
Dissecting modern (3G/4G) cellular modems
Harald Welte, Holger Hans Peter Freyther

This talk
Our motivation

A bit of History

Selecting a device

An unexpected surprise

Firmware upgrade

Outlook/Recommendations/Wishes

Motivation
Implementing GSM specifications for the last decade (OpenMoko, Osmocom)

8 years since Anatomy of Smartphone Hardware at 25C3

7 years since OsmocomBB for GSM

Used and built M2M devices using 2G modems at work

so we’re looking for a modem that can be used for

our next-generation M2M/embedded devices

testing/logging/tracing Osmocom 3G/4G network-side software

building more tools to help understanding cellular technology

Cellular Modems in M2M
Assume you want to build a M2M device

Classic approach to M2M/Embedded cellular:

Cellular modem with AT commands over Serial/USB

Main Processor runs M2M application

if you run Application in Modem, you can save PCB space,
power and BOM cost

OpenAT by Sierra Wireless

Write C code using OpenAT APIs

Dynamically loaded into the RTOS

Runs without privilege separation, MMU

Protocol to multiplex AT, log, debug

Discontinued HW platform ⇒ Locked in

Various other limitations

Device requirements
Our requirements for a good modem

Ability to run application code inside modem

Avoid modem supplier vendor lock-in (EOL, …)

Get textual logging when handling messages

Get a copy of the radio network messages and export to GSMTAP

Like Tobias Engels x-goldmon

But for all GPRS, EGPRS, UMTS and LTE messages

https://github.com/2b-as/xgoldmon

Qualcomm DIAG protocol
Qualcomm DIAG in many products (DVB-H, GSM, …)

Presented by Guillaume Delugre at 28C3

Simple HDLC frame (0x7e), cmd, data, CRC16

Events, Logging, Command/Response

Thousands of different message structures

ModemManager, gsm-parser consume only a small fraction

0x7E CMD Payload CRC16 0x7E

https://events.ccc.de/congress/2011/Fahrplan/attachments/2022_11-ccc-qcombbdbg.pdf

Selecting a device
Old Option Icon 225 stick exposes DIAG out of the box

Quectel UC20 (2G+3G) expose DIAG by default

but no LTE support

Quectel EC20 (2G+3G+4G) expose DIAG by default

2G, 3G and 4G sounds quite nice

EC20 not only a LGA solder module but also as mini-PCIe

convenient for early testing / prototyping without custom board

EC20 using a Qualcomm MDM9615 chipset

Also used in the iPhone5

Almost no documentation on MDM9615 available

Still, a good candidate for starting our research…

An unexpected surprise

Firmware update, hints of Linux
Got a firmware upgrade to fix stability / bugs

Looks like it contains traces of Linux?

Looks like it uses fastboot for the update

Other people have already found Linux in MDM9615 based products (e.g Mickey Shkatov at
DEFCON 23)

But why would there be Linux inside a Modem?

Qualcomm is known for their REX/AMSS on Hexagon baseband ?!?

And if it contains Linux, GPL requires them to mention that, include License text and
provide source code ?!?

https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEFCON-23-Mickey-Shkatov-Jesse-Michael-Scared-poopless-LTE-and-your-laptop-UPDATED.pdf

GPL compliance
No written offer, let’s see if it runs Linux

Armijn Hemels gpltool.git has unyaffs to unpack yaffs

strings, etc. clearly reveal Linux, glibc, busybox

other interesting strings like AT+QLINUXCMD=? show up

The fun and exploration begins…

technical analysis (serial console, firmware reversing, …)

legal enforcement to get source code of GPL/LGPL components (Harald is founder
of gpl-violations.org)

http://gpl-violations.org/

Hardware based analysis
mPCIe modules often expose additional signals like PCM audio on non-standard pins

existing PC/embedded mainboards don’t use those signals

create Osmocom mPCIe-breakout board to access those signals

https://osmocom.org/projects/mpcie-breakout/wiki

https://osmocom.org/projects/mpcie-breakout/wiki

Serial Console
EC20 solder module documents DBG_UART pinout, but not all modules have it enabled?

serial console is at 1.8V, but the 1.8V supply is not accessible (so not easy to add external
level shifter / Vref)

create Osmocom multi-voltage USB-UART with selectable 1.8, 2.3, 2.5, 2.8, 3.0 and 3.3V
logic level

https://osmocom.org/projects/mv-uart/wiki

root password (DES hash): oelinux123

https://osmocom.org/projects/mv-uart/wiki

Retro-fitting Serial Console to mPCIe module
unfortunately the DBG_UART on the LGA module solder pads is not exposed to mPCIE

some soldering required to retro-fit a 2.54mm header:

GPL compliance
Linux basis created by Qualcomm and used by Quectel

https://wiki.codeaurora.org/xwiki/bin/QLBEP/

Many branches, releases, which to use?

I tried instruction above to build yaffs2 for MDM9615, so I downloaded source
M9615AAAARNLZA1611161.xml but during compilation I faced some libs that are
missing such as libQMI and acdb-loader..

— Tonino Perazzi

https://wiki.codeaurora.org/xwiki/bin/QLBEP/

GPL compliance
Asking for the complete and corresponding source

The source code of Qflash tool in Linux is attached, […]

Asking again for the complete and corresponding source

We never been in legal dispute and we always make sure to understand IPR ahead of
using technology belonging to third party.

— Quectel

GPL compliance
Asking for the complete and corresponding source

We appreciate the efforts that your client had put into the open source project
netfilter/iptable. However, […] your client does not have the right to
empower the copyright. We think software netfilter/iptable is built on the
code operating system GUN/Linux, thus subject to GPL terms, where FSF
requires that each author of code incorporated in FSF projects either provide
copyright assignment to FSF or disclaim copyright. Therefore, It seems that
your client does not have the copyright on netfilter/iptable.

As one of the leading providers of wireless solution, Quectel is always
respectful IPR. We would like to compliant with GPL and do some
necessary statements，including a disclaimer or appropriate notices. Under
the terms of GPL, we would like to dedicate Kernel code of EC25x to free
software community.

— Quectel

GPL compliance
Asking for the complete and corresponding source

Many thanks for your detailed explanations GPL/LGPL license terms and the
practical methods. I will carefully study your suggestions again and find a
proper way to open GLP/LGPL licensed software. Basically, we will simply
provide a tarball of open source for download at this time. And release the git
repositories in next step.

— Quectel

Asking for the complete and corresponding source

We are always willing to achieve GPL compliance.

— Quectel

Asking for the complete and corresponding source

So we need some time to know of all things and construct the Open Source
projects. Within a short time, we cannot construct a perfect web site to
present Open Source things now. However, we will continue to do like that.

— Quectel

GPL compliance
Your tarball is missing some files

We have issued all GPL licensed source code. We have no the xt_dscp file in the
project, and nor Qulacomm. It must be caused by your compilation
environment. If you have more question or problem during the development with
Quectel module, please add my Skype ID (XXXXX), I will continue to support you
on Skype.
The email will not discuss the compiling issue any more.

— Quectel

GPL compliance
… many months later

we have received various source tarballs

they contain not only GPL/LGPL code but other FOSS code (thanks!)

full license compliance still not achieved, but improving…

Sierra Wireless Legato is a positive example of a competitor

they not only provide the OE/Linux source but extensive documentation!

but they try to lure customers into a proprietary Legato framework, and thus again
vendor-lock-in :(

MDM 9615 HW and SW

Qualcomm Hardware
Qualcomm MDM9615 chipset

Used in the iPhone 5 and automotive

Modems like Quectel EC20, Sierra Wireless MC7355

No public HW documentation?!

Either not many people study it or are not allowed to share?

MDM 9615 HW Overview
????

How to access the system?
serial console requires soldering re-work and is slow

easy mechanism to get shell and transfer files from/to target

Android adbd present on the modem but not exposed via USB

it’s possible to re-configure the Linux kernel Android USB Gadget:

AT+QLINUXCMD="/usr/bin/usb_uartdiag"

device re-enumerates with different composite USB interfaces

Linux kernel driver on host needs patching (static interface mapping assumption)

patches available in quectel-experiments.git, documented in wiki

MDM 9615 AP SW Overview
The software stack seems to be called Qualcomm LE

Android Bootloader

Android Linux kernel

Android Debug Bridge (adb)

but: GNU libc, busybox userland

Using OpenEmbedded to build images

Developed and maintained by Qualcomm

Qualcomm Linux kernel overview
Qualcomm Android Linux kernel

Huge changes compared to mainline git diff -w | wc -l

v3.0.21 in EC20: 1.5 million lines

v3.18.20 in EC25: 1.9 million lines

Expected: CPU + peripheral drivers

Less expected:

smem_log (shared memory logging)

ipc_log (inter-processOR communication)

remote spinlocks

Qualcomm Linux kernel subsystems
Some of the Qualcomm-specific kernel sub-systems

SMD Shared Memory Device

IPC Inter Processor Communications

RMNET Remote Network

BAM Bus Access Manager

IPA Internet Packet Accelerator

DIAGFWD DIAG Forwarding

AF_MSM_IPC Socket family for Qualcomm IPC

f_
se

ria
l

f_
rm

ne
t

f_
se

ria
l

f_
ffs

f_
di

ag

USB Gadget

NM
EA

AT
CM

D

RM
NE

T

DI
AGQ
M

I

AT
CM

D

RM
NE

T

Q
M

I

SMD (Shared Memory Device)

SMD (Shared Memory Device)

/d
ev

/n
m

ea

/d
ev

/s
m

dc
nt

l0

/d
ev

/d
ia

g
/d

ev
/tt

yG
S0

QMI clients

quec_bridge

qmuxd

adbd

rm
ne

t0

He
xa

go
n

M
od

em
 C

PU
AR

M
 C

or
te

x-
A5

Ap
pl

ic
at

io
n

C
PU

Us
er

sp
ac

e

Li
nu

x
Ke

rn
el

diag
fwd

Qualcomm LE System Architecture
simplified block diagram

USB interface fully controlled by Linux AP

very complex Qualcomm Android USB
Gadget

some endpoints mapped to SMD queues

other endpoints handled by regular
Linux

GPS NMEA takes completely different
path than AT commands, despite both
being serial ports?

DIAG and QMI handled in more complex
ways

DIAG in Qualcomm LE
DIAG interface of Modem exposed on SMD

diagfwd distributes messages between USB, SMD and /dev/diagchar

Linux userspace processes don’t use syslog, but diag msg for logging via libdiag.so

Linux Kenrnel

Linux Userspace

Modem DSP SMD diagfwd

f_diag USB

diagchar

qmuxd

/dev/diag

atfwd_daemon/dev/diag

QCMAP

/dev/diag

quectel_daemon

/dev/diag

Host

QMI in Qualcomm LE
every rmnet data device has associated QMI control

on your Linux PC: qmi_wwan and /dev/cdc-wdm

on Qualcomm LE modem: /dev/smdcntlN, multiplexed by qmuxd

Linux Kenrnel

Linux Userspace

Modem DSP Shared Memory Devices f_rmnet USB Gadget USB to Host

qmuxd

/dev/smdccntlN atfwd_daemon/var/qmux_connect_socket

quectel_daemon/var/qmux_connect_socket

mbimd/var/qmux_connect_socket

ipth_dme

/var/qmux_connect_socket

qti

/var/qmux_connect_socket

qxmapp

/var/qmux_connect_socket

QCMAP_ConnectionManager

/var/qmux_connect_socket

Tools for analysis
We created some tools to help our analysis

used OE to build matching opkg and OE packages for socat, lsof, strace

FOSS programs for the Linux AP linked against proprietary libqmi-framework.so

qmi_test: Simple program to read IMEI via QMI

atcop_test: Test program to implement AT commands in Linux userspace

100% FOSS programs

qmuxd_wrapper: LD_PRELOAD wrapper for tracing between qmuxd and QMI
clients

libqmi-glib transport support for qmuxd (work in progress)

osmo-qcdiag: Host tool for obtaining DIAG based logs from Linux programs +
QMI traces, decoded via libmi-glib

Userspace programs
We found a bunch of proprietary Linux userspace programs

adbd Implements Android Debug Bridge

atfwd_daemon Implement Quectel-Specific AT Commands

quectel_daemon ?; various ASoC related bits

qti ?

mbim Mobile Broadband IF Model (translates MBIM to QMI)

QCMAP_ConnectionManager runs linux-base WiFi AP/router with LTE backhaul

quec_bridge reads GPS NMEA from /dev/nmea and writes it to /dev/ttyGS0

Funny bits + pieces

Funny AT commands
AT+QLINUXCMD, e.g. switch usb config to get adb

arbitrary shell commands executed as root on r/w rootfs!

AT+QFASTBOOT, switch to the bootloader

AT+QPRINT, print dmesg

AT for system("echo mem > /sys/power/state")

How many processes does it take to reboot a
system?

rebootdiagapp registers DIAG command (cmd code 0x29)

spawns thread that runs system("qmi_simple_ril_test
input=/tmp/reset")

system("echo 'modem reset' > /tmp/reset")

makes qmi_simple_ril_test send a QMI message to modem

system("rm /tmp/reset")

writes "REBOOT" to /dev/rebooterdev this time using fwrite()!

reboot_daemon reads /dev/rebooterdev

read_count = read(pipe_fd,buf,MAX_BUF-1);
/* if read REBOOT_STR, then call reboot */
if(strncmp(buf,REBOOT_STR,strlen(REBOOT_STR)) == 0) {
 debug_printf("going for reboot\n");
 printf("reboot-daemon: initiating reboot\n");
 system("reboot");
}

C programs that look like shell scripts
strings /usr/bin/quectel_daemon

echo "nau8814-aif1" > /sys/devices/platform/soc-audio.0/tx_dai_name
cp -f /cache/usb/qcfg_usbcfg /etc/; cp -f /cache/usb/usb /etc/init.d/
echo 90 >/sys/kernel/debug/pm8xxx-pwm-dbg/0/duty-cycle
pkill -f "/bin/sh /usr/bin/nmea_demon.sh"
ps ef | grep "quec_bridge /dev/nmea /dev/ttyGS0" | grep -v grep
cd /cache/ufs;ls

Firmware upgrade

recovery and applypatch
Qualcomm uses recovery.git from Android ~4.0

Updates are zip files with deltas, SHA1+RSA

recovery started on boot, drives applypatch

// Look for an RSA signature embedded in the .ZIP file comment given
// the path to the zip. Verify it matches one of the given public
// keys.

https://android.googlesource.com/platform/bootable/recovery.git/+/android-4.0.4_r2.1

Qualcomm EC20 firmware upgrade
Based on the recovery.git code

But for some reason using RedBend for the update (legacy?)

RSA still linked into the binary but not used

RedBend used by many more companies and systems (e.g. Quectel UC20, automotive)

RedBend (delta update) software
Used in OMA DeviceManagement as well? (e.g. Mathew Solnik)

Lots of starring at hexdumps, lots of help from Dieter Spaar

Created tools to partially extract and create .diff files

Heavy in pointers/offsets, not robust

Crashes on crafted files

Not cryptographically signed!

https://www.blackhat.com/docs/us-14/materials/us-14-Solnik-Cellular-Exploitation-On-A-Global-Scale-The-Rise-And-Fall-Of-The-Control-Protocol.pdf

atfwd_daemon QCMAP_ConnectionManager

wget

recovery image

s t a r t

s t a r t

reboot

Firmware upgrade overview

$ strings atfwd_daemon | egrep
"wget|QCMAP|fota|update.z"

... QCMAP_ConnectionManager
/etc/mobileap_cfg.xml n n
fotanet
/usr/bin/wget -T 20 -t 3 %s -O
%s
mv %s %s && mkdir -p /cache/fota
&& echo %s > %s
/cache/fota/ipth_config_dfs.txt
rm -rf /cache/fota /cache/recovery /cache/update.zip
Start download fota for update.zip

atfwd_daemon can be asked to start upgrade

Configure APN, specify URL, store result to update.zip

Add status and reboot to recovery

Apply update.zip and reboot

Recommendation to modem vendors
It is great to have an open and accessible Qualcomm based modem for further research and
developing custom applications/extensions

Security issues (particularly unverified FOTA) must be fixed

We need security from attackers without locking out the user/owner

If vendors introduce verified boot and/or FOTA, allow owner specified keys!

Please keep it open, good for learning and many applications

Allow owners to modify the software of their device

Secure the FOTA upgrading with owner specified keys

Status and Outlook
Status today

Osmocom wiki with all our findings public now!

debug tools (osmo-qcdiag, LD_PRELOAD wrapper, qmi_test, etc.) released

mpcie-breakout + mv-uart released + available

libqmi-glib integration WIP

Outlook

we hope to grow documentation in wiki

please help us out: read code, play with devices + update wiki

OE/opkg package feed planned

aim is to have 100% FOSS userland on Cortex-A5

Unrelated Announcement
Osmocom project has gained support for 3G/3.5G during 2016

Osmocom suffers from lack of contributions :(

We want to motivate more contributions

Accelerate 3.5G programme provides 50 free 3.5 femtocells to contributors

tell us how you would use your free femtocell to improve Osmocom

Call for Proposals runs until January 31st, 2017.

see http://sysmocom.de/downloads/accelerate_3g5_cfp.pdf

http://sysmocom.de/downloads/accelerate_3g5_cfp.pdf

Questions
Questions?

Links
Our results / hacks

https://osmocom.org/projects/quectel-modems

git://git.osmocom.org/quectel-experiments.git

git://git.osmocom.org/osmo-qcdiag.git

ftp://ftp.osmocom.org/quectel (mirrored)

Collection of links for further study

ftp://ftp2.quectel.com/OpenSrc/

https://wiki.codeaurora.org/xwiki/bin/QLBEP/

https://events.ccc.de/congress/2011/Fahrplan/attachments/2022_11-ccc-
qcombbdbg.pdf

https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEFCON-
23-Mickey-Shkatov-Jesse-Michael-Scared-poopless-LTE-and-your-laptop-
UPDATED.pdf

https://github.com/2b-as/xgoldmon

https://www.blackhat.com/docs/us-14/materials/us-14-Solnik-Cellular-
Exploitation-On-A-Global-Scale-The-Rise-And-Fall-Of-The-Control-Protocol.pdf

https://osmocom.org/projects/quectel-modems
ftp://ftp.osmocom.org/quectel
ftp://ftp2.quectel.com/OpenSrc/
https://wiki.codeaurora.org/xwiki/bin/QLBEP/
https://events.ccc.de/congress/2011/Fahrplan/attachments/2022_11-ccc-qcombbdbg.pdf
https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEFCON-23-Mickey-Shkatov-Jesse-Michael-Scared-poopless-LTE-and-your-laptop-UPDATED.pdf
https://github.com/2b-as/xgoldmon
https://www.blackhat.com/docs/us-14/materials/us-14-Solnik-Cellular-Exploitation-On-A-Global-Scale-The-Rise-And-Fall-Of-The-Control-Protocol.pdf

