16. 2016

51

prefetch: Unusual instructions (1)

- tells the CPU “I might need that later”
- hint—may be ignored by the CPU

- generates no faults

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”". . In: CCS'16. 2016

51

prefetch: Unusual instructions (1)

- tells the CPU “I might need that later”
- hint—may be ignored by the CPU

- generates no faults

Property #1: do not check privileges

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”". . In: CCS'16. 2016

51

Unusual instructions (2)

- operand is a virtual address

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”". . In: CCS'16. 2016

52

prefetch: Unusual instructions (2)

- operand is a virtual address
- but it needs to translate the virtual address to a physical address

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”". . In: CCS'16. 2016

52

prefetch: Unusual instructions (2)

- operand is a virtual address
- but it needs to translate the virtual address to a physical address

Property #2: execution time varies

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”". . In: CCS'16. 2016

52

Address-translation oracle

Exploiting property #1 + kernel direct-physical map

0 max. phys.

Physical memory l I ‘

~ -)

o3

s

S L€
-

Virtual address space l I SS I I i ‘

Cache

53

Address-translation oracle

Exploiting property #1 + kernel direct-physical map

0 max. phys.

Physical memory l I ‘

Virtual address space l S S I i ‘

[\
\A/
Cache

53

Address-translation oracle

Exploiting property #1 + kernel direct-physical map

0 max. phys.

Physical memory l I ‘

~ -)

o3

s

S L€
-

Virtual address space l SS I I i ‘

Cache

53

Address-translation oracle

Exploiting property #1 + kernel direct-physical map

0 max. phys.

Physical memory l I ‘

Virtual address space l I S S I i ‘

:H
Cache

53

Address-translation oracle

Exploiting property #1 + kernel direct-physical map

0 max. phys.

Physical memory l I ‘

__ ®
- Ll
S

Virtual address space l SS I I i ‘

0 247 47 -1
reload = cache f\
—
Cache

- cache hit — physical address in kernel mapping is the correct translation
53

Address-translation oracle

250 M~/ \MWWMWW

200 |- ‘\ |

150 v =

Min. access latency in cycles

| |
20 40 60 80 100 120 140 160 180 200 220 24
Page offset in direct-physical map

100

54

Translation-level oracle

Exploiting property #2

Execution time in cycles

400

300

200

230

383+

246

222

181

I
PDPT

I I
PD PT cached P. uncached P.
Mapping level

55

Translation-level oracle

Exploiting property #2

- timing depends on where the translation stops

(%)
9 |
> 400 | 383
k=
(¢D]
E 300}
246
o 230 222
4+
S 200 181
S<) I I I I I
- PDPT PD PT cached P. uncached P.
Mapping level

55

Prefetch side-channel attacks

Using the two oracles

56

Prefetch side-channel attacks

Using the two oracles

- variants of cache attacks (e.g., Flush+Prefetch)

56

Prefetch side-channel attacks

Using the two oracles

- variants of cache attacks (e.g., Flush+Prefetch)

- Rowhammer attacks on privileged addresses

56

Prefetch side-channel attacks

Using the two oracles

- variants of cache attacks (e.g., Flush+Prefetch)

- Rowhammer attacks on privileged addresses
- recovering translation levels of a process (— /proc/pid/pagemap)
— now privileged — bypasses ASLR

56

Prefetch side-channel attacks

Using the two oracles

- variants of cache attacks (e.g., Flush+Prefetch)

- Rowhammer attacks on privileged addresses
- recovering translation levels of a process (— /proc/pid/pagemap)
— now privileged — bypasses ASLR

- translating virtual addresses to physical addresses (— /proc/pid/pagemap)
— now privileged — re-enables ret2dir exploits

56

Prefetch side-channel attacks

Using the two oracles

- variants of cache attacks (e.g., Flush+Prefetch)

- Rowhammer attacks on privileged addresses

- recovering translation levels of a process (— /proc/pid/pagemap)
— now privileged — bypasses ASLR

- translating virtual addresses to physical addresses (— /proc/pid/pagemap)
— now privileged — re-enables ret2dir exploits

- locating kernel drivers
— bypasses KASLR

56

Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

57

Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer

57

Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer

2. perform syscall to driver

57

Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

57

Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver

3. time prefetch(page address)

— fastest average access time is a driver page

57

Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver

3. time prefetch(page address)

— fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

57

Defeating KASLR by locating kernel driver (2)

Avg. exec. time [cycles]

120 =

100

90 -

110 058 S

6,000

| | |
8,000 10,000 12,000
Page offset in kernel driver region

14,000

58

That's not all folks!

rdseed and floatin

- rdseed

request a random seed to the hardware random number generator
- fixed number of precomputed random bits, takes time to regenerate them
— covert channel

D. Evtyushkin and D. Ponomarev. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In:
CCS'16. 2016

M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

59

rdseed and floatin

- rdseed

request a random seed to the hardware random number generator
- fixed number of precomputed random bits, takes time to regenerate them
— covert channel

- fadd, fmul

- floating point operations
- running time depends on the operands
— bypassing Firefox's same origin policy via SVG filter timing attack

D. Evtyushkin and D. Ponomarev. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In:
CCS'16. 2016

M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

59

and TSX instructions

* jmp
- branch prediction and branch target prediction
— covert channels, side-channel attacks on crypto, bypassing kernel ASLR

0. Aclicmez, J.-P. Seifert, and c. K. Kog. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over ASLR: Attacking branch predictors to bypass ASLR". . In: MICRO'16. 2016
Y.Jang, S. Lee, and T. Kim. “Breaking kernel address space layout randomization with intel TSX". . In: CCS'16. 2016

60

and TSX instructions

* jmp
- branch prediction and branch target prediction
— covert channels, side-channel attacks on crypto, bypassing kernel ASLR
- TSX instructions

- extension for hardware transactional memory support
— bypassing kernel ASLR

0. Aclicmez, J.-P. Seifert, and c. K. Kog. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over ASLR: Attacking branch predictors to bypass ASLR". . In: MICRO'16. 2016
Y.Jang, S. Lee, and T. Kim. “Breaking kernel address space layout randomization with intel TSX". . In: CCS'16. 2016

60

Conclusion

Conclusion

- more a problem of CPU design than Instruction Set Architecture

61

Conclusion

- more a problem of CPU design than Instruction Set Architecture

- hard to patch — issues linked to performance optimizations

61

Conclusion

- more a problem of CPU design than Instruction Set Architecture
- hard to patch — issues linked to performance optimizations

- quick fixes like removing instructions won't work

61

Conclusion

- more a problem of CPU design than Instruction Set Architecture
- hard to patch — issues linked to performance optimizations
- quick fixes like removing instructions won't work

— we keep finding new instructions that leak information

61

What could possibly go wrong with
<insert x86 instruction here>?

Clémentine Maurice, Moritz Lipp

December 2016—33rd Chaos Communication Congress

	Introduction
	mov
	clflush
	prefetch
	That's not all folks!
	Conclusion

