
Memory Deduplication:
The Curse that Keeps on Giving

Cross-VM leakCross-process leak

Side-channel Covert-channel

Breaking ASLR

Erik Bosman, Ben Gras, Kaveh Razavi

Antonio Barresi

Who we are

Erik Bosman Antonio Barresi

erik@minemu.org antonio.barresi@xorlab.com

@brainsmoke @AntonioHBarresi

PhD candidate at Co-founder of

Research on building reliable
and secure computing systems.

https://www.vusec.net/

Interested in software and
systems security topics.

https://www.xorlab.com

Acknowledgments

Cristiano Giuffrida

Herbert Bos

Mathias Payer Thomas R. Gross

Bart Preneel

Our message today…

Lord of the Rings: The Fellowship of the Ring, 2001, © New Line Cinema

Outline

Outline

> Memory deduplication

Outline

> Memory deduplication

> Side-channel

CAIN

CAIN

Cross-VM leak, break ASLR

Memory deduplication

Dedup
Est
Machina

Dedup
Est
Machina

Intra-process read + write (Browser + JS)

Memory deduplication + Rowhammer

Flip-
Feng
Shui

Flip-
Feng
Shui

Cross-VM leak + write, system compromise

Memory deduplication + Rowhammer

Outline

> Memory deduplication

> Side-channel

> CAIN attack (2015)

> Dedup Est Machina (2016)

> Flip-Feng Shui (2016)

Outline

> Memory deduplication

> Side-channel

> CAIN attack (2015)

> Dedup Est Machina (2016)

> Flip-Feng Shui (2016)

> Conclusion

Memory deduplication

Memory deduplication

A method of reducing memory usage.

Memory deduplication

A method of reducing memory usage.

Used in virtualization environments,

Memory deduplication

A method of reducing memory usage.

Used in virtualization environments,

(was) also enabled by default on
Windows 8.1 and 10.

Memory deduplication

In virtualized environments it allows to

reclaim memory and supports overcommitment of

memory.

Memory deduplication

In virtualized environments it allows to

reclaim memory and supports overcommitment of

memory.

= run more VMs

Now we can sell even more VMs… $$$

Austin Powers: International Man of Mistery, 1997, © New Line Cinema

Memory deduplication

physical memory virtual machine A

virtual machine B

Memory deduplication

physical memory virtual machine A

virtual machine B

Memory deduplication

physical memory virtual machine A

virtual machine B

Memory deduplication

physical memory virtual machine A

virtual machine B

Memory deduplication

physical memory virtual machine A

virtual machine B

Memory deduplication

physical memory virtual machine A

virtual machine B

*
* * * *

* ***

* * * * * * *
* *

* * * * * * *
**

Kernel Same-page Merging (KSM)

> Enabled by default for KVM (Ubuntu Server)

> Out-of-band Content Based Page Sharing (CBPS)

Kernel Same-page Merging (KSM)

> Enabled by default for KVM (Ubuntu Server)

> Out-of-band Content Based Page Sharing (CBPS)

/sys/kernel/mm/ksm/run ‘1’ or ‘0’

/sys/kernel/mm/ksm/sleep_millisecs e.g., 200 ms

/sys/kernel/mm/ksm/pages_to_scan e.g., 100

1000/sleep_millisecs * pages_to_scan = pages per second

e.g., (1000/200ms) * 100 = 500 pages/sec

Memory deduplication: The Problem

Deduplicated memory does not need to have
the same security domain.

(unlike fork(), file-backed memory)

An attacker can use deduplication
as a side-channel.

Deduplication side-channel attack

normal write

Deduplication side-channel attack

normal write

write

Deduplication side-channel attack

normal write

copy on write (due to deduplication)

write

*

Deduplication side-channel attack

normal write

copy on write (due to deduplication)

write

trap
*

Deduplication side-channel attack

normal write

copy on write (due to deduplication)

write

trap
copy
whole
page

*

Deduplication side-channel attack

normal write

copy on write (due to deduplication)

write

trap
copy
whole
page

update
page
tables

*

Deduplication side-channel attack

normal write

copy on write (due to deduplication)

write

trap
copy
whole
page

update
page
tables

resume
process

*

Deduplication side-channel attack

normal write

copy on write (due to deduplication)

write

trap
copy
whole
page

update
page
tables

resume
process

write
*

Deduplication side-channel attack

A 1-bit side channel which is able to leak data
across security boundaries

Deduplication side-channel attack

A 1-bit side channel which is able to leak data
across security boundaries

> Cross-VM

Deduplication side-channel attack

A 1-bit side channel which is able to leak data
across security boundaries

> Cross-VM

> Cross-process

Deduplication side-channel attack

A 1-bit side channel which is able to leak data
across security boundaries

> Cross-VM

> Cross-process

> Intra-process, leak process data from JavaScript

Exploitation of the side-channel

Exploitation of the side-channel

attacker memory victim memory

Exploitation of the side-channel

attacker memory victim memory

secret page

Exploitation of the side-channel

attacker memory victim memory

secret pageguess page

?

Exploitation of the side-channel

attacker memory victim memory

guess page secret page

Exploitation of the side-channel

attacker memory victim memory

secret page
wait(t)

Exploitation of the side-channel

attacker memory victim memory

secret page
write

?

Exploitation of the side-channel

attacker memory victim memory

secret page

write time > threshold

Exploitation of the side-channel

attacker memory victim memory

secret page

write time > threshold

Exploitation of the side-channel

attacker memory victim memory

secret page

write time ≤ threshold

Exploitation of the side-channel

attacker memory victim memory

secret page

write time ≤ threshold

Exploitation of the side-channel

attacker memory victim memory

secret page

write time ≤ threshold

CAIN
Dedup
Est
Machina

Flip-
Feng
Shui

CAIN:
Cross-VM Address Space Layout Introspection

Deduplication
(software side-channel)

CAIN:
Cross-VM Address Space Layout Introspection

Deduplication
(software side-channel)

Cross-VM leak / ASLR bypass

CVE-2015-2877 / VU#935424 (https://www.kb.cert.org/vuls/id/935424)

CAIN

CAIN

> Page contents to leak ASLR? Secret page?

CAIN

> Page contents to leak ASLR? Secret page?

> How long to wait?

CAIN

> Page contents to leak ASLR? Secret page?

> How long to wait?

> How to detect a merged page? Noise?

Suitable pages to break ASLR

Suitable page
to break ASLR

Page aligned

> Mostly static

> Read-only in victim VM

> Known to exist

Suitable pages to break ASLR

Page aligned

0x7f9ffaa0000

Known offset within the page

Contains base address
of an executable image

Suitable pages to break ASLR

Page aligned

Known offsets within the page

Contains values derived
from the base address of an
executable image

0x7f9ffaabeef

0x7f9ffaa01230x7f9ffaa0000

Suitable page under Windows

Guessing the right address

> Well you still have to guess

Guessing the right address

> Well you still have to guess

> 219 base addresses for Windows x64

Guessing the right address

> Well you still have to guess

> 219 base addresses for Windows x64

> 524’288 guesses

Guessing the right address

> Well you still have to guess

> 219 base addresses for Windows x64

> 524’288 guesses

> One guess requires 1 page of memory

Based on http://sourceforge.net/projects/mpimd5bruteforc/

Guessing the right address

> Attacker VM has much more memory

Guessing the right address

> Attacker VM has much more memory

> Fill up memory with all guesses

Guessing the right address

> Attacker VM has much more memory

> Fill up memory with all guesses

> 219 * 1 page of 4 KB = 2 GB

Brute-force all addresses

<Page with RBA guess>

0x7f9ffa70000

0x7f9ffa80000

0x7f9ffa90000

0x7f9ffaa0000

0x7f9ffab0000

0x7f9ffac0000

0x7f9ffad0000

.

.

.

Brute-force all addresses

<Page with RBA guess>

0x7f9ffa70000

0x7f9ffa80000

0x7f9ffa90000

0x7f9ffaa0000

0x7f9ffab0000

0x7f9ffac0000

0x7f9ffad0000

.

.

.

detect_shared_pages()

0x7f9ffaa0000

Wait for how long?

Wait for how long?

> Depends on the memory deduplication

implementation

Wait for how long?

> Depends on the memory deduplication

implementation

> Varies depending on amount of memory used

Wait for how long?

> Depends on the memory deduplication

implementation

> Varies depending on amount of memory used

> Attacker trade-off

> Waiting too little obstructs the attack

> Waiting too long increases attack time

Adaptive sleep-time detection

> Try to automatically detect sleep time

Adaptive sleep-time detection

> Try to automatically detect sleep time

Adaptive sleep-time detection

> Try to automatically detect sleep time

> After buffer creation, wait e.g. t = 10min

Adaptive sleep-time detection

> Try to automatically detect sleep time

> After buffer creation, wait e.g. t = 10min

> Detect how many pages were merged

Adaptive sleep-time detection

> Try to automatically detect sleep time

> After buffer creation, wait e.g. t = 10min

> Detect how many pages were merged

> If detection rate > threshold (e.g. 90%)

Adaptive sleep-time detection

> Try to automatically detect sleep time

> After buffer creation, wait e.g. t = 10min

> Detect how many pages were merged

> If detection rate > threshold (e.g. 90%)

> Use t

Adaptive sleep-time detection

> Try to automatically detect sleep time

> After buffer creation, wait e.g. t = 10min

> Detect how many pages were merged

> If detection rate > threshold (e.g. 90%)

> Use t

> Else, increase t and try again

Detect merged pages

Non-shared

Merged

Non-shared

Detect merged pages

Non-shared

Merged

Non-shared

t
29

Detect merged pages

Non-shared

Merged

Non-shared

t

t

29

2667

Detect merged pages

Non-shared

Merged

Non-shared

t

t

t

29

2667

34

Measure write

time with rdtsc
(Read Time Stamp Counter)

Detect merged pages

Non-shared

Merged

Non-shared

t

t

t

29

2667

34

Measure write

time with rdtsc
(Read Time Stamp Counter)

t2 > 2 * (t1+t3)/2 t1,3 < M = 1000 t1 < t3, (t3-t1) < t3/3

Detect merged pages

Non-shared

Merged

Non-shared

t

t

t

29

2667

34

Measure write

time with rdtsc
(Read Time Stamp Counter)

t2 > 2 * (t1+t3)/2 t1,3 < M = 1000 t1 < t3, (t3-t1) < t3/3

Handling noise

> Be conservative and perform multiple rounds

Handling noise

> Be conservative and perform multiple rounds

> Probability that same guess is

affected by noise in different

rounds is low

Windows x64 ASLR

> High Entropy ASLR

> 33 bits for stacks

> 24 bits for heaps

> 17 bits for executables

> 19 bits for DLLS

System-wide at
boot-time for
certain images

Attacking a single Windows VM

Attacking multiple Windows VM

sleep_millisecs = 20

Speed improvements

> Many ways to increase speed of attack

Speed improvements

> Many ways to increase speed of attack

> Allocate more random pages in-between

Speed improvements

> Many ways to increase speed of attack

> Allocate more random pages in-between

> Use more than one guess page (redundancy)

Speed improvements

> Many ways to increase speed of attack

> Allocate more random pages in-between

> Use more than one guess page (redundancy)

> Different guess pages for same secret

e.g. relocated code pages 

Big limitation

> No control over victim memory layout

Big limitation

> No control over victim memory layout

> Some control would help a lot 

Big limitation

> No control over victim memory layout

> Some control would help a lot 

> No write primitive

Big limitation

> No control over victim memory layout

> Some control would help a lot 

> No write primitive

> Rowhammer 

memdedup for Windows

> MS enabled memory

deduplication

for Windows 8.1 + 10

memdedup for Windows

> MS enabled memory

deduplication

for Windows 8.1 + 10

CAIN
Dedup
Est
Machina

Flip-
Feng
Shui

Deduplication
(software side-channel)

Dedup est Machina

Deduplication
(software side-channel)

+
Rowhammer

(hardware bug)

Dedup est Machina

Deduplication
(software side-channel)

+
Rowhammer

(hardware bug)

Exploit MS Edge without software bugs
(from JavaScript)

Dedup est Machina

Deduplication

- leak heap & code addresses

+3.141592

+0.0

42.

1

NaN

JavaScript Array

Outline:

Deduplication

- leak heap & code addresses

+3.141592

+0.0

42.

1

NaN

JavaScript Array chakra.dll

Outline:

Deduplication

- leak heap & code addresses
- create a fake object

Outline:

Deduplication

Rowhammer

- leak heap & code addresses
- create a fake object

- create reference to our fake object

Outline:

Deduplication

Rowhammer

- leak heap & code addresses
- create a fake object

- create reference to our fake object

Outline:

Leaking existing pages is slow and the
gained information is limited.

What if we can manipulate the contents
of the victim's memory to leak secrets
hand-picked by the attacker.

Challenge 1:

The secret we want to leak does not
span an entire page.

Turning a secret into a page

secret

Turning a secret into a page

known data

secret

secret page

Challenge 2:

The secret we want to leak has
too much entropy to leak all
at once.

Primitive #1: alignment probing

known data

secret

secret page

Primitive #1: alignment probing

known data

secret

secret page

Primitive #2: partial reuse

known data

secret

secret page

Primitive #2: partial reuse

known data

secret

secret page

Deduplication

- leak heap & code addresses

chakra.dll

Outline:

JIT function epilogue (MS Edge)

mov RCX,0x1c20 mov RAX, [code address] jmp RAX trap

trap trap trap trap trap trap ...trap trap trap trap trap trap

trap trap

known data

secret

JIT function epilogue (MS Edge)

mov RCX,0x1c20 mov RAX, [code address] jmp RAX trap

trap trap trap trap trap trap

trap

trap trap trap trap trap trap

trap trap trap trap trap trap

trap trap trap trap trap

trap trap

page

JIT function epilogue (MS Edge)

mov RCX,0x1c20 mov RAX, [code address] jmp RAX trap

trap trap trap trap trap trap

trap

trap trap trap trap trap trap

trap trap trap trap trap trap

trap trap trap trap trap

page

Deduplication

- leak heap & code addresses

chakra.dll

Outline:

Deduplication

- leak heap & code addresses

+3.141592

+0.0

42.

1

NaN

JavaScript Array chakra.dll

Outline:

What if leaking a heap pointer in
stages is not possible...

We need to guess a page containing
the complete pointer.

Heap pointer entropy in Edge

0x5F48143540

Heap pointer entropy in Edge

0x5F48143540

advertised ASLR (24 bit)
64G

* redundancy

Heap pointer entropy in Edge

0x5F48143540

advertised ASLR (24 bit)

non-deterministic bits
(+/- 36 bit)

64G

256T

* redundancy

* redundancy

Slab allocator for JavaScript objects

array
object

array
data

Slab allocator for JavaScript objects

1M VirtualAlloc()
.
.
.

Slab allocator for JavaScript objects

1M VirtualAlloc()
.
.
.

1st after VirtualAlloc() call

Slab allocator for JavaScript objects

1M VirtualAlloc()
.
.
.

1st after VirtualAlloc() call

Timing side-channel :-D

Heap pointer entropy in Edge

0x5F48143540

advertised ASLR (24 bit)

non-deterministic bits
(+/- 36 bit)

64G

256T

* redundancy

* redundancy

Heap pointer entropy in Edge

advertised ASLR (24 bit)
64G

0x5F48100000

entropy after 1MB alignment
(20 bit)

4G

* redundancy

* redundancy

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Birthday problem

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

victim memory

Primitive #3: birthday heapspray

physical memory attacker memory

*
victim memory

*

Creating Secret Pages

1M Aligned
objects

.
.
.

Creating Secret Pages

1M Aligned
objects

.
.
.

array
data

Creating Secret Pages

1M Aligned
objects

.
.
.

page

page

page

page

Creating Secret Pages

1M Aligned
objects

.
.
.

page

page

page

page

Creating Secret Pages

1M Aligned
objects

.
.
.

page

secret A

secret B

secret C

Creating Guess Pages

typed
array
data

Creating Guess Pages

guessed
aligned

addresses,
128M apart

.
.
.

typed
array
data

???
???
???
???
???

???

Creating Guess Pages

guessed
aligned

addresses,
128M apart

.
.
.

guess X

guess Y

guess Z

guess Q

???
???
???
???
???

???

Birthday heap spray
+1M, +1M, +1M, ...

+128M,
+128M,
+128M,
...

Birthday heap spray
+1M, +1M, +1M, ...

+128M,
+128M,
+128M,
...

secret pages
(allocated
addresses)

Birthday heap spray
+1M, +1M, +1M, ...

+128M,
+128M,
+128M,
...

secret pages
(allocated
addresses)

guess pages (containing guessed addresses)

Birthday heap spray
+1M, +1M, +1M, ...

+128M,
+128M,
+128M,
...

secret pages
(allocated
addresses)

guess pages (containing guessed addresses)

Deduplication

Rowhammer

- leak heap & code addresses
- create a fake object

- create reference to our fake object

Outline:

Fake Uint8Array object

array
data

Pointer pivotting

array
data

Pointer pivotting

array
data

array
header

JavaScript Array

Pointer pivotting

array
data

array
header

array
header

array
data

JavaScript Array JavaScript Array

Pointer pivotting

array
data

array
header

array
header

array
data

JavaScript Array JavaScript Array

Pointer pivotting

array
data

array
header

array
header

array
data

JavaScript Array JavaScript Array

Rowhammer attack

DDR memory

channels

ranks

banks

Rowhammer attack

Rowhammer attack

rows

Rowhammer attack

rows

row buffer cache

Rowhammer attack

rows

row buffer cache

Rowhammer attack

rows

row buffer cache

Rowhammer attack

rows

row buffer cache

Rowhammer attack

rows

row buffer cache

Rowhammer attack

rows

row buffer cache

Rowhammer attack

rows

row buffer cache

Rowhammer attack

rows

row buffer cache

Pointer pivotting

array
data

array
header

array
header

array
data

JavaScript Array JavaScript Array

Pointer pivotting

array
data

array
header

array
header

array
data

JavaScript Array JavaScript Array

CAIN
Dedup
Est
Machina

Flip-
Feng
Shui

Rowhammer
(hardware bug)

Flip Feng Shui

Rowhammer
(hardware bug)

+
Deduplication

(more than a software side-channel)

Flip Feng Shui

Rowhammer
(hardware bug)

+
Deduplication

(more than a software side-channel)

Cross-VM compromise

Flip Feng Shui

Rowhammer bit flips:

1) Unpredictable on which (virtual) page
2) Unpredictable where in the page
3) Repeatable once you've found a flip

Flip Feng Shui goal:

> Find victim pages with known content
 which allow for exploitation when
 certain bits are flipped

> Land this victim page in a physical
 memory location where this bit is
 flippable

Deduplication implementation:

physical memory attacker memory

Windows 10

victim memory

Deduplication implementation:

physical memory attacker memory

Windows 10

victim memory

Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory

Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory

Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory

Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory

Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory

Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory

Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory

Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory

Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory

Example 1: OpenSSH

Target: ~/.ssh/authorized_keys

OpenSSH ~/.ssh/authorized_keys

ssh-rsa AAAAB3NzaC1yc2

 victim@laptop

 EAAAADAQAB

Exponent Modulus (p * q)

 AAABAQC52/Uk84iUm ic
el7E r+ D/P Z6Lj hlu yv35bE wXm9 G Jyz +1s68 yzpD
3VQ wSH KqDnCg+OtaA 0 v qZc BQ B9X wIf I dSeGtcU uo
U +TlmAZ+D9 xjuSBBH0ShbaiH65 mlauISfR3VZW 7 B
2 52LhWG5 R SkM N2E2f HaP96J RO lHuy w8 Jwl4kJ
8 Ro1uhX0SV 9 rK 5 + WJ3P vjoMVU/KoAb NnY 8IT
 nkP 0 r yAKRygEfi7g ixOvQR79by8 L6yp kM5 obS sN
 hxQj RR td1

 m
 S / W k 8 EoT e x V tR
 v i o K C o F a J 5 B k
 v MNNA i FE uy6s
 6j B w nMR q 9 F k jwUX
 v u8Z wG R b GQ h7 Wn KR
B D L E wc l J4 ey B C
jmg 8 zGU

OpenSSH ~/.ssh/authorized_keys

ssh-rsa AAAAB3NzaC1yc2

 victim@laptop

 EAAAADAQAB

Exponent Modulus

 AAABAQC52/Uk84iUm ic
el7E r+ D/P Z6Lj hlu yv35bE wXm9 G Jyz +1s68 yzpD
3VQ wSH KqDnCg+OtaA 0 v qZc BQ B9X wIf I dSeGtcU uo
U +TlmAZ+D9 xjuSBBH0ShbaiH65 mlauISfR3VZW 7 B
2 52LhWG5 R SkM N2E2f HaP96J RO lHuy w8 Jwl4kJ
8 Ro1uhX0SV 9 rK 5 + WJ3P vjoMVU/KoAb NnY 8IT
 nkP 0 r yAKRygEfi7g ixOvQR79by8 L6yp kM5 obS sN
 hxQj RR td1

 m
 S / W k 8 EoT e x V tR
 v i o K C o F a J 5 B k
 v MNNA i FE uy6s
 6j B w nMR q 9 F k jwUX
 v u8Z wG R b GQ h7 Wn KR
B D L E wc l J4 ey B C
jmg 8 zGU

 (p' * q' * r' ...)

Example 1: OpenSSH

Target: ~/.ssh/authorized_keys

> Flip a bit in the RSA modulus
> Factorize it
> Reconstruct the new private key

Example 2: GPG & apt-get

Targets: sources.list

 flip package repository domain name
 eg. ubuntu.com -> ubunvu.com

Example 2: GPG & apt-get

Targets: sources.list
 +
 GPG keyring

 corrupt signing key

Conclusion

Conclusion

> Memory deduplication is dangerous

Conclusion

> Memory deduplication is dangerous

> Be aware of the security implications

Conclusion

> Memory deduplication is dangerous

> Be aware of the security implications

> Well, or just disable it

Erik Bosman

erik@minemu.org

@brainsmoke

Antonio Barresi

antonio.barresi@xorlab.com

@AntonioHBarresi

Rowhammer

physical memory

(seaborn attack)

sprayed page tables

