
What could possibly go wrong with
<insert x86 instruction here>?

Clémentine Maurice, Moritz Lipp
December 2016—33rd Chaos Communication Congress



Who we are

• Clémentine Maurice
• PhD in computer science, Postdoc @ Graz University Of Technology
•  @BloodyTangerine
•  clementine.maurice@iaik.tugraz.at

2

https://twitter.com/BloodyTangerine
mailto:clementine.maurice@iaik.tugraz.at


Who we are

• Moritz Lipp
• PhD student @ Graz University Of Technology
•  @mlqxyz
•  moritz.lipp@iaik.tugraz.at

3

https://twitter.com/mlqxyz
mailto:moritz.lipp@iaik.tugraz.at


Introduction

• title says this is a talk about x86 instructions but…

• … this is not a talk about software
• assuming “safe” software
• does not mean safe execution
• information leaks because of the underlying hardware

→ cache attacks without memory accesses and bypassing kernel ASLR
→ cache attacks can also be mounted on ARM, not solely on x86

4



Introduction

• title says this is a talk about x86 instructions but…
• … this is not a talk about software

• assuming “safe” software
• does not mean safe execution
• information leaks because of the underlying hardware

→ cache attacks without memory accesses and bypassing kernel ASLR
→ cache attacks can also be mounted on ARM, not solely on x86

4



Introduction

• title says this is a talk about x86 instructions but…
• … this is not a talk about software
• assuming “safe” software

• does not mean safe execution
• information leaks because of the underlying hardware

→ cache attacks without memory accesses and bypassing kernel ASLR
→ cache attacks can also be mounted on ARM, not solely on x86

4



Introduction

• title says this is a talk about x86 instructions but…
• … this is not a talk about software
• assuming “safe” software
• does not mean safe execution

• information leaks because of the underlying hardware
→ cache attacks without memory accesses and bypassing kernel ASLR
→ cache attacks can also be mounted on ARM, not solely on x86

4



Introduction

• title says this is a talk about x86 instructions but…
• … this is not a talk about software
• assuming “safe” software
• does not mean safe execution
• information leaks because of the underlying hardware

→ cache attacks without memory accesses and bypassing kernel ASLR
→ cache attacks can also be mounted on ARM, not solely on x86

4



Introduction

• title says this is a talk about x86 instructions but…
• … this is not a talk about software
• assuming “safe” software
• does not mean safe execution
• information leaks because of the underlying hardware

→ cache attacks without memory accesses and bypassing kernel ASLR

→ cache attacks can also be mounted on ARM, not solely on x86

4



Introduction

• title says this is a talk about x86 instructions but…
• … this is not a talk about software
• assuming “safe” software
• does not mean safe execution
• information leaks because of the underlying hardware

→ cache attacks without memory accesses and bypassing kernel ASLR
→ cache attacks can also be mounted on ARM, not solely on x86

4



Outline

• Background
• mov — The beginning of cache attacks
• clflush — Cache attacks without memory accesses
• prefetch — Lost in translation
• Bonus track — Even more instructions, even more attacks

5



Introduction



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private

• last-level cache
• divided in slices
• shared across cores
• inclusive

6



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

6



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices

• shared across cores
• inclusive

6



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores

• inclusive

6



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

6



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

7



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

7



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set

7



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy

7



Today’s menu

Three instructions

1. mov: accesses data in the main memory
2. clflush: removes cache line from the cache
3. prefetch: prefetches cache line for future use

That’s all the assembly you need for today!

8



Today’s menu

Three instructions

1. mov: accesses data in the main memory

2. clflush: removes cache line from the cache
3. prefetch: prefetches cache line for future use

That’s all the assembly you need for today!

8



Today’s menu

Three instructions

1. mov: accesses data in the main memory
2. clflush: removes cache line from the cache

3. prefetch: prefetches cache line for future use

That’s all the assembly you need for today!

8



Today’s menu

Three instructions

1. mov: accesses data in the main memory
2. clflush: removes cache line from the cache
3. prefetch: prefetches cache line for future use

That’s all the assembly you need for today!

8



Today’s menu

Three instructions

1. mov: accesses data in the main memory
2. clflush: removes cache line from the cache
3. prefetch: prefetches cache line for future use

That’s all the assembly you need for today!

8



mov



mov

9



mov

10



mov—What could go wrong?

• lots of exceptions for mov

• but accessing data loads it to the cache
→ side effects on computations!

11



mov—What could go wrong?

• lots of exceptions for mov
• but accessing data loads it to the cache

→ side effects on computations!

11



mov—What could go wrong?

• lots of exceptions for mov
• but accessing data loads it to the cache

→ side effects on computations!

11



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in

• CPU registers
• Different levels of the CPU cache
• Main memory
• Disk storage

12



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in
• CPU registers

• Different levels of the CPU cache
• Main memory
• Disk storage

12



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in
• CPU registers
• Different levels of the CPU cache

• Main memory
• Disk storage

12



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in
• CPU registers
• Different levels of the CPU cache
• Main memory

• Disk storage

12



Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in
• CPU registers
• Different levels of the CPU cache
• Main memory
• Disk storage

12



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits

13



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits cache misses

13



Cache attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

14



Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

14



Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

14



Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

14



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

15



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

15



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

15



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

15



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 15



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

16



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

16



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

16



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

16



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast acces
s

16



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

16



Application #1

Covert Channel

17



Application #1: Covert channel

• Malicious privacy gallery app

• No permissions except accessing your images
• Malicious weather widget

• No permissions except accessing the Internet

18



Application #1: Covert channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget

• No permissions except accessing the Internet

18



Application #1: Covert channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget

• No permissions except accessing the Internet

18



Application #1: Covert channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget
• No permissions except accessing the Internet

18



Application #1: Covert channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget
• No permissions except accessing the Internet

covert
channel

18



Application #1: Covert channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget
• No permissions except accessing the Internet

covert
channel

18



Application #1: Covert channel

• Malicious privacy gallery app
• No permissions except accessing your images

• Malicious weather widget
• No permissions except accessing the Internet

covert
channel

18



Application #1: Covert channel

• sender and receiver agree on one set

• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

19



Application #1: Covert channel

• sender and receiver agree on one set
• receiver probes the set continuously

• sender transmits ’0’ doing nothing
→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

19



Application #1: Covert channel

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

19



Application #1: Covert channel

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

19



Application #1: Covert channel

• Prime+Probe: low requirements, works e.g., between VMs in Amazon EC2
• error-free covert channel (40–75KBps) → SSH connection over the cache

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

Socket

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Römer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud”. In: NDSS’17. to appear. 2017.

20



Application #2

Crypto side-channel attack

21



Application #2: Crypto side-channel attack

• AES T-Tables: fast software implementation

• uses precomputed look-up tables
• one-round known-plaintext attack by Osvik et al. (2006)

• p plaintext and k secret key
• intermediate state x(r) = (x(r)0 , . . . ,x(r)15 ) at each round r
• first round, accessed table indices are

x(0)i = pi⊕ki for all i= 0, . . . ,15

→ recovering accessed table indices ⇒ recovering the key

22



Application #2: Crypto side-channel attack

• AES T-Tables: fast software implementation
• uses precomputed look-up tables

• one-round known-plaintext attack by Osvik et al. (2006)
• p plaintext and k secret key
• intermediate state x(r) = (x(r)0 , . . . ,x(r)15 ) at each round r
• first round, accessed table indices are

x(0)i = pi⊕ki for all i= 0, . . . ,15

→ recovering accessed table indices ⇒ recovering the key

22



Application #2: Crypto side-channel attack

• AES T-Tables: fast software implementation
• uses precomputed look-up tables
• one-round known-plaintext attack by Osvik et al. (2006)

• p plaintext and k secret key
• intermediate state x(r) = (x(r)0 , . . . ,x(r)15 ) at each round r
• first round, accessed table indices are

x(0)i = pi⊕ki for all i= 0, . . . ,15

→ recovering accessed table indices ⇒ recovering the key

22



Application #2: Crypto side-channel attack

• AES T-Tables: fast software implementation
• uses precomputed look-up tables
• one-round known-plaintext attack by Osvik et al. (2006)

• p plaintext and k secret key
• intermediate state x(r) = (x(r)0 , . . . ,x(r)15 ) at each round r
• first round, accessed table indices are

x(0)i = pi⊕ki for all i= 0, . . . ,15

→ recovering accessed table indices ⇒ recovering the key

22



Application #2: Crypto side-channel attack

• monitoring which T-Table entry is accessed (k0 = 0x00)
ad

dr
es

s

plaintext byte values

Flush+Reload

ad
dr
es

s

plaintext byte values

Prime+Probe
23



Application #2: Crypto side-channel attack

• it’s an old attack…

• everything should be fixed by now…
• Bouncy Castle on Android → default implementation uses T-Tables
• many implementations you find online use pre-computed values

24



Application #2: Crypto side-channel attack

• it’s an old attack…
• everything should be fixed by now…

• Bouncy Castle on Android → default implementation uses T-Tables
• many implementations you find online use pre-computed values

24



Application #2: Crypto side-channel attack

• it’s an old attack…
• everything should be fixed by now…
• Bouncy Castle on Android → default implementation uses T-Tables
• many implementations you find online use pre-computed values

24



Application #3

Spying on keystrokes

25



Application #3: Spying on keystrokes

• Flush+Reload: fine-grained attack → spy on keystrokes

Demo time!

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016

26



Application #3: Spying on keystrokes

• Flush+Reload: fine-grained attack → spy on keystrokes

Demo time!

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016

26



clflush



clflush—What could go wrong?

• clflush: invalidates from every level the cache line containing the address

• in itself enables Flush+Reload attacks
• but there’s more!

27



clflush—What could go wrong?

• clflush: invalidates from every level the cache line containing the address
• in itself enables Flush+Reload attacks

• but there’s more!

27



clflush—What could go wrong?

• clflush: invalidates from every level the cache line containing the address
• in itself enables Flush+Reload attacks
• but there’s more!

27



clflush timing leakage: Part #1

L1

L2

LLC

core 0 core 1

inclusion

• clflush on cached data

• goes to LLC, flushes line
• flushes line in L1-L2

→ slow

• clflush on non-cached data

• goes to LLC, does nothing
→ fast

28



clflush timing leakage: Part #1

L1

L2

LLC

core 0 core 1

clflush

• clflush on cached data
• goes to LLC, flushes line

• flushes line in L1-L2
→ slow

• clflush on non-cached data

• goes to LLC, does nothing
→ fast

28



clflush timing leakage: Part #1

L1

L2

LLC

core 0 core 1 • clflush on cached data
• goes to LLC, flushes line

• flushes line in L1-L2
→ slow

• clflush on non-cached data

• goes to LLC, does nothing
→ fast

28



clflush timing leakage: Part #1

L1

L2

LLC

core 0 core 1

clflush

• clflush on cached data
• goes to LLC, flushes line
• flushes line in L1-L2

→ slow

• clflush on non-cached data

• goes to LLC, does nothing
→ fast

28



clflush timing leakage: Part #1

L1

L2

LLC

core 0 core 1 • clflush on cached data
• goes to LLC, flushes line
• flushes line in L1-L2

→ slow

• clflush on non-cached data

• goes to LLC, does nothing
→ fast

28



clflush timing leakage: Part #1

L1

L2

LLC

core 0 core 1 • clflush on cached data
• goes to LLC, flushes line
• flushes line in L1-L2

→ slow

• clflush on non-cached data

• goes to LLC, does nothing
→ fast

28



clflush timing leakage: Part #1

L1

L2

LLC

core 0 core 1

clflush

• clflush on cached data
• goes to LLC, flushes line
• flushes line in L1-L2

→ slow

• clflush on non-cached data
• goes to LLC, does nothing

→ fast

28



clflush timing leakage: Part #1

L1

L2

LLC

core 0 core 1 • clflush on cached data
• goes to LLC, flushes line
• flushes line in L1-L2

→ slow

• clflush on non-cached data
• goes to LLC, does nothing

→ fast

28



clflush timing leakage: Part #1

100 110 120 130 140 150 160 170 180 190 2000%

25%

50%

75%

100%

Execution time (in cycles)

Nu
m
be

ro
fc

as
es

Ivy hit Ivy miss Haswell hit Haswell miss Sandy hit Sandy miss

29



It’s only a few cycles, what could go wrong?!

• new cache attack: Flush+Flush

• covert channels and side-channel attacks
• stealthier than previous cache attacks
• faster than previous cache attacks

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016.

30



It’s only a few cycles, what could go wrong?!

• new cache attack: Flush+Flush
• covert channels and side-channel attacks

• stealthier than previous cache attacks
• faster than previous cache attacks

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016.

30



It’s only a few cycles, what could go wrong?!

• new cache attack: Flush+Flush
• covert channels and side-channel attacks
• stealthier than previous cache attacks

• faster than previous cache attacks

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016.

30



It’s only a few cycles, what could go wrong?!

• new cache attack: Flush+Flush
• covert channels and side-channel attacks
• stealthier than previous cache attacks
• faster than previous cache attacks

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016.

30



New cache attack: Flush+Flush

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

31



New cache attack: Flush+Flush

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

31



New cache attack: Flush+Flush

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

31



New cache attack: Flush+Flush

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

31



New cache attack: Flush+Flush

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

flushes data

Step 4: Attacker flushes the data 31



Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES → occur after data is flushed
2. CACHE_REFERENCES → occur when reaccessing memory

… without false positives

• heavy activity on the cache
• also, very short loops of code → low pressure on the iTLB

→ normalize the events by ITLB_RA+ITLB_RM

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32



Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES → occur after data is flushed
2. CACHE_REFERENCES → occur when reaccessing memory

… without false positives

• heavy activity on the cache
• also, very short loops of code → low pressure on the iTLB

→ normalize the events by ITLB_RA+ITLB_RM

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32



Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES → occur after data is flushed
2. CACHE_REFERENCES → occur when reaccessing memory

… without false positives

• heavy activity on the cache

• also, very short loops of code → low pressure on the iTLB
→ normalize the events by ITLB_RA+ITLB_RM

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32



Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES → occur after data is flushed
2. CACHE_REFERENCES → occur when reaccessing memory

… without false positives

• heavy activity on the cache
• also, very short loops of code → low pressure on the iTLB

→ normalize the events by ITLB_RA+ITLB_RM

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32



Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES → occur after data is flushed
2. CACHE_REFERENCES → occur when reaccessing memory

… without false positives

• heavy activity on the cache
• also, very short loops of code → low pressure on the iTLB

→ normalize the events by ITLB_RA+ITLB_RM

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015

32



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28
Flush+Reload 28

33



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28 496
Flush+Reload 28 298

33



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28 496 3

Flush+Reload 28 298 7

33



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28 496 3 7

Flush+Reload 28 298 7 7

33



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28 496 3 7

Flush+Reload 28 298 7 7

33



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28 496 3 7

Flush+Reload 28 298 7 7

Flush+Reload 4
Flush+Flush 4
Prime+Probe 4

33



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28 496 3 7

Flush+Reload 28 298 7 7

Flush+Reload 4 54
Flush+Flush 4 52
Prime+Probe 4 34

33



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28 496 3 7

Flush+Reload 28 298 7 7

Flush+Reload 4 54 7

Flush+Flush 4 52 3

Prime+Probe 4 34 7

33



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28 496 3 7

Flush+Reload 28 298 7 7

Flush+Reload 4 54 7 3

Flush+Flush 4 52 3 3

Prime+Probe 4 34 7 7

33



Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28 496 3 7

Flush+Reload 28 298 7 7

Flush+Reload 4 54 7 3

Flush+Flush 4 52 3 3

Prime+Probe 4 34 7 7

33



Flush+Flush: Side channel on AES T-tables (1)

Number of encryptions to determine the upper 4 bits of a key byte

technique number of encryptions

Flush+Reload 250
Flush+Flush 350
Prime+Probe 4800

→ same performance for Flush+Flush and Flush+Reload

34



Flush+Flush: Side channel on AES T-tables (2)

Stealthiness comparison on 256 million encryptions (synchronous attack)

technique time (s) stealth

Flush+Reload 215 7

Prime+Probe 234 7

Flush+Flush 163 3

→ Flush+Flush is the only stealth spy process
→ others need to be slowed down too much to be practical

35



A little bit more background
before continuing…



Last-level cache (1)

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

37



Last-level cache (2)

• last-level cache → as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:

38



Let’s go back to clflush!



clflush timing leakage: Part #2

• clflush faster to reach a line on the local slice

140 142 144 146 148 150 152 154 156 1580

2

4

6

·105

Execution time (in cycles)

Nu
m
be

ro
fc

as
es

Core 0 Core 1 Core 2 Core 3

40



clflush timing leakage: Part #2

• clflush faster to reach a line on the local slice

140 142 144 146 148 150 152 154 156 1580

2

4

6

·105

Execution time (in cycles)

Nu
m
be

ro
fc

as
es

Core 0 Core 1 Core 2 Core 3

40



clflush timing leakage: Part #2

• map physical addresses to slices

• one way to reverse-engineer the addressing function
• other way: using performance counters1

1 C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID’15. 2015

41



clflush timing leakage: Part #2

• map physical addresses to slices
• one way to reverse-engineer the addressing function

• other way: using performance counters1

1 C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID’15. 2015

41



clflush timing leakage: Part #2

• map physical addresses to slices
• one way to reverse-engineer the addressing function
• other way: using performance counters1

1 C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID’15. 2015

41



prefetch



prefetch instructions

prefetch fetches the line of data from memory containing the specified byte

6 prefetch instructions:

• prefetcht0: suggests CPU to load data into L1

• prefetcht1: suggests CPU to load data into L2

• prefetcht2: suggests CPU to load data into L3

• prefetchnta: suggests CPU to load data for non-temporal access

• prefetchw: suggests CPU to load data with intention to write

• prefetchwt1: suggests CPU to load vector data with intention to write

42



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache.

Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context.

Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty.

For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

43



A little bit more background
before continuing…



Address translation

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)
48-bit virtual address

CR3 PML4
PML4E 0
PML4E 1

···
#PML4I
···

PML4E 511

PDPT
PDPTE 0
PDPTE 1

···
#PDPTI
···

PDPTE 511

Page Directory
PDE 0
PDE 1

···
PDE #PDI

···
PDE 511

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page
Byte 0
Byte 1

···
Offset

···
Byte 4095

45



Address translation caches

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
system memory (DRAM)

Lookup
direction

46



Kernel is mapped in every process

Today’s operating systems:

Shared address space
User memory Kernel memory

0 −1

context switch

47



Kernel Address Space Layout Randomization (KASLR)

Driver A

0 −1

Driver A (after reboot #1)

0 −1

Driver A (after reboot #2)

0 −1

• same driver, different offset at each boot

• leaking kernel/driver addresses defeats KASLR

48



Kernel Address Space Layout Randomization (KASLR)

Driver A

0 −1

Driver A (after reboot #1)

0 −1

Driver A (after reboot #2)

0 −1

• same driver, different offset at each boot
• leaking kernel/driver addresses defeats KASLR

48



Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

• OS X, Linux, BSD, Xen PVM (Amazon EC2)

• not Windows

49



Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

• OS X, Linux, BSD, Xen PVM (Amazon EC2)
• not Windows

49



Let’s go back to prefetch!



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”

• hint—may be ignored by the CPU
• generates no faults

Property #1: do not check privileges

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

51



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”
• hint—may be ignored by the CPU

• generates no faults

Property #1: do not check privileges

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

51



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”
• hint—may be ignored by the CPU
• generates no faults

Property #1: do not check privileges

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

51



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”
• hint—may be ignored by the CPU
• generates no faults

Property #1: do not check privileges

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

51



prefetch: Unusual instructions (2)

• operand is a virtual address

• but it needs to translate the virtual address to a physical address

Property #2: execution time varies

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

52



prefetch: Unusual instructions (2)

• operand is a virtual address
• but it needs to translate the virtual address to a physical address

Property #2: execution time varies

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

52



prefetch: Unusual instructions (2)

• operand is a virtual address
• but it needs to translate the virtual address to a physical address

Property #2: execution time varies

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

52



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

• cache hit → physical address in kernel mapping is the correct translation

53



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

cachedcached

• cache hit → physical address in kernel mapping is the correct translation

53



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

flush

• cache hit → physical address in kernel mapping is the correct translation

53



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

prefetch

• cache hit → physical address in kernel mapping is the correct translation

53



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

reload = cache hit

• cache hit → physical address in kernel mapping is the correct translation
53



Address-translation oracle

0 20 40 60 80 100 120 140 160 180 200 220 240
100

150

200

250

Page offset in direct-physical map

M
in
.a

cc
es

s
la
te
nc

y
in

cy
cl
es

54



Translation-level oracle

Exploiting property #2

PDPT PD PT cached P. uncached P.

200

300

400

230 246
222

181

383

Mapping level

Ex
ec

ut
io
n
tim

e
in

cy
cl
es

• timing depends on where the translation stops

55



Translation-level oracle

Exploiting property #2

PDPT PD PT cached P. uncached P.

200

300

400

230 246
222

181

383

Mapping level

Ex
ec

ut
io
n
tim

e
in

cy
cl
es

• timing depends on where the translation stops
55



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

56



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)

• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

56



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses

• recovering translation levels of a process (→ /proc/pid/pagemap)
→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

56



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

56



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

56



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

56



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

57



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer

2. perform syscall to driver
3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

57



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver

3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

57



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

57



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

57



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

57



Defeating KASLR by locating kernel driver (2)

6,000 8,000 10,000 12,000 14,000

90

100

110

120

Page offset in kernel driver region

Av
g.

ex
ec

.t
im

e
[c
yc
le
s]

58



That’s not all folks!



rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel

• fadd, fmul
• floating point operations
• running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin and D. Ponomarev. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In:
CCS’16. 2016
M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

59



rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel

• fadd, fmul
• floating point operations
• running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin and D. Ponomarev. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In:
CCS’16. 2016
M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

59



jmp and TSX instructions

• jmp
• branch prediction and branch target prediction

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR

• TSX instructions
• extension for hardware transactional memory support

→ bypassing kernel ASLR

O. Acıiçmez, J.-P. Seifert, and c. K. Koç. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. . In: MICRO’16. 2016
Y. Jang, S. Lee, and T. Kim. “Breaking kernel address space layout randomization with intel TSX”. . In: CCS’16. 2016

60



jmp and TSX instructions

• jmp
• branch prediction and branch target prediction

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR

• TSX instructions
• extension for hardware transactional memory support

→ bypassing kernel ASLR

O. Acıiçmez, J.-P. Seifert, and c. K. Koç. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. . In: MICRO’16. 2016
Y. Jang, S. Lee, and T. Kim. “Breaking kernel address space layout randomization with intel TSX”. . In: CCS’16. 2016

60



Conclusion



Conclusion

• more a problem of CPU design than Instruction Set Architecture

• hard to patch → issues linked to performance optimizations
• quick fixes like removing instructions won’t work

→ we keep finding new instructions that leak information

61



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to patch → issues linked to performance optimizations

• quick fixes like removing instructions won’t work
→ we keep finding new instructions that leak information

61



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to patch → issues linked to performance optimizations
• quick fixes like removing instructions won’t work

→ we keep finding new instructions that leak information

61



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to patch → issues linked to performance optimizations
• quick fixes like removing instructions won’t work

→ we keep finding new instructions that leak information

61



What could possibly go wrong with
<insert x86 instruction here>?

Clémentine Maurice, Moritz Lipp
December 2016—33rd Chaos Communication Congress


	Introduction
	mov
	clflush
	prefetch
	That's not all folks!
	Conclusion

