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Introduction

• title says this is a talk about x86 instructions but…

• … this is not a talk about software
• assuming “safe” software
• does not mean safe execution
• information leaks because of the underlying hardware

→ cache attacks without memory accesses and bypassing kernel ASLR
→ cache attacks can also be mounted on ARM, not solely on x86
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Outline

• Background
• mov — The beginning of cache attacks
• clflush — Cache attacks without memory accesses
• prefetch — Lost in translation
• Bonus track — Even more instructions, even more attacks
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Set-associative caches
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Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
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Today’s menu

Three instructions

1. mov: accesses data in the main memory
2. clflush: removes cache line from the cache
3. prefetch: prefetches cache line for future use

That’s all the assembly you need for today!
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mov—What could go wrong?

• lots of exceptions for mov

• but accessing data loads it to the cache
→ side effects on computations!
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Memory Hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• Data can reside in

• CPU registers
• Different levels of the CPU cache
• Main memory
• Disk storage
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Timing differences
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Cache attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes
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Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space
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Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
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Application #1

Covert Channel
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Application #1: Covert channel

• Malicious privacy gallery app

• No permissions except accessing your images
• Malicious weather widget

• No permissions except accessing the Internet
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Application #1: Covert channel

• sender and receiver agree on one set

• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access
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Application #1: Covert channel

• Prime+Probe: low requirements, works e.g., between VMs in Amazon EC2
• error-free covert channel (40–75KBps) → SSH connection over the cache

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

Socket

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Römer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud”. In: NDSS’17. to appear. 2017.
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Application #2

Crypto side-channel attack
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Application #2: Crypto side-channel attack

• AES T-Tables: fast software implementation

• uses precomputed look-up tables
• one-round known-plaintext attack by Osvik et al. (2006)

• p plaintext and k secret key
• intermediate state x(r) = (x(r)0 , . . . ,x(r)15 ) at each round r
• first round, accessed table indices are

x(0)i = pi⊕ki for all i= 0, . . . ,15

→ recovering accessed table indices ⇒ recovering the key
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Application #2: Crypto side-channel attack

• monitoring which T-Table entry is accessed (k0 = 0x00)
ad
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plaintext byte values

Flush+Reload
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plaintext byte values

Prime+Probe
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Application #2: Crypto side-channel attack

• it’s an old attack…

• everything should be fixed by now…
• Bouncy Castle on Android → default implementation uses T-Tables
• many implementations you find online use pre-computed values
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Application #3

Spying on keystrokes
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Application #3: Spying on keystrokes

• Flush+Reload: fine-grained attack → spy on keystrokes

Demo time!

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016
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clflush—What could go wrong?

• clflush: invalidates from every level the cache line containing the address

• in itself enables Flush+Reload attacks
• but there’s more!
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clflush timing leakage: Part #1
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core 0 core 1

inclusion

• clflush on cached data

• goes to LLC, flushes line
• flushes line in L1-L2

→ slow

• clflush on non-cached data

• goes to LLC, does nothing
→ fast
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clflush timing leakage: Part #1
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It’s only a few cycles, what could go wrong?!

• new cache attack: Flush+Flush

• covert channels and side-channel attacks
• stealthier than previous cache attacks
• faster than previous cache attacks

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016.
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New cache attack: Flush+Flush

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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loads data
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New cache attack: Flush+Flush

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

flushes data

Step 4: Attacker flushes the data 31



Evaluating stealthiness

Detecting cache attacks and Rowhammer with performance counters

1. CACHE_MISSES → occur after data is flushed
2. CACHE_REFERENCES → occur when reaccessing memory

… without false positives

• heavy activity on the cache
• also, very short loops of code → low pressure on the iTLB

→ normalize the events by ITLB_RA+ITLB_RM

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. 2015
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Flush+Flush: Covert channel

technique packet size capacity
(KBps)

receiver
stealth

sender
stealth

Flush+Flush 28
Flush+Reload 28
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Flush+Flush: Side channel on AES T-tables (1)

Number of encryptions to determine the upper 4 bits of a key byte

technique number of encryptions

Flush+Reload 250
Flush+Flush 350
Prime+Probe 4800

→ same performance for Flush+Flush and Flush+Reload
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Flush+Flush: Side channel on AES T-tables (2)

Stealthiness comparison on 256 million encryptions (synchronous attack)

technique time (s) stealth

Flush+Reload 215 7

Prime+Probe 234 7

Flush+Flush 163 3

→ Flush+Flush is the only stealth spy process
→ others need to be slowed down too much to be practical
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A little bit more background
before continuing…



Last-level cache (1)

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line
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Last-level cache (2)

• last-level cache → as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:
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Let’s go back to clflush!



clflush timing leakage: Part #2

• clflush faster to reach a line on the local slice
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clflush timing leakage: Part #2

• map physical addresses to slices

• one way to reverse-engineer the addressing function
• other way: using performance counters1

1 C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID’15. 2015
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prefetch



prefetch instructions

prefetch fetches the line of data from memory containing the specified byte

6 prefetch instructions:

• prefetcht0: suggests CPU to load data into L1

• prefetcht1: suggests CPU to load data into L2

• prefetcht2: suggests CPU to load data into L3

• prefetchnta: suggests CPU to load data for non-temporal access

• prefetchw: suggests CPU to load data with intention to write

• prefetchwt1: suggests CPU to load vector data with intention to write
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prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014
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A little bit more background
before continuing…



Address translation

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)
48-bit virtual address

CR3 PML4
PML4E 0
PML4E 1

···
#PML4I
···

PML4E 511

PDPT
PDPTE 0
PDPTE 1

···
#PDPTI
···

PDPTE 511

Page Directory
PDE 0
PDE 1

···
PDE #PDI

···
PDE 511

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page
Byte 0
Byte 1

···
Offset

···
Byte 4095
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Address translation caches

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
system memory (DRAM)

Lookup
direction
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Kernel is mapped in every process

Today’s operating systems:

Shared address space
User memory Kernel memory

0 −1

context switch
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Kernel Address Space Layout Randomization (KASLR)

Driver A

0 −1

Driver A (after reboot #1)

0 −1

Driver A (after reboot #2)

0 −1

• same driver, different offset at each boot

• leaking kernel/driver addresses defeats KASLR
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Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

• OS X, Linux, BSD, Xen PVM (Amazon EC2)

• not Windows
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Let’s go back to prefetch!



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”

• hint—may be ignored by the CPU
• generates no faults

Property #1: do not check privileges

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

51



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”
• hint—may be ignored by the CPU

• generates no faults

Property #1: do not check privileges

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

51



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”
• hint—may be ignored by the CPU
• generates no faults

Property #1: do not check privileges

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

51



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”
• hint—may be ignored by the CPU
• generates no faults

Property #1: do not check privileges

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016

51



prefetch: Unusual instructions (2)

• operand is a virtual address

• but it needs to translate the virtual address to a physical address

Property #2: execution time varies

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. . In: CCS’16. 2016
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Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

• cache hit → physical address in kernel mapping is the correct translation

53



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

cachedcached

• cache hit → physical address in kernel mapping is the correct translation

53



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache
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0 max. phys.
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dir
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Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.
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dir
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Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

reload = cache hit

• cache hit → physical address in kernel mapping is the correct translation
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Address-translation oracle
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Translation-level oracle

Exploiting property #2

PDPT PD PT cached P. uncached P.

200

300
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230 246
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Mapping level
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• timing depends on where the translation stops

55



Translation-level oracle

Exploiting property #2

PDPT PD PT cached P. uncached P.

200

300

400

230 246
222

181

383

Mapping level

Ex
ec

ut
io
n
tim

e
in

cy
cl
es

• timing depends on where the translation stops
55



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR
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Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds
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Defeating KASLR by locating kernel driver (2)

6,000 8,000 10,000 12,000 14,000

90

100

110

120

Page offset in kernel driver region

Av
g.

ex
ec

.t
im

e
[c
yc
le
s]

58



That’s not all folks!



rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel

• fadd, fmul
• floating point operations
• running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin and D. Ponomarev. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In:
CCS’16. 2016
M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015
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jmp and TSX instructions

• jmp
• branch prediction and branch target prediction

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR

• TSX instructions
• extension for hardware transactional memory support

→ bypassing kernel ASLR

O. Acıiçmez, J.-P. Seifert, and c. K. Koç. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. . In: MICRO’16. 2016
Y. Jang, S. Lee, and T. Kim. “Breaking kernel address space layout randomization with intel TSX”. . In: CCS’16. 2016
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Conclusion



Conclusion

• more a problem of CPU design than Instruction Set Architecture

• hard to patch → issues linked to performance optimizations
• quick fixes like removing instructions won’t work

→ we keep finding new instructions that leak information

61



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to patch → issues linked to performance optimizations

• quick fixes like removing instructions won’t work
→ we keep finding new instructions that leak information

61



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to patch → issues linked to performance optimizations
• quick fixes like removing instructions won’t work

→ we keep finding new instructions that leak information

61



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to patch → issues linked to performance optimizations
• quick fixes like removing instructions won’t work

→ we keep finding new instructions that leak information

61



What could possibly go wrong with
<insert x86 instruction here>?

Clémentine Maurice, Moritz Lipp
December 2016—33rd Chaos Communication Congress
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