
Shining some light on the Amazon Dash button

Hunz <itsec@firlefa.nz>

28.12.2016

33C3

The Dashbutton

• available in the US since 2014
• in Germany since August 2016
• 2 hardware-revisions
• this talk: rev. 2

What is it, what does it do?

• wifi-connected button tied to your amazon-account
• button can be used to reorder certain consumables
• only available for certain brands/products
• costs 5€ with refund upon first button-triggered order
• customizable button for $20 available - uses AWS

1

What’s interesting about it?

• it has wifi
• sort of internet-of-shit device
• how does it work?

• what about security?
• security risk to put it in our networks?
• can it be (ab)used for CYBER?

• can it be repurposed for custom IoT-projects?
• more powerful than ESP8266, comparable price
• if we cannot run code on it we don’t own it

2

Prior research

• old button:
https://mpetroff.net/2015/05/amazon-dash-button-teardown/

• new button: https:
//mpetroff.net/2016/07/new-amazon-dash-button-teardown-jk29lp/
[mpetroff]

• audio protocol: http://www.blog.jay-greco.com/wp/?p=116 [jaygreco]

3

https://mpetroff.net/2015/05/amazon-dash-button-teardown/
https://mpetroff.net/2016/07/new-amazon-dash-button-teardown-jk29lp/
https://mpetroff.net/2016/07/new-amazon-dash-button-teardown-jk29lp/
http://www.blog.jay-greco.com/wp/?p=116

Repurposing the Dash the easy way

• Amazon smartphone app used to configure the dash
• last step of configuration is choosing a product
• aborting here prevents the dash from ordering
• product selection stored server-side
• dash stores wifi config nevertheless
• button contacts server, server says nope, button blinks red
• upon press button does 802.11 probe, auth, association, DHCP, ARP and DNS
• monitoring DHCP logfile with custom hook is easy

4

In this talk

• hardware
• communication protocols & crypto
• firmware (version: 19.4.10 Svnrev 12577)
• running custom code on the button

I didn’t analyze the amazon smartphone apps

5

Hardware

Opening the Dash

• housing is heat-sealed plastics
• opening without damage is non-trivial
• 1st attempt with knife destroyed some SMD-components
• carefully applying a cutting-wheel seems to be best option

6

What’s in there?

PCB: 4 layers, SMD 0201 parts

Microcontroller: Atmel ATSAMG55J19

• 120MHz ARM Cortex-M4 with FPU
• 512 kBytes Flash, 160 kBytes RAM
• QFN64 package with black stuff around the pads
• black stuff can be softened with acetone
• remove carefully - SMD-components underneath

Wifi-IC: Atmel ATWINC1500B

• 2.4GHz, up to 72 MBps, WPA(2), etc.
• builtin IP-stack with DHCP, DNS, SSL, etc.

7

What’s in there? (2)

3.3V voltage-regulator: TI TPS61201DRC

• boost- & downconversion-mode
• 0.3V .. 5.5V operating range

Other parts:

• Bluetooth Low-Energy: Cypress CYBL10563-68FNXIT
• 4MByte SPI-Flash: Micron N25Q032
• MEMS microphone (SiSonic PDM?)
• RGB LED
• 32kHz oscillator
• some discrete semiconductors
• AAA battery: ≤1.5V

8

Putting the pieces together

Overview of Dash components
9

Power supply

• voltage regulator started by button-press
• there is NO other wakeup-source - no RTC, etc.
→ button can never wake up on its own terms

• power enable is held by external latch
• MCU clears latch for shutdown

• MCU can measure battery voltage using ADC
• enable-signal connects battery to ADC

10

Power consumption

• [mpetroff] already did some measurements of power consumption
• wifi draws a lot of power (roughly 0.4W)
• MCU working but no wifi: roughly 0.08W
• with wifi disabled and heavy MCU powersaving <0.05W might be possible
• builtin AAA battery holds about 0.5Wh
→ about 75 wifi-minutes
→ about 10h given a 0.05W consumption

11

https://mpetroff.net/2016/07/new-amazon-dash-button-teardown-jk29lp/

Debugging interfaces

• old dash button had SWD debugging enabled and serial console with debugging
commands

• new button has testpads for SWD and serial console, BUT
• SWD is disabled
• serial console stripped down to a few boring commands 12

Debugging interfaces (bottom side)

Note: all IOs are 3.3V
13

UART commands

14

Communication protocols & crypto

Analyzing the communication

• SPI bus between ARM and ATWINC clocked at 40 MHz
• carries plaintext data
• TLS during communication with amazon server is done by ATWINC

15

Analyzing the communication (2)

• I sniffed the communication between the ARM and ATWINC
• FPGA was used to allow for man-in-the-middle experiments

SAMG55 is SPI master, drives the clock - timing is challenging
• I did this before I had the full dash firmware

16

Accessing ALL THE SIGNALS

17

Analyzing the communication - FPGA board

18

Wifi-based configuration

• Android Amazon app uses this
• pressing button for a few seconds enables configuration mode
• button goes into AP mode (SSID: Amazon ConfigureMe)

DHCP server for IP assignment
• simple HTTP server running on SAMG55
• webpage with basic info

19

HTTP info page

20

Configuration with Android Amazon app

app does the following:

1. fetch device info with GET /
(Content-Type: application/json)

2. post own ECDH pubkey to /pubkey
3. read dash pubkey from /pubkey with GET
4. post locale config to /locale
5. post encrypted stoken to /stoken
6. post encrypted network config to /network

dash then connects to wifi, registers with amazon server & obtains customer secret

21

Crypto details

• device secret: 20 chars uppercase + digits - written to flash during production
• customer secret: 20 bytes - obtained from amazon server after configuration
• both of these stored in flash, used for HMAC on requests

• ECDH (during config) uses prime256v1 curve
• temporary symmetric encryption for stoken and network data uses AES-GCM
• temporary symmetric key derived from ECDH data using SHA256
• AES-GCM data is TLV-encoded

(16bit len, type 1: IV, type 2: tag, type 0: ciphertext)
• plaintext data (pubkeys, stoken, network, locale) is JSON-encoded
• I heard you like parsers, so I put encrypted JSON into TLV data :-)

22

Example data

pubkey: {"publicKey":"-----BEGIN PUBLIC KEY-----\nMFkwEwYHK<...>
f6YAIg==\n-----END PUBLIC KEY-----\n","scheme":0}

locale: {"cc":"DE","realm":"DEAmazon"}
stoken: {"expiry":1477282311,"token":";o}-"}
network: {"priority":0,"psk":"test123","keyMgmt":"WPA_PSK",

"ssid":"Cyber"}

Note:

• unused HTTP location: /flash
• seems to allow flash-access
• looks like authentication is needed
• haven’t had a closer look at this

23

Registration with amazon server

• done by button after config with app
• POST to /2/r/oft?countryCode=XX&realm=XXAmazon

body:
fe XX 01 ca 07 8c XX: battery level
G023232323232323 device serial number
03 01 00 00 transaction counter (le32)
00 00 00 00 00 00 00 00
22 4a 55 3a token from app
<HMAC using device-secret> (20 bytes)

response:
00 00 00 00 00 00 flags?
58 0f dd 20 unix date
<customer-secret> (20 bytes)
60 38 a7 31 ??? 24

onButtonPressed()

• two POST requests to parker-gw-eu.amazon.com
• Content-type:binary/rio, chunked encoding
• POST to /2/b: actual order request
• POST to /2/d: debugging info (metrics)

if server demands a firmware update:

• additional POST to /2/f and firmware download

25

POST to /2/b

chunk 1:
fe XX 01 ca 07 8c XX: battery level
G023232323232323 device serial number
06 01 00 00 transaction counter (le32)
00 00 00 00 00 00 00 00

chunk 2:
31

chunk 3:
<HMAC using customer-secret> (20 bytes)

26

POST to /2/b - response

• HTTP status code used for feedback to button
• e.g. 200 for order successful (LED green),

412 with no product selected (LED blinking red)
• body contains server timestamp (binary)
• flag for firmware update request

example body:
00 00 00 00 00 00 flags

ˆ--------------- 01 for fw update available
57 cd 54 13 unix time
23 23 23 23 u-/nseconds?

27

Security conclusions

• configuration phase with AP mode allows for evil twin & MitM attacks
• attacker can obtain wifi-credentials & dash token
• rather low risk due to short time span

• communication with server uses HTTPS
• server cert is checked (source: internet - didn’t check this myself)
• client requests includes counter and HMAC
• prevents replays & ordering without knowing secret key

• button only active & connected to wifi for a few seconds following button press
• no self-induced wakeup, limited battery life, no open ports
• risk of CYBER: negligible

28

Firmware analysis

The firmware

• old button: Broadcom WiCED with Express Logic RTOS and NetX IP stack
• new button: custom OS

multiple tasks:

• main
• transaction task
• avocado button
• LED task
• command handler
• net manager

29

Dumping the firmware

• SWD cannot be used to dump firmware
• flash-access using the BootROM isn’t possible either
• security lockbit cannot be cleared without full flash erase
• clearing the readout protection can be done with ERASE-pin
• but this erases the flash contents as well
• MCU needs to be desoldered for this (ERASE tied to GND)

30

Analyzing the firmware

• firmware was obtained by dumping the SPI flash
(used https://www.flashrom.org and a Raspi)

• direct execution from SPI flash isn’t possible
• therefore firmware also must be present

in internal flash
• SPI flash probably used during firmware update
• firmware in SPI flash should be a duplicate of

internal flash firmware

• analysis of firmware with hexeditor and disassembler

31

https://www.flashrom.org

Analyzing the SPI flash contents

• flash contains firmware and dynamic storage with journaling
• dynamic storage seems to start at 0x19 0000

(includes debug logs and transaction counter)
• start of flash contains list of static blocks

32

Analyzing the SPI flash contents (2)

List of static blocks:

Guessed structure:
struct block_s {

char name [8];
uint32_t unk1;
uint32_t start_ofs ;
uint32_t len;
char version [16]; }; 33

Analyzing the SPI flash contents (3)

Parsed list:

samg55 ofs 200 len 74844 (477252) version 0.3.174
dst 404000 len 74844 nvic_ofs 404200 flags 4

winc ofs 74b00 len 64e48 (413256) version 19.4.10
ble ofs d9a00 len 2e94e (190798) version 0.2.40
pwrtbl ofs 108400 len 3200 (12800) version 0.1.0
burstTx ofs 10b600 len 1fe48 (130632) version 796

• samg55 block is the firmware for the ARM
• payload of this block starts with additional header
• I dumped the samg55 block to extra file for further analysis

34

Understanding ARM Cortex-Mx firmware

• SRAM usually starts at 0x2000 0000
• internal flash starts at 0x40 0000
• Nested Vector Interrupt Controller (NVIC) needs list of interrupt handler

entrypoints
• pointer to this table is written to Vector Table Offset Register (VTOR)
• NVIC table starts with stack pointer, reset vector and other exception handlers
• this is what you look for
• stack pointer should point to RAM, handlers should point to flash

35

Analyzing the samg55 firmware

Hexdump of firmware:

0000: 00404000 00074844 00404200 00000004
ˆ---- additional header

<plenty of zeroes>
0200: 200204d0 00433eed 00433fbd 00433fbd

ˆ---- stack pointer, handler entries
<more handler entries>

36

Analyzing the samg55 firmware (2)

Where in internal flash does the firmware end up?

• initial assumption: with first 0x200 bytes stripped
firmware should reside at 0x40 4000

• assumption was wrong
• don’t strip additional header

firmware with additional header at 0x40 4000
→ NVIC table located at 0x40 4200

• how to tell?
• base offset is wrong if references during disassembly don’t make sense

37

Analyzing the samg55 firmware (3)

• after reset NVIC table is expected at 0x40 0000
• dumped firmware starts at 0x40 4000
→ there must be some bootloader code at 0x40 0000

a glimpse into the future:

• bootloader size is 0x1800 (with CRC32 at the end?)
• config storage at 0x40 1E00 (MAC addresses, device serial & secret)
• user config at 0x40 2000 (wifi config & customer secret)

38

Let’s try something...

Can we execute the dumped firmware on another SAMG55 without the bootloader?

• wrote firmware to empty SAMG55
• NVIC table duplicated from 0x40 4200 to 0x40 0000
• lockbit GPNVM[1] set to start from flash
• firmware works

39

Let’s try something...

Can we execute the dumped firmware on another SAMG55 without the bootloader?

• wrote firmware to empty SAMG55
• NVIC table duplicated from 0x40 4200 to 0x40 0000
• lockbit GPNVM[1] set to start from flash
• firmware works
• debugging via SWD possible :-) (I used OpenOCD + ST-Link)
• devmode console on UART :-))

firmware checks security lockbit GPNVM[0]
enables devmode console if security bit not set

40

I want it all

• amazon server doesn’t like my ”new” button
• apparently valid credentials missing in firmware from SPI flash
• need to somehow dump the internal flash of locked SAMG55
• I want a dump of the bootloader anyway

41

Code execution

Exploiting the firmware

• disassembly of firmware and debugging access with breakpoints, tracing,
singlestepping, etc. makes this a lot easier

• serial console does length-checking
• exploiting low-level network protocols like DHCP would hit the WINC,

not the SAMG55
• there’s a http server running on the SAMG55 with TLV- and JSON-parsing during

configuration phase
• during config phase there’s also the audio config protocol

42

The audio configuration protocol

• used by iOS app - still in use?
• initial analysis by [jaygreco] - he provided me with some updates and sample data
• FSK with 4 carriers instead of ASK
• looks like ASK because of low-pass filtering
• carriers: 18.13, 18.62, 19.11 and 19.6 kHz

43

The audio configuration protocol - payload

payload:

44

A closer look at the audio config handler

excerpt from avocado processHfaPacket function:

• temporary fixed-len buffers created on stack
• credentials memcopied to these buffers
• no length checks in place
• trivial to exploit 45

Additional constraints

• additional space for payload in
password & SSID buffers

• but: total length of audio packet
needs to be <128 Bytes

• some values on stack after realm
• e.g. src & dst pointer, length values
• invalid memory access triggers

exception handler
• fill stack with zeroes to avoid this

also needed:
• global IRQ disable
• watchdog servicing 46

Additional constraints

• immediate 32bit values are needed often (IO locations, functions, etc.)
• LDR takes 2+4 bytes (PC-relative load)
• putting them on the stack and popping them saves a few bytes 47

Dumping the flash

/* R1: src ptr, R2: uart base, R3: uart_write function
R4: watchdog dst, R5: watchdog value */
MOVS R0, R2
MOV R2, #0x1000 /* chunk size */

loop: /* send 1 chunk */
PUSH {R0-R3}
BLX R3 /* uart_write(base,src,n) */
POP {R0-R3}
ADDS R1, R2 /* ptr += chunk */
STR R5, [R4] /* poke watchdog */
MOVS R6, R1, LSR #16
CMP R6, #0x48 /* end of flash? */
BNE loop

done: /* let the watchdog expire */
B done

48

Demo video

49

What now?

• eventually Amazon will probably fix this with a firmware update
• current buttons can only be updated by amazon if they can reach the server

• clearing security bit without erase doesn’t work
• software-triggered full erase might work
• otherwise multi-stage loader needed to rewrite flash with custom firmware

• stuff I did so far: https://github.com/znuh/dashbutton (u can haz IDC file)
• I’m not really planning on doing some further work here
• if you want to carry on I’m happy to help

contact:

• DECT: hunz
• freenode: hunz

50

https://github.com/znuh/dashbutton

Thanks for your attention

51

Appendix

MCU IOs (1)
1 VDDIO 3.3V
2 /RST R/C
3 PB12/ERASE GND
4 PA4 Wifi:RESETN(34)
5 PA3 NC
6 PA0 (TIOA0) LED:R
7 PA1 button (TX11/U12)
8 PA5 (SPI2) Flash:MISO
9 VDDCORE 1.18V
10 TEST NC
11 PA7 U23: 32kHz clock
12 PA8 NC
13 GND GND
14 PB15 NC
15 PB14 NC
16 PA31 R1531/BT:Reset? (D8) 52

MCU IOs (2)
17 PA6 (SPI2) Flash:MOSI
18 PA16 (SPI2) Flash:nCS
19 PA30 TX33
20 PA29 NC
21 PA28 TX32/Wifi:SD CLK(19)
22 PA15 (SPI2) Flash:SCK
23 PA23 (TIOA1) LED:G
24 PA22 NC
25 PA21 (TIOA2) LED:B
26 VDDUSB 3.3V
27 VDDIO 3.3V
28 ADVREF 3.3V
29 GND GND
30 VDDOUT 1.18V
31 VDDIO 3.3V
32 VDDIO 3.3V 53

MCU IOs (3)
33 PA17 AD0 (Vbat)
34 PA18 BT: C8, B7
35 PA19 power supply latch
36 PA20 BT: A4
37 PB0 NC
38 PB1 BT: A3
39 PB2 (USART1) RXD1/Bt:TXD (H1)
40 PB3 (USART1) TXD1/Bt:RXD (J1)
41 PA14 (SPI5) Wifi:SPI SCK
42 PA13 (SPI5) Wifi:SPI RXD
43 PA12 (SPI5) Wifi:SPI TXD
44 PA11 (SPI5) Wifi:SPI SSN
45 VDDCORE VDDCORE
46 PB10 (USART4) TX16:UART TX
47 PB11 (USART4) TX15:UART RX
48 PA10 TX26/MIC:CLK 54

MCU IOs (4)
49 PA9 TX13/MIC:DAT
50 PB5 NC
51 PA27 TX31/Wifi:SD DAT3(12)
52 PA26 NC
53 GND GND
54 PB6 SWDIO
55 PB7 SWCLK
56 PA25 NC
57 PB13 NC
58 PA24 NC
59 PB8/XOUT vbat adc enable
60 PB9/XIN Wifi:CHIP EN
61 PA2 TPS61200 enable
62 PB4 Wifi:GPIO2/nIRQ(11)
63 JTAGSEL NC
64 VDDIO VDDIO 55

POST to /2/d - metrics

HTTPSCONN = 00000003 HTTPSTIMEOUT = 00000000 HTTPSCREDSRECVD = 00000003
BLEPAIRED = 00000000 BLETIMEOUT = 00000000 BLEDISCONN = 00000000
SSCREDDECODED = 00000001 WIFISCANFAIL = 00000000 WIFIAUTHFAIL = 00000000
WIFICONNTIMEOUT = 00000000 WIFIDHCPTIMEOUT = 00000000 WIFIIPCONFLICT = 00000000
HTTPCDNSFAIL = 00000000 HTTPCCONNFAIL = 00000000 HTTPCTIMEOUT = 00000000
HTTPCCONNABORT = 00000000 MALLOCFAIL = 00000000 DEVWAKEUP = 000000f3
DEVDEREGISTERED = 00000005 DEVPOWERDOWN = 00000000 OTAINITIATED = 00000000
OTACOMPLETED = 00000001 REGMODEENTERED = 00000011 REGMODEEXITED = 00000009
REGMODETIMEOUT = 00000002 REGTOKSENDATTEMPT = 00000003 REGTOKSENDSUCC = 00000003
REGTOKSENDFAIL = 00000000 ORDERSUCC = 00000000 ORDERFAIL = 0000002f
FWRECVSUCC = 00000000 FWRECVFAIL = 00000000 FWINTEGFAIL = 00000000
METRICSENDSUCC = 00000030 METRICSENDFAIL = 00000001 BATTOK = 000000ea
BATTLOW = 00000007 BATTCRITICAL = 00000000

56

	Hardware
	Communication protocols & crypto
	Firmware analysis
	Code execution
	Appendix
	MCU pinout

