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Memory deduplication

A method of reducing memory usage.

Used in virtualization environments,

(was) also enabled by default on
Windows 8.1 and 10.
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Memory deduplication

In virtualized environments it allows to

reclaim memory and supports overcommitment of

memory.

= run more VMs



Now we can sell even more VMs… $$$

Austin Powers: International Man of Mistery, 1997, © New Line Cinema
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Kernel Same-page Merging (KSM)

> Enabled by default for KVM (Ubuntu Server)

> Out-of-band Content Based Page Sharing (CBPS)

/sys/kernel/mm/ksm/run ‘1’ or ‘0’

/sys/kernel/mm/ksm/sleep_millisecs e.g., 200 ms

/sys/kernel/mm/ksm/pages_to_scan e.g., 100

1000/sleep_millisecs * pages_to_scan = pages per second

e.g., (1000/200ms) * 100 = 500 pages/sec



Memory deduplication: The Problem

Deduplicated memory does not need to have
the same security domain.

(unlike fork(), file-backed memory)

An attacker can use deduplication
as a side-channel.
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Deduplication side-channel attack

A 1-bit side channel which is able to leak data 
across security boundaries

> Cross-VM

> Cross-process

> Intra-process, leak process data from JavaScript
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Exploitation of the side-channel

attacker memory victim memory

secret page

write time ≤ threshold
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CAIN:
Cross-VM Address Space Layout Introspection

Deduplication
(software side-channel)

Cross-VM leak / ASLR bypass

CVE-2015-2877 / VU#935424 (https://www.kb.cert.org/vuls/id/935424)
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CAIN

> Page contents to leak ASLR? Secret page?

> How long to wait?

> How to detect a merged page? Noise?



Suitable pages to break ASLR

Suitable page
to break ASLR

Page aligned

> Mostly static

> Read-only in victim VM

> Known to exist
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Suitable pages to break ASLR

Page aligned

Known offsets within the page

Contains values derived 
from the base address of an 
executable image

0x7f9ffaabeef

0x7f9ffaa01230x7f9ffaa0000



Suitable page under Windows
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Guessing the right address

> Well you still have to guess

> 219 base addresses for Windows x64

> 524’288 guesses

> One guess requires 1 page of memory



Based on http://sourceforge.net/projects/mpimd5bruteforc/
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Guessing the right address

> Attacker VM has much more memory

> Fill up memory with all guesses

> 219 * 1 page of 4 KB = 2 GB



Brute-force all addresses

<Page with RBA guess>

0x7f9ffa70000

0x7f9ffa80000

0x7f9ffa90000

0x7f9ffaa0000

0x7f9ffab0000

0x7f9ffac0000

0x7f9ffad0000

.

.

.



Brute-force all addresses

<Page with RBA guess>

0x7f9ffa70000

0x7f9ffa80000

0x7f9ffa90000

0x7f9ffaa0000

0x7f9ffab0000

0x7f9ffac0000

0x7f9ffad0000

.

.

.

detect_shared_pages()

0x7f9ffaa0000
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Wait for how long?

> Depends on the memory deduplication 

implementation

> Varies depending on amount of memory used

> Attacker trade-off

> Waiting too little obstructs the attack

> Waiting too long increases attack time
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Adaptive sleep-time detection

> Try to automatically detect sleep time

> After buffer creation, wait e.g. t = 10min

> Detect how many pages were merged

> If detection rate > threshold (e.g. 90%)

> Use t

> Else, increase t and try again
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Detect merged pages

Non-shared

Merged

Non-shared

t

t

t

29

2667

34

Measure write

time with rdtsc
(Read Time Stamp Counter)

t2 > 2 * (t1+t3)/2 t1,3 < M = 1000 t1 < t3, (t3-t1) < t3/3 



Handling noise

> Be conservative and perform multiple rounds



Handling noise

> Be conservative and perform multiple rounds

> Probability that same guess is

affected by noise in different

rounds is low



Windows x64 ASLR

> High Entropy ASLR

> 33 bits for stacks

> 24 bits for heaps

> 17 bits for executables

> 19 bits for DLLS

System-wide at 
boot-time for
certain images



Attacking a single Windows VM



Attacking multiple Windows VM

sleep_millisecs = 20
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Speed improvements

> Many ways to increase speed of attack

> Allocate more random pages in-between

> Use more than one guess page (redundancy)

> Different guess pages for same secret

e.g. relocated code pages 
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Big limitation

> No control over victim memory layout

> Some control would help a lot 

> No write primitive

> Rowhammer 
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Deduplication
(software side-channel)

+
Rowhammer

(hardware bug)

Exploit MS Edge without software bugs
(from JavaScript)

Dedup est Machina
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Rowhammer

- leak heap & code addresses
- create a fake object

- create reference to our fake object

Outline:



                                          

Leaking existing pages is slow and the 
gained information is limited. 
                                       
What if we can manipulate the contents 
of the victim's memory to leak secrets
hand-picked by the attacker. 



Challenge 1:

                                       
The secret we want to leak does not 
span an entire page. 
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known data

secret

secret page



Challenge 2:

                                       
The secret we want to leak has 
too much entropy to leak all 
at once. 



Primitive #1: alignment probing
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secret
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JIT function epilogue (MS Edge)

mov RCX,0x1c20 mov RAX, [code address] jmp RAX trap

trap trap trap trap trap trap  ...trap trap trap trap trap trap

trap trap

known data

secret
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JIT function epilogue (MS Edge)

mov RCX,0x1c20 mov RAX, [code address] jmp RAX trap

trap trap trap trap trap trap

trap

trap trap trap trap trap trap

trap trap trap trap trap trap

trap trap trap trap trap

page
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Deduplication

- leak heap & code addresses

+3.141592

+0.0

42.

1

NaN

JavaScript Array chakra.dll

Outline:



What if leaking a heap pointer in 
stages is not possible... 
                                       
We need to guess a page containing 
the complete pointer.
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Heap pointer entropy in Edge

0x5F48143540

advertised ASLR (24 bit)

non-deterministic bits
(+/- 36 bit)

64G

256T

* redundancy

* redundancy
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Slab allocator for JavaScript objects

1M VirtualAlloc()
.
.
.

1st after VirtualAlloc() call

Timing side-channel :-D



Heap pointer entropy in Edge

0x5F48143540

advertised ASLR (24 bit)

non-deterministic bits
(+/- 36 bit)

64G

256T

* redundancy

* redundancy



Heap pointer entropy in Edge

advertised ASLR (24 bit)
64G

0x5F48100000

entropy after 1MB alignment
(20 bit)

4G

* redundancy

* redundancy
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Primitive #3: birthday heapspray

physical memory attacker memory

*
victim memory

*
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Creating Secret Pages

1M Aligned
objects

.
.
.

page

secret A

secret B

secret C
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Creating Guess Pages

guessed
aligned

addresses,
128M apart

.
.
.

guess X

guess Y

guess Z

guess Q

???
???
???
???
???

???



Birthday heap spray
+1M, +1M, +1M, ...

+128M,
+128M,
+128M,
...



Birthday heap spray
+1M, +1M, +1M, ...

+128M,
+128M,
+128M,
...

secret pages
(allocated
addresses)



Birthday heap spray
+1M, +1M, +1M, ...

+128M,
+128M,
+128M,
...

secret pages
(allocated
addresses)

guess pages (containing guessed addresses)



Birthday heap spray
+1M, +1M, +1M, ...

+128M,
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guess pages (containing guessed addresses)



Deduplication

Rowhammer

- leak heap & code addresses
- create a fake object

- create reference to our fake object
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Fake Uint8Array object

array
data
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Pointer pivotting
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Rowhammer
(hardware bug)

+
Deduplication

(more than a software side-channel)

Cross-VM compromise

Flip Feng Shui



                                       
Rowhammer bit flips: 
                                       
1) Unpredictable on which (virtual) page 
2) Unpredictable where in the page
3) Repeatable once you've found a flip 



Flip Feng Shui goal:

> Find victim pages with known content 
 which allow for exploitation when 
 certain bits are flipped 
                                       
> Land this victim page in a physical
 memory location where this bit is 
 flippable 
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Deduplication implementation:

physical memory attacker memory

KVM on Linux (KSM)

victim memory



Example 1: OpenSSH

                                       
Target: ~/.ssh/authorized_keys 



OpenSSH ~/.ssh/authorized_keys

ssh-rsa AAAAB3NzaC1yc2

                 victim@laptop

                      EAAAADAQAB

Exponent Modulus (p * q)

                                AAABAQC52/Uk84iUm ic
el7E r+ D/P Z6Lj hlu yv35bE   wXm9 G Jyz +1s68  yzpD
3VQ wSH KqDnCg+OtaA 0 v qZc BQ B9X wIf I dSeGtcU uo 
U +TlmAZ+D9    xjuSBBH0ShbaiH65 mlauISfR3VZW  7    B
2  52LhWG5 R SkM   N2E2f HaP96J RO lHuy w8    Jwl4kJ
8 Ro1uhX0SV   9  rK 5 +  WJ3P  vjoMVU/KoAb  NnY  8IT
 nkP 0 r yAKRygEfi7g  ixOvQR79by8 L6yp  kM5  obS sN 
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                                                 m  
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OpenSSH ~/.ssh/authorized_keys

ssh-rsa AAAAB3NzaC1yc2

                 victim@laptop

                      EAAAADAQAB

Exponent Modulus

                                AAABAQC52/Uk84iUm ic
el7E r+ D/P Z6Lj hlu yv35bE   wXm9 G Jyz +1s68  yzpD
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U +TlmAZ+D9    xjuSBBH0ShbaiH65 mlauISfR3VZW  7    B
2  52LhWG5 R SkM   N2E2f HaP96J RO lHuy w8    Jwl4kJ
8 Ro1uhX0SV   9  rK 5 +  WJ3P  vjoMVU/KoAb  NnY  8IT
 nkP 0 r yAKRygEfi7g  ixOvQR79by8 L6yp  kM5  obS sN 
   hxQj RR   td1

                                                 m  
    S  /   W    k   8      EoT    e x   V     tR    
   v   i           o K C   o  F   a   J 5       B  k
 v         MNNA                i            FE uy6s 
 6j       B w   nMR     q      9  F    k  jwUX      
 v         u8Z wG  R b GQ    h7           Wn   KR   
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        (p' * q' * r' ...)



Example 1: OpenSSH

                                       
Target: ~/.ssh/authorized_keys 
                                       
> Flip a bit in the RSA modulus 
> Factorize it
> Reconstruct the new private key 



Example 2: GPG & apt-get

                                       
Targets:    sources.list 
                                       
                                       

 flip package repository domain name 
    eg.  ubuntu.com -> ubunvu.com 



Example 2: GPG & apt-get

                                       
Targets:    sources.list 
               + 
           GPG keyring 

                                       
        corrupt signing key 



Conclusion



Conclusion

> Memory deduplication is dangerous



Conclusion

> Memory deduplication is dangerous

> Be aware of the security implications



Conclusion

> Memory deduplication is dangerous

> Be aware of the security implications

> Well, or just disable it
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