Memory Deduplication: The Curse that Keeps on Giving

Who we are

Erik Bosman

erik@minemu.org

PhD candidate at

Research on building reliable and secure computing systems.

https://www.vusec.net/

Antonio Barresi

antonio.barresi@xorlab.com

@AntonioHBarresi 😏

Co-founder of

xorlab 🗗

Interested in software and systems security topics.

https://www.xorlab.com

Acknowledgments

Cristiano Giuffrida

Herbert Bos

Bart Preneel

Mathias Payer

ETH zürich

Thomas R. Gross

Our message today...

> Memory deduplication

- > Memory deduplication
- > Side-channel

CAIN

CAIN

Cross-VM leak, break ASLR Memory deduplication

Dedup Est Machina

Dedup Est Machina

Innovative

Research

2016

Most

Intra-process read + write (Browser + [S) Memory deduplication + Rowhammer

Flip-Feng Shui

Flip-Feng Shui

Cross-VM leak + write, system compromise Memory deduplication + Rowhammer

- > Memory deduplication
- > Side-channel

black hat USA 2016

- > CAIN attack (2015)
- > Dedup Est Machina (2016)
- > Flip-Feng Shui (2016)

- > Memory deduplication
- > Side-channel
- > CAIN attack (2015)
- > Dedup Est Machina (2016)
- > Flip-Feng Shui (2016)
- > Conclusion

A method of reducing memory usage.

A method of reducing memory usage. Used in virtualization <u>environments</u>,

A method of reducing memory usage.

Used in virtualization environments,

(was) also enabled by default on Windows 8.1 and 10.

In virtualized environments it allows to reclaim memory and supports overcommitment of memory.

In virtualized environments it allows to reclaim memory and supports overcommitment of memory.

= run more VMs

Now we can sell even more VMs... \$\$\$

physical memory

virtual machine A

physical memory

virtual machine A

physical memory

virtual machine A

physical memory

virtual machine A

physical memory

virtual machine A

physical memory

* * * * *

virtual machine A

Kernel Same-page Merging (KSM)

- > Enabled by default for KVM (Ubuntu Server)
 - > Out-of-band Content Based Page Sharing (CBPS)

Kernel Same-page Merging (KSM)

- > Enabled by default for KVM (Ubuntu Server)
 - > Out-of-band Content Based Page Sharing (CBPS)

/sys/kernel/mm/ksm/run '1' or '0'
/sys/kernel/mm/ksm/sleep_millisecs e.g., 200 ms
/sys/kernel/mm/ksm/pages_to_scan e.g., 100

1000/sleep_millisecs * pages_to_scan = pages per second e.g., (1000/200ms) * 100 = 500 pages/sec

Memory deduplication: The Problem

Deduplicated memory does <u>not need</u> to have the <u>same security domain</u>.

(unlike fork(), file-backed memory)

An attacker can use deduplication as a side-channel.

Deduplication side-channel attack normal write

Deduplication side-channel attack normal write

Deduplication side-channel attack normal write

copy on write (due to deduplication)

A 1-bit side channel which is able to leak data across security boundaries

- A 1-bit side channel which is able to leak data across security boundaries
- > Cross-VM

- A 1-bit side channel which is able to leak data across security boundaries
- > Cross-VM
- > Cross-process

- A 1-bit side channel which is able to leak data across security boundaries
- > Cross-VM
- > Cross-process
- > Intra-process, leak process data from JavaScript

attacker memory

secret page

attacker memory

guess page

secret page

attacker memory

guess page

secret page

attacker memory

secret page

attacker memory

secret page

attacker memory

secret page

attacker memory

secret page

attacker memory

secret page

attacker memory

secret page

attacker memory

secret page

attacker memory

CAIN

Dedup Est Machina

Flip-Feng Shui

CAIN:

Cross-VM Address Space Layout Introspection

Deduplication (software side-channel)

CAIN:

Cross-VM Address Space Layout Introspection

Deduplication (software side-channel)

Cross-VM leak / ASLR bypass

CVE-2015-2877 / VU#935424 (https://www.kb.cert.org/vuls/id/935424)

CAIN

> Page contents to leak ASLR? Secret page?

> Page contents to leak ASLR? Secret page?

> How long to wait?

> Page contents to leak ASLR? Secret page?

> How long to wait?

> How to detect a merged page? Noise?

Suitable pages to break ASLR

- > Mostly static
- > Read-only in victim VM
- > Known to exist

Suitable pages to break ASLR

Suitable pages to break ASLR

Suitable page under Windows

> Well you still have to guess

- > Well you still have to guess
 - > 2¹⁹ base addresses for Windows x64

- > Well you still have to guess
 - > 2¹⁹ base addresses for Windows x64
 - > 524'288 guesses

- > Well you still have to guess
 - > 2¹⁹ base addresses for Windows x64
 - > 524'288 guesses
 - > One guess requires 1 page of memory
Based on http://sourceforge.net/projects/mpimd5bruteforc/

BRUTE FORCE

If it doesn't work, you're just not using enough.

Guessing the right address

> Attacker VM has much more memory

Guessing the right address

- > Attacker VM has much more memory
 - > Fill up memory with all guesses

Guessing the right address

- > Attacker VM has much more memory
 - > Fill up memory with all guesses
 - $> 2^{19} * 1$ page of 4 KB = 2 GB

Brute-force all addresses

<Page with RBA guess>
0x7f9ffa70000
0x7f9ffa80000
0x7f9ffa90000
0x7f9ffaa00000
0x7f9ffab00000
0x7f9ffac00000
0x7f9ffac00000

- •
- - •

Brute-force all addresses

•

> Depends on the memory deduplication

implementation

> Depends on the memory deduplication
implementation

> Varies depending on amount of memory used

> Depends on the memory deduplication
implementation

> Varies depending on amount of memory used

- > Attacker trade-off
 - > Waiting too little obstructs the attack
 - > Waiting too long increases attack time

> Try to automatically detect sleep time

> After buffer creation, wait e.g. t = 10min

> Try to automatically detect sleep time

> After buffer creation, wait e.g. t = 10min > Detect how many pages were merged

- > After buffer creation, wait e.g. t = 10min
 - > Detect how many pages were merged
 - > If detection rate > threshold (e.g. 90%)

- > After buffer creation, wait e.g. t = 10min
 - > Detect how many pages were merged
 - > If detection rate > threshold (e.g. 90%)
 > Use t

- > After buffer creation, wait e.g. t = 10min
 - > Detect how many pages were merged
 - > If detection rate > threshold (e.g. 90%)
 > Use t
 - > Else, increase t and try again

Non-shared

Merged

Non-shared

 $t_2 > 2 * (t_1+t_3)/2$ $t_{1,3} < M = 1000$ $t_1 < t_3$, $(t_3-t_1) < t_3/3$

Handling noise

> Be conservative and perform multiple rounds

Handling noise

> Be conservative and perform multiple rounds

> Probability that same guess is
 affected by noise in different
 rounds is low

Windows x64 ASLR

- > High Entropy ASLR
 - > 33 bits for stacks
 - > 24 bits for heaps

> 17 bits for executables
> 19 bits for DLLS
System-wide at
certain images

Attacking a single Windows VM

Attacking multiple Windows VM

sleep_millisecs = 20

😳 🖨 🐵 root@vmm: ~	8 🗇 💷 Windows_2012_x64 Virtual Machine	
root@vmm:~# uname -a Linux vmm 3.13.0-62-generic #102-Ubuntu SMP Tue Aug 11 14:29:36 UTC 2015 x86_64 6 64 GNU/Linux		
root@vmm:~# cat /sys/kernel/mm/ksm/run	Pid 1692 - WinDbg:6.3.9600.17298 AMD64	
G G Ubuntu 14 04 Virtual Machine	File Edit View Debug Window Help	
	Command	×
user@user-virtual-machine: ~/svn/vmap		^
 * [ATTACK - CREATE PAGES] mapped 1st page to memory (0x7f791c979000) * [ATTACK - CREATE PAGES] mapped page buffer (0x7f791b6c9000) * [ATTACK - RUN - FILTERING] filtering rounds are completed, remaining can * [ATTACK - RUN - FILTERING] total attack time so far 720 s / 12 min * [ATTACK - RUN - VERIFICATION] recreating 3527 attack pages 	Microsoft (R) Windows Debugger Version 6.3.9600.17298 AMD64 Copyright (c) Microsoft Corporation. All rights reserved. *** wait with pending attach Symbol search path is: *** Invalid ***	=
* [ATTACK - CREATE PAGES] win64 server 2012.create attack pages()		
<pre>* [ATTACK - CREATE PAGES] wind=_server_zorz.ereacc_accack_pages() * [ATTACK - CREATE PAGES] unmap previous buffer * [ATTACK - CREATE PAGES] 1st page file dump opened (bin/win2012/win2012_n * [ATTACK - CREATE PAGES] mapped 1st page to memory (0x7f791c979000) * [ATTACK - CREATE PAGES] mapped 1st page to memory (0x7f791c979000) * [ATTACK - CREATE PAGES] mapped 1st page to memory (0x7f791c979000)</pre>	* Symbol loading may be unreliable without a symbol search path. * * Use .symfix to have the debugger choose a symbol path. * * After setting your symbol path, use .reload to refresh symbol locations. *	
<pre>* [ATTACK - CREATE FACES] Happed page barrer (0x/1/9/laddrood) * [ATTACK - RUN - VERIFICATION] start verification rounds (total of 16) * [ATTACK - RUN - VERIFICATION] wait for pages to be merged (approx. 12 mi * [ATTACK - RUN - VERIFICATION] verification round 1 done</pre>	Executable search path is: ModLoad: 000007f7`0a7a0000 000007f7`0a9e3000 C:\Windows\Explorer.EXE ModLoad: 000007fb`e59f0000 000007fb`e5bae000 C:\Windows\SYSTEM32\ntdll.dll ModLoad: 000007fb`e59f0000 000007fb`e3466000 C:\Windows\SYSTEM32\ntdll.dll	
<pre>* [ATTACK - RUN - VERIFICATION] *** candidate: 000007FBE59F0000, * [ATTACK - RUN - VERIFICATION] *** candidate: 000007F9FFAA0000, * [ATTACK - RUN - VERIFICATION] recreating 38 attack pages</pre>	ModLoad: 000007fb e3330000 000007fb e2430000 C:\Windows\system32\KERNELBASE.dll ModLoad: 000007fb e3540000 000007fb e35e5000 C:\Windows\system32\KERNELBASE.dll ModLoad: 000007fb e3540000 000007fb e35e5000 C:\Windows\system32\KERNELBASE.dll ModLoad: 000007fb e3540000 000007fb e35e5000 C:\Windows\system32\Msvcrt.dll ModLoad: 000007fb e340000 000007fb e3533000 C:\Windows\system32\Msvcrt.dll	
<pre>* [ATTACK - CREATE PAGES] win64_server_2012.create_attack_pages() * [ATTACK - CREATE PAGES] 1st page file dump opened (bin/win2012/win2012_n * [ATTACK - CREATE PAGES] mapped 1st page to memory (0x7f791c979000)</pre>	ModLoad: 000007fb e3910000 000007fb e3ac0000 C:\Windows\SYSTEM32\combase.dll ModLoad: 000007fb e28d0000 000007fb e2913000 C:\Windows\SYSTEM32\powrprof.dll ModLoad: 000007fb e5910000 000007fb e59ee000 C:\Windows\SYSTEM32\advapi32.dll ModLoad: 000007fb e52a0000 000007fb e53ec000 C:\Windows\SYSTEM32\advapi32.dll ModLoad: 000007fb e52a0000 000007fb e53ec000 C:\Windows\SYSTEM32\u00edcombase.dll	
<pre>* [ATTACK - CREATE PAGES] mapped page buffer (0x7f791c919000) * [ATTACK - RUN - VERIFICATION] verification rounds are completed</pre>	ModLoad: 000007fb`e5510000 000007fb`e5650000 C:\Windows\system32\GDI32.dll ModLoad: 000007fb`e10e0000 000007fb`e1176000 C:\Windows\SYSTEM32\SHCORE.dll ModLoad: 000007fb`e35f0000 000007fb`e3640000 C:\Windows\system32\SHLWAPI.dll ModLoad: 000007fb`e320000 000007fb`e5115000 C:\Windows\system32\SHLWAPI.dll	
<pre>* [ATTACK - RUN - RESULTS] *** HIT: 0000007FBE59F0000, rating: 2/2 (address)</pre>	ModLoad: 000007fb e3es0000 000007fb e3f5000 c: \Windows\System32\SHEL32.dff ModLoad: 000007fb e1810000 000007fb e18f3000 C: \Windows\SYSTEM32\UxTheme.dll ModLoad: 000007fb e0e20000 000007fb e0e21000 C: \Windows\SYSTEM32\UxTheme.dll	>
* [ATTACK SUMMARY] > ATTACK TIME 1440 s / 24 min	0:030>	1
> HITS 1	Ln 0, Col 0 Sys 0: <local> Proc 000:69c Thrd 030:6e8 ASM OVR CAPS NU</local>	JM
> VERIFICATION ROUNDS 1 > TOTAL POUNDS 2	► 🛛 📋 🖳 11:41 AM 11/9/2015	
* [done]		

user@user-virtual-machine:~/svn/vmap\$

😂 🖨 🐵 root@vmm: ~	😣 🗇 💷 Windows_2012_x64 Virtual Machine	_
root@vmm:~# uname -a Linux vmm 3.13.0-62-generic #102-Ubuntu SMP Tue Aug 11 14:29:36 UTC 2015 x86_64		
6_64 GNU/Linux root@vmm:~# cat /sys/kernel/mm/ksm/run	Pid 1692 - WinDbg:6.3.9600.17298 AMD64 -	ð x
🕽 🗇 🐵 Ubuntu_14_04 Virtual Machine	File Edit View Debug Window Help	
	Command	2.
iser@user-virtual-machine: ~/svn/vmap	Minnerste (D) Windows Debunner Wennier (2.0000 18000 NDC)	^
<pre>* [ATTACK - CREATE PAGES] mapped 1st page to memory (0x7f791c979000) * [ATTACK - CREATE PAGES] mapped page buffer (0x7f791b6c9000) * [ATTACK - RUN - FILTERING] filtering rounds are completed, remai * [ATTACK - RUN - FILTERING] total attack time so far 720 s / 12 m </pre>	Copvright (c) Microsoft Corporation. All rights reserved.	=
<pre>* [ATTACK - RUN - VERIFICATION] recreating 3527 attack pages * [ATTACK - CREATE PAGES] win64_server_2012.create_attack_pages() * [ATTACK - CREATE PAGES] unmap previous buffer</pre>	000071b e5910000	_
<pre>* [ATTACK - CREATE PAGES] 1st page file dump opened (bin/win2012/w * [ATTACK - CREATE PAGES] mapped 1st page to memory (0x7f791c979000) * [ATTACK - CREATE PAGES] mapped page buffer (0x7f791ad8f000) * [ATTACK - RUN - VERIFICATION] start verification rounds (total of 16)</pre>	Arter setting your symbol peth, use .reload to reifesh symbol locations.	
<pre>* [ATTACK - RUN - VERIFICATION] wait for pages to be merged (approx. 12 mi * [ATTACK - RUN - VERIFICATION] verification round 1 done</pre>	ModLoad 000007ff 0a7a0000 000007ff 0a9e3000 C:\Windows\Explorer.ExE ModLoad: 000007fb e59f0000 000007fb e5bae000 C:\Windows\SYSTEM32\ntdll.dll ModLoad: 000007fb e5330000 000007fb e3466000 C:\Windows\SyStem32\KERNEL32.DL ModLoad: 000007fb e2d30000 000007fb e2e23000 C:\Windows\system32\KERNELBASE.	L dll
000007FBE59F00	/fb e3540000 000007fb e35e5000 C:\Windows\system32\msvcrt.dll /fb e3470000 000007fb e3533000 C:\Windows\system32\OLEAUT32.dl /fb e3910000 000007fb e3ac0000 C:\Windows\System32\combase.dll /fb e5910000 000007fb e59ee000 C:\Windows\SYSTEM32\combase.dll /fb e52a0000 000007fb e59ee000 C:\Windows\SYSTEM32\advapi32.dl /fb e52a0000 000007fb e59ee000 C:\Windows\SYSTEM32\advapi32.dl	1 1 1
	Ib C: Windows System32 GDI32.dll 7fb e5510000 000007fb e5650000 C: Windows System32 GDI32.dll ModLoad: 000007fb e35f0000 000007fb e3640000 C: Windows SYSTEM32 SHCORE.dll	
<pre>> * [ATTACK - RUN - RESULTS] *** HIT: 000007FBE59F0000, rating: 2/2 (address)</pre>	ModLoad: 000007fb`e3e30000 000007fb`e5115000 C:\Windows\system32\SHELL32.dll ModLoad: 000007fb`e1810000 000007fb`e18f3000 C:\Windows\SYSTEM32\UxTheme.dll ModLoad: 000007fb`e0e70000 000007fb`e0e91000 C:\Windows\SYSTEM32\dwmani.dll	~
* [ATTACK SUMMARY] > ATTACK TIME 1440 s / 24 min	0:030>	
> HITS 1	Ln 0, Col 0 Sys 0: <local> Proc 000:69c Thrd 030:6e8 ASM OVR</local>	CAPS NUM
> VERIFICATION ROUNDS 1 > TOTAL POLINDS 2		11:41 AM 11/9/2015
<pre>* [done]</pre>		

user@user-virtual-machine:~/svn/vmap\$

> Many ways to increase speed of attack

> Many ways to increase speed of attack

> Allocate more random pages in-between

> Many ways to increase speed of attack

> Allocate more random pages in-between

> Use more than one guess page (redundancy)

> Many ways to increase speed of attack

> Allocate more random pages in-between

> Use more than one guess page (redundancy)
> Different guess pages for same secret
e.g. relocated code pages ☺

Big limitation

> No control over victim memory layout

Big limitation

- > No control over victim memory layout
 - > Some control would help a lot ③
Big limitation

- > No control over victim memory layout
 - > Some control would help a lot ③

> No write primitive

Big limitation

- > No control over victim memory layout
 - > Some control would help a lot ③

- > No write primitive
 - > Rowhammer ③

memdedup for Windows

> MS enabled memory

deduplication

for <u>Windows 8.1 + 10</u>

memdedup for Windows

> MS enabled memory

deduplication

for <u>Windows 8.1 + 10</u>

CAIN

Dedup Est Machina

Flip-Feng Shui

Dedup est Machina

Deduplication (software side-channel)

Dedup est Machina

Deduplication (software side-channel) + Rowhammer (hardware bug)

Dedup est Machina

Deduplication (software side-channel) Rowhammer (hardware bug) **Exploit MS Edge without software bugs** (from JavaScript)

Deduplication - leak heap & code addresses

JavaScript Array

+0.0	
+3.141592	
42.	
1	
NaN	

Deduplication - leak heap & code addresses

JavaScript Array

+0.0	
+3.141592	
42.	
1	
NaN	

chakra.dll

Deduplication

leak heap & code addresses create a fake object

ion resses

Deduplication

leak heap & code addresses create a fake object

Rowhammer

- create reference to our fake object

esses

r fake object

Deduplication

leak heap & code addresses create a fake object

Rowhammer

- create reference to our fake object

esses

r fake object

Leaking existing pages is slow and the gained information is limited.

What if we can manipulate the contents of the victim's memory to leak secrets hand-picked by the attacker.

Challenge 1:

The secret we want to leak does not span an entire page.

Turning a secret into a page

secret

Turning a secret into a page

known data

Challenge 2:

The secret we want to leak has too much entropy to leak all at once.

Primitive #1: alignment probing

secret

known data

Primitive #1: alignment probing

secret

known data

Primitive #2: partial reuse

known data

Primitive #2: partial reuse

secret

known data

Deduplication - leak heap & code addresses

chakra.dll

JIT function epilogue (MS Edge)

known data

JIT function epilogue (MS Edge)

e (MS Edge) page

JIT function epilogue (MS Edge)

e (MS Edge) page

Deduplication - leak heap & code addresses

chakra.dll

Deduplication - leak heap & code addresses

JavaScript Array

+0.0	
+3.141592	
42.	
1	
NaN	

chakra.dll

What if leaking a heap pointer in stages is not possible...

We need to guess a page containing the complete pointer.

Heap pointer entropy in Edge

0x5F48143540

Heap pointer entropy in Edge 64Gadvertised ASLR (24 bit) * redundancy

0x5F48143540

Heap pointer entropy in Edge **64G** advertised ASLR (24 bit) * redundancy

0x5F48143540

(+/- 36 bit)

2561 non-deterministic bits * redundancy

Slab allocator for JavaScript objects

ay a

Slab allocator for JavaScript objects

1M VirtualAlloc()

1M VirtualAlloc()

Heap pointer entropy in Edge 64Gadvertised ASLR (24 bit) * redundancy

0x5F48143540

(+/- 36 bit)

2561 non-deterministic bits * redundancy

Heap pointer entropy in Edge 64Gadvertised ASLR (24 bit) * redundancy

0x5F48100000

entropy after 1MB alignment * redundancy (20 bit)

6 10

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

victim memory 36

attacker memory

physical memory

attacker memory

Creating Guess Pages

typed array data

Creating Guess Pages

guessed aligned addresses, 128M apart

typed array data

Creating Guess Pages

Birthday heap spray

+1M, +1M, +1M, ... $\gamma\gamma$

Birthday heap spray

+1M, +1M, +1M, ...

secret pages (allocated addresses)

Birthday heap spray

 $\mathbf{2}$

<mark>?</mark>?

+1M, +1M, +1M, ...

<u>\$\$\$\$</u>

secret pages (allocated addresses)

guess pages (containing guessed addresses)

Birthday heap spray

 $\mathbf{2}$

+1M, +1M, +1M, ...

<u>\$\$\$\$</u>\$

secret pages (allocated addresses)

guess pages (containing guessed addresses)

Outline:

Deduplication

leak heap & code addresses create a fake object

Rowhammer

- create reference to our fake object

esses

r fake object

Fake Uint8Array object

JavaScript Array

JavaScript Array

JavaScript Array

array data

JavaScript Array

JavaScript Array

array data

JavaScript Array

array data

DDR memory

channels

rows

JavaScript Array

JavaScript Array

data

array

JavaScript Array

JavaScript Array

data

array

CAIN

Dedup Est Machina

Flip-Feng Shui

Flip Feng Shui

Rowhammer (hardware bug)

Flip Feng Shui

Rowhammer (hardware bug) Deduplication (more than a software side-channel)

Flip Feng Shui

Rowhammer (hardware bug) Deduplication (more than a software side-channel) **Cross-VM compromise**

Rowhammer bit flips:

1) Unpredictable on which (virtual) page
 2) Unpredictable where in the page
 3) Repeatable once you've found a flip

Flip Feng Shui goal:

> Find victim pages with known content which allow for exploitation when certain bits are flipped

> Land this victim page in a physical memory location where this bit is flippable

Deduplication implementation: Windows 10

attacker memory

Deduplication implementation: Windows 10

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory

physical memory

attacker memory
Deduplication implementation: KVM on Linux (KSM)

physical memory

	P			
			P	

attacker memory

victim memory

Deduplication implementation: KVM on Linux (KSM)

physical memory

attacker memory

Deduplication implementation: KVM on Linux (KSM)

physical memory

attacker memory

victim memory

Example 1: OpenSSH

Target: ~/.ssh/authorized_keys

OpenSSH ~/.ssh/authorized keys

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC52/Uk84iUmmic el7ESr+/D/PWZ6Ljkhlu8yv35bEEoTwXm9eGxJyzV+1s68tRyzpD 3VQvwSHiKqDnCg+OtaAo0KvCqZcoBQFB9XawIfJI5dSeGtcUBuok Uv+TlmAZ+D9MNNAxjuSBBH0ShbaiH65imlauISfR3VZWFE7uy6sB 26j52LhWG5BRwSkMnMRN2E2fqHaP96J9R0FlHuykw8jwUXJwl4kJ 8vRo1uhX0SVu8Z9wGrKR5b+GQWJ3Ph7vjoMVU/KoAbWnNnYKR8IT BnkPD0LrEyAKRygEfi7gwcix0vQR79by8lL6ypJ4kM5eyobSBsNC jmghxQj8RRzGUtd1 victim@laptop

OpenSSH ~/.ssh/authorized keys

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC52/Uk84iUmmic el7ESr+/D/PWZ6Ljkhlu8yv35bEEoTwXm9eGxJyzV+1s68tRyzpD 3VQvwSHiKqDnCg+OtaAo0KvCqZcoBQFB9XawIfJI5dSeGtcUBuok Uv+TlmAZ+D9MNNAxjuSBBH0ShbaiH65imlauISfR3VZWFE7uy6sB 26j52LhWG5BRwSkMnMRN2E2fqHaP96J9R0FlHuykw8jwUXJwl4kJ 8vRo1uhX0SVu8Z9wGrKR5b+GQWJ3Ph7vjoMVU/KoAbWnNnYKR8IT BnkPD0LrEyAKRygEfi7gwcix0vQR79by8lL6ypJ4kM5eyobSBsNC jmghxQj8RRzGUtd1 victim@laptop

Modulus (p' * q' * r' ...)

Example 1: OpenSSH

Target: ~/.ssh/authorized keys

- > Flip a bit in the RSA modulus
- > Factorize it
- > Reconstruct the new private key

Example 2: GPG & apt-get

Targets: sources.list

flip package repository domain name eg. ubuntu.com -> ubunvu.com

Example 2: GPG & apt-get

Targets: sources.list GPG keyring

corrupt signing key

> Memory deduplication is dangerous

> Memory deduplication is dangerous

> Be aware of the security implications

> Memory deduplication is dangerous

> Be aware of the security implications

> Well, or just disable it

Erik Bosman erik@minemu.org @brainsmoke

Antonio Barresi

antonio.barresi@xorlab.com

@AntonioHBarresi

Rowhammer (seaborn attack)