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A	new	approach	to	
algorithmic	transparency

– Not	about	classification	unfairness	discovery

– Uncovering	societal	bias	embedded	in	machine	learning	models	for:

• Machine	translation
• Sentiment	analysis:	market	trends	- company	reviews,	customer	satisfaction	-
movie	reviews…
• Web	search	and	search	engine	optimization	hacks

– Filter	bubble
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Disclaimer:

Examples	with	offensive	content.
Does	not	reflect	our	opinions!
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http://www.realfuture.tv 6 of 70



Problem

• Machine	learning	models	trained	on	human	data.
• Consequently,	models	reflect	human	culture	and	
semantics.

• Human	culture	happens	to	include:

– Bias	and	prejudice				L
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Problem

• Machine	learning	models	trained	on	human	data.
• Consequently,	models	reflect	human	culture	and	
semantics.

• Human	culture	happens	to	include:

– Bias	and	prejudice		à unfairness	and	discrimination	L
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Problem
• We	focus	on	language	models.
• Language	models	represent	semantic	spaces	with	word	embeddings

word1,	 feature1 ,	feature2 ,	feature3 ,	feature4 ,	…	feature300
word2,	 feature1 ,	feature2 ,	feature3 ,	feature4 ,	…	feature300
word3,	 feature1 ,	feature2 ,	feature3 ,	feature4 ,	…	feature300

…

word2000000,	feature1 ,	feature2 ,	feature3 ,	feature4 ,	…	feature300
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Problem
• We	focus	on	language	models.
• Language	models	represent	semantic	spaces	with	word	embeddings

– Meaning
– Syntax
– Similarities

• Woman	to	man	is	girl	to	boy
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Problem
• We	focus	on	language	models.
• Language	models	represent	semantic	spaces	with	word	embeddings

– Meaning
– Syntax
– Similarities

• Woman	to	man	is	girl	to	boy
• Paris	to	France	is	Rome	to	Italy
• Banana	to	bananas	is	nut	to	nuts
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Generating	language	models
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Generating	language	models
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Generating	language	models
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Generating	language	models
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Generating	language	models
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Generating	language	models
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Generating	language	models

word2vec

glove
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Models	used	in:

• Text	generation
• Automated	speech	generation
• Machine	translation
• Sentiment	analysis
• Named	entity	recognition
• Web	search…
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Natural	language	processing	as	a	service:
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Future	of	AI
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Future	of	AI
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Future	of	AI
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Future	of	AI
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Future	of	AI
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Stereotype	threat

Groups:	Black	and	white	Americans

Threat:		Intellectual	ability
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Stereotype	threat

Groups:	Men	and	women

Threat:		Math	ability
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What	to	do?

• “Be	aware	of	bias	in	life.	We	are	constantly	being	primed.

• Debias by	presenting	positive	alternatives.

• Engage	in	proactive	affirmative	efforts	not	only	on	the	
cultural	level	but	also	the	structural	level.”			

Banaji and	Greenwald
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What	to	do?

• “Be	aware	of	bias	in	life.	We	are	constantly	being	primed.

• Debias by	presenting	positive	alternatives.

• Engage	in	proactive	affirmative	efforts	not	only	on	the	
cultural	level	but	also	the	structural	level.”			

Banaji and	GreenwaldAlgorithmic	
transparency

Quantify
bias	in	
models
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How	to	measure	bias?

• Implicit	Association	Test	– Greenwald	et	al.	1998

• Reveals	subconscious	bias
– that	you	might	be	unaware

• Association	of
– Societal	groups	

with
– Stereotype	words
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How	to	measure	bias?

• Implicit	Association	Test	– Greenwald	et	al.	1998

• Reveals	subconscious	bias
– that	you	might	be	unaware

• Association	of
– Societal	groups	

with
– Stereotype	words

https://implicit.harvard.edu/implicit
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Measuring	bias	in	Germany

https://implicit.harvard.edu/germany
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How	do	we	measure	bias?

• Word	Embedding	Association	Test	(WEAT)	
– Calculate	implicit	associations	between	societal	categories	and	evaluative	
attributes
• Effect	size	of	bias
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How	do	we	measure	bias?

• Word	Embedding	Association	Test	(WEAT)	
– Calculate	implicit	associations	between	societal	categories	and	evaluative	
attributes
• Effect	size	of	bias

• Statistical	significance
where	Pri=	null	hypothesis
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How	do	we	measure	bias?

• Word	Embedding	Factual	Association	Test	(WEFAT)
– Evaluate	association	of	certain	words	with	specific	bias
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How	do	we	measure	bias?

• Word	Embedding	Factual	Association	Test	(WEFAT)
– Evaluate	association	of	certain	words	with	specific	bias

43 of 70



Baseline:	Women	with	androgynous	names
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WEFAT:	Women	with	androgynous	names
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WEFAT:	Women	with	androgynous	names

84%	
correlation	
with	ground	

truth
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Baseline:	Women	employed	in	the	US
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WEFAT:	Women	employed	in	the	US
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WEFAT:	Women	employed	in	the	US

90%	
correlation	
with	ground	

truth
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Problem
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Problem
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True	for	German
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True	for	German
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True	for	Bulgarian
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True	for	Bulgarian
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Universally	Accepted	Stereotypes

Targets Stereotype Percentile Effect	Size

Flowers Pleasant
10-8 1.35

Insects Unpleasant

Musical	
Instruments

Pleasant
10-7 1.53

Weapons Unpleasant

Cohen suggested that 
|d|= 0.2 is a 'small' effect size, 
|d|= 0.5 is a 'medium' effect size,
|d|>=0.8 is a 'large' effect size. 
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Race	and	Gender	Stereotypes

Targets Stereotype Percentile Effect	Size

White Pleasant
10-8 1.41

Black Unpleasant

Male Career
10-3 1.81

Female Family

Male Science
10-2 1.24

Female Arts

Cohen suggested that 
|d|= 0.2 is a 'small' effect size, 
|d|= 0.5 is a 'medium' effect size,
|d|>=0.8 is a 'large' effect size. 
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Age	and	Disease	Stereotypes

Targets Stereotype Percentile Effect	Size

Young Pleasant
10-2 1.21

Old Unpleasant

Physical	Disease Controllable
10-2 1.67

Mental Disease Uncontrollable

Cohen suggested that 
|d|= 0.2 is a 'small' effect size, 
|d|= 0.5 is a 'medium' effect size,
|d|>=0.8 is a 'large' effect size. 
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Targets Stereotype Percentile Effect	Size

Heterosexual Pleasant
10-2 1.27

Homosexual Unpleasant

Straight Pleasant
10-2 1.34

Transgender Unpleasant

Sexual	Stigma	and	Transphobia

Cohen suggested that 
|d|= 0.2 is a 'small' effect size, 
|d|= 0.5 is a 'medium' effect size,
|d|>=0.8 is a 'large' effect size. 
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German:	Gender	Stereotypes	and	Nationalism

Targets Stereotype Percentile Effect	Size

Male Career
10-2 1.54

Female Family

Male Science
10-2 1.56

Female Arts

German Pleasant
10-2 1.34

Turkish Unpleasant

Cohen suggested that 
|d|= 0.2 is a 'small' effect size, 
|d|= 0.5 is a 'medium' effect size,
|d|>=0.8 is a 'large' effect size. 
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Discussion	points:

• Machine	learning	expertise	for	algorithmic	transparency
• How	to	mitigate	bias	while	preserving	utility
• How	long	does	bias	persist	in	models?
• Are	biased	models	causing	a	snowball	effect?
• Policy	to	stop	discrimination	
– predictive	policing
– ML	services	effect	billions	every	day

• Google,	Amazon,	Microsoft
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Research	Code
github.com/calaylin

Webpage
princeton.edu/~aylinc

Check	our	blog
freedom-to-tinker.com
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