
A look into the Mobile Messaging Black Box
33rd Chaos Commmunication Congress #33c3

Roland Schilling @NerdingByDoing
Frieder Steinmetz @twillnix

December 27, 2016

Hamburg University of Technology
Security in Distributed Applications

topic: secure mobile messaging

give full introduction before moving on to look at specific implementation, namely threema

goal: give broad audience enough knowledge to make competent decision in messengers

of course means we have to start at very low level

crypto and security nerds might hear a lot they already know

we feel otherwise our work would be less approachable to people outside our bubble, that we want to reach

Will try to achieve three things:

Identify our privacy expectations when we communicate

find analogies that make it easy to understand mobile communication challenges

move on to solutions specifically for threema

Messaging – Identifying Our Expectations

You’re at a party

• Friend approaches you and needs to tell you something in private
• What do you expect when you say private?
• You enter a separate room, you trust the location
• What does a separate room offer you?

party

Two analogies: One describing our expectations and one closer to the technical reality

We start by describing our expectations regarding conversation

Not everybody would automatically think of all points, but we want to establish them as a common ground

A Private Room

You are now alone in a closed room with your Friend

• Both of you have absolute Confidentiality that you are alone
• Nobody can overhear your talk
• Your exchange is completely private

We call this confidentiality

You Know Each Other

Since you’re long-time friends, you’re absolutely sure, whom you’re talking to

• Nobody can impersonate your friend or you, without the other noticing
• You’re talking directly, without a phone or webcam in between

We call this authenticity

In Sight of Each Other

The room you’re in is small enough that you can always see each other

• You know that the words you speak are received just as you spoke them
• There is no way either of you hears something other than the other says

We call this integrity

It’s a One-Time Talk

Suppose somebody steps into the room

• They could overhear your conversation
• They would only learn the contents of this particular conversation
• They would not learn anything about past conversations you had

We call this forward secrecy

→ After leaving they would not be able to listen to any future conversations you
might have

We call this future secrecy

Future Secrecy is also called post-compromise security

It’s a One-Time Talk

Forward- and Future Secrecy

third person enters room

Forward Secrecy

timeline

third person leaves room

secret conversation overheard
conversation

Future Secrecy

Future Secrecy is also called post-compromise security

It’s a One-Time Talk Between Only You Two

There are no witnesses in the room

• Either of you can later deny to other having made any statement
• Neither of you can prove to other that any of you have made a particular
statement

We call this deniability

Messaging – Reality Check

Now we have established our ideal scenario and want to check if this still applies to messaging.

This begins with the entry of a new player, the messaging service

This brings us to our second analogy, the one that describes messaging from a technical perspective

Messaging – A More Technical Analogy

We started with a conversation analogy to identify our expectations of messaging

→ Actually postal services are better to look at messaging from a technical point
of view.

=> From:
Alice

To:
Bob

Example: Traditional Messaging

What if our party conversation had taken place via SMS?

Your providers (and other people on the same network)
• would know the contents of your exchange: no confidentiality
• could change the contents of your exchange: no integrity
• could reroute your messages and impersonate either of you: no
authentication

• do not guarantee any secrecy, so we have neither forward secrecy nor future
secrecy

→ We could argue having deniability though.

→ Messaging translates badly to our offline communication expectation

As can be seen, our conversation analogy (and therefore our expectations) translates badly to the world of messaging. We need a new analogy. – transition to next slide

mobile messaging is like a postal service but feels like a private conversation

From Postcards to Letters

Now we have established an analogy of our expectations and one a bit closer to the communication reality. Now let's compare and evaluate both.

We start by looking at the envelope and asking how we can do that. -> Short encryption to cryptography.

From Postcards to Letters

Now we have established an analogy of our expectations and one a bit closer to the communication reality. Now let's compare and evaluate both.

We start by looking at the envelope and asking how we can do that. -> Short encryption to cryptography.

The Shortest Introduction to Encryption You Will Ever Get

Symmetric Encryption:
→ Encryption and decryption with the same key

Cryptoplain text ciphertext

Key

Asymmetric Encryption:
→ Encryption and decryption with different keys

The Shortest Introduction to Encryption You Will Ever Get

Symmetric Encryption:
→ Encryption and decryption with the same key

Cryptoplain text ciphertext

Key

Crypto plain text

Key

Asymmetric Encryption:
→ Encryption and decryption with different keys

The Shortest Introduction to Encryption You Will Ever Get

Symmetric Encryption:
→ Encryption and decryption with the same key

Cryptoplain text ciphertext

Key

Crypto plain text

Key

Asymmetric Encryption:
→ Encryption and decryption with different keys

Cryptoplain text ciphertext

Key

Crypto plain text

Key

The Shortest Introduction to Encryption You Will Ever Get

Symmetric Encryption:
→ Encryption and decryption with the same key

Cryptoplain text ciphertext

Key

Crypto plain text

Key

Asymmetric Encryption:
→ Encryption and decryption with different keys

Cryptoplain text ciphertext

Key

Crypto plain text

Key

key pair

Public-Key Cryptography – In a Nutshell

Secret Key IdentityPublic KeySecret Key IdentityPublic Key Secret Key IdentityPublic Key

Cryptoplain text ciphertext

Key

Crypto plain text

Key

key pair

• Both parties publish their identities and public keys
• Any message can be encrypted with anyone’s public key and only be
decrypted with its corresponding secret key

This scheme is very expensive and a message can always be sent by anyone

Public-Key Cryptography – In a Nutshell

Secret Key IdentityPublic KeySecret Key IdentityPublic Key Secret Key IdentityPublic Key

Cryptoplain text ciphertext

Key

Crypto plain text

Key

key pair

• Both parties publish their identities and public keys
• Any message can be encrypted with anyone’s public key and only be
decrypted with its corresponding secret key

This scheme is very expensive and a message can always be sent by anyone

Public-Key Cryptography – In a Nutshell

Crypto Crypto

BobPublic Key BobSecret Key
?

Bob

• Both parties publish their identities and public keys
• Any message can be encrypted with anyone’s public key and only be
decrypted with its corresponding secret key

This scheme is very expensive and a message can always be sent by anyone

Key Establishment

.

Secret Key IdentityPublic KeySecret Key IdentityPublic Key Secret Key IdentityPublic Key

Key
Generator

Key
Generator

BobPublic Key AlicePublic Key

Key

what if we had a scheme, that produced a key specifically from one public and one private key

turns out, we have. And it works both ways and produces the same key

this is one particular way to perform key establishment

as we will later see, there is a better way consisting of a 4-way message exchange. But for that, both parties have to be online

this scheme has one advantage and one disadvantage. The advantage was just mentioned, the disadvantage is that we always come up with the same key. And we will see why that is a problem in a minute

Recap

Asymmetric Encryption gives us IDs but is very ex-
pensive. Cryptoplain text ciphertext

Key

Crypto plain text

Key

key pair

Symmetric Encryption is cheap, but a key has to
be shared by all participants before communica-
tion starts.

Cryptoplain text ciphertext

Key

Crypto plain text

Key

Key Establishment allows us to create symmetric
keys based on asymmetric key pairs.

Secret Key IdentityPublic KeySecret Key IdentityPublic Key Secret Key IdentityPublic Key

Key
Generator

Key
Generator

BobPublic Key AlicePublic Key

Key

But there’s more…

Confidentiality

Cryptoplain text ciphertext

Key

Crypto plain text

Key

?

we can take our symmetric key (the one obtained from our authenticated encryption scheme) to obtain confidentiality

Deniability

From:
either of us

To:
both of us

Public-Key Authenticators einfach erklären für Deniability

But What About Forward- and Future Secrecy?

third person enters room

Forward Secrecy

timeline

third person leaves room

secret conversation overheard
conversation

Future Secrecy

Crypto CryptoBob

Key Key

K
ey

We remember our simple explanation of PFS

The easiest way to do this is to discard each key after one use and exchange a new one

Of course this has to happen in a way that no attacker with a stolen key learns anything about the next one

Since we get our key from both secret and public keys, we cannot simply discard it.

Therefore we don't have PFS in the scheme we have sketched now.

We could get it back, though, if we had a way to renegotiate public- and secret keys.

But What About Forward- and Future Secrecy?

key compromise

Forward Secrecy

timeline

key renegotiation

secret messages compromised
messages

Future Secrecy

Crypto CryptoBob

Key Key

K
ey

now we transfer this image to messaging

The easiest way to do this is to discard each key after one use and exchange a new one

Of course this has to happen in a way that no attacker with a stolen key learns anything about the next one

Since we get our key from both secret and public keys, we cannot simply discard it.

Therefore we don't have PFS in the scheme we have sketched now.

We could get it back, though, if we had a way to renegotiate public- and secret keys.

But What About Forward- and Future Secrecy?

Crypto CryptoBob

Key Key

K
ey

The easiest way to do this is to discard each key after one use and exchange a new one

Of course this has to happen in a way that no attacker with a stolen key learns anything about the next one

Since we get our key from both secret and public keys, we cannot simply discard it.

Therefore we don't have PFS in the scheme we have sketched now.

We could get it back, though, if we had a way to renegotiate public- and secret keys.

But What About Forward- and Future Secrecy?

Crypto CryptoBob

Key Key

K
ey

The easiest way to do this is to discard each key after one use and exchange a new one

Of course this has to happen in a way that no attacker with a stolen key learns anything about the next one

Since we get our key from both secret and public keys, we cannot simply discard it.

Therefore we don't have PFS in the scheme we have sketched now.

We could get it back, though, if we had a way to renegotiate public- and secret keys.

Recap

Our key establishment protocol gives us:

• Confidentiality
• Deniability
• Authenticity

We don’t have:

• Forward Secrecy
• Future Secrecy

→ We are ignoring Integrity here, but we have that, too.

Key and ID Management

Cryptography is rarely, if ever, the solution to a security problem. Cryptography is
a translation mechanism, usually converting a communications security problem
into a key management problem.

—Dieter Gollmann

Key and ID Management

Secret Key IdentityPublic Key Secret Key IdentityPublic Key

BobPublic Key

AlicePublic Key

Messenger
Server

Bob?

Bob

Public
 K

ey

Alice?

Alice

Public Key

Messengers try to solve this problem by introducing a central repository of IDs and public keys

User can query this server and ask for public keys and IDs

But this only solves part of our problem

Key and ID Management

We can ask for IDs, but what is an ID?

• A phone number?

→ Can identify a user. But is also considered personal information.

• An email address?

→ Same thing as with phone number. But a temporary email can be used.

• Something else?

→ Dedicated IDs offer anonymous usage, but ID ownership must be
verifyable.

→ Dedicated IDs are preferrable. But only if we find a way to verify ID ownership

Key and ID Management

We can ask for IDs, but what is an ID?

• A phone number?
→ Can identify a user. But is also considered personal information.

• An email address?

→ Same thing as with phone number. But a temporary email can be used.

• Something else?

→ Dedicated IDs offer anonymous usage, but ID ownership must be
verifyable.

→ Dedicated IDs are preferrable. But only if we find a way to verify ID ownership

Key and ID Management

We can ask for IDs, but what is an ID?

• A phone number?
→ Can identify a user. But is also considered personal information.

• An email address?
→ Same thing as with phone number. But a temporary email can be used.

• Something else?

→ Dedicated IDs offer anonymous usage, but ID ownership must be
verifyable.

→ Dedicated IDs are preferrable. But only if we find a way to verify ID ownership

Key and ID Management

We can ask for IDs, but what is an ID?

• A phone number?
→ Can identify a user. But is also considered personal information.

• An email address?
→ Same thing as with phone number. But a temporary email can be used.

• Something else?
→ Dedicated IDs offer anonymous usage, but ID ownership must be

verifyable.

→ Dedicated IDs are preferrable. But only if we find a way to verify ID ownership

Key and ID Management

We can ask for IDs, but what is an ID?

• A phone number?
→ Can identify a user. But is also considered personal information.

• An email address?
→ Same thing as with phone number. But a temporary email can be used.

• Something else?
→ Dedicated IDs offer anonymous usage, but ID ownership must be

verifyable.

→ Dedicated IDs are preferrable. But only if we find a way to verify ID ownership

Key and ID Management

How does Alice know which is Bob’s public key?

BobPublic Key

BobPublic Key

BobPublic Key

BobPublic Key

BobPublic Key

?
??

We have now connected Bob's ID using his phone number that we know

But we still put all our trust in the messenger directory

At this point we depend on Bob's provider for the right phone number and the messenger for its connection to Bob's ID

Mobile Messaging Key Management

Secret Key IdentityPublic Key Secret Key IdentityPublic Key

BobPublic Key

AlicePublic Key

Messenger
Server

Bob?

Bob

Public
 K

ey

Alice?

Alice

Public Key

Mobile Messaging Key Management

Secret Key IdentityPublic Key Secret Key IdentityPublic Key

BobPublic Key

AlicePublic Key

Messenger
Server

Bob?

Bob

Public
 K

ey

Alice?

Alice

Public Key

Authenticity

We have now solved the Authentiticy problem

• User can be identified by their phone number or email address
→ But they have dedicated IDs.
→ Personal verification is possible.

The remaining unsolved problem is a user changing their ID.
→ At this point, the problem starts anew.
→ We will get back to that later.

Metadata Handling

Everybody on the network can see:

• the sender of the message
• the intended receiver of the message

?
Alice

From
Bob

They can also log the time and the size of the messages

Metadata Handling

Solution: wrap encrypted message in a second layer of encryption and address it
only to the message server.

Msngr

!

Metadata Handling

Metadata Handling

Al
ice

Metadata Handling

The message server will remove the outer layer and add a new one, targeted at
the receiver.

Alice

!!

From
Msngr

!

Metadata Handling

This leaves us with an encrypted end-to-end tunnel, transmitted through two
transport layer encryption tunnels.

The message server still knows both communication partners!

Metadata Handling

We can obfuscate the size of a message with padding

Metadata Handling

We can obfuscate the size of a message with padding

Message

Padding

Size of
encrypted Message =

Of course padding should be randomly different every time

Threema

no advertising

no recommendations

no formal analysis

it is closed-source so we could only work with that

we have looked at the app and will now present our findings

Threema’s Architecture

Messaging
Server

Media
Server

Directory
Server

BobPublic Key

AlicePublic Key

Coversation starts with Directory Server

Messaging server is the most essential

MediaServer is for transmission of big files, will e explained later

Threema Fingerprints

Threema offers dedicated IDs
• Users may provider their phone number and email.
• If provided, phone number and email are used for
identification with the directory server.

• If no additional data is provided, IDs can only be
exchanged manually.

• In either case, manual verification using QR codes is
encouraged.

• The app permanently tracks the verification status
of each peer ID.

Tackles the PKI problem explained earlier

Solution is pretty good. Reason why we chose 3ma

Less trust in Keys from Directory Server based on Threema ID

 more if based on phone number and email

 most if verified by qr

NaCl and Threema

Public Key

Secret Key

ECDH HSalsa20

Nonce
Random
Generator XSalsa20 Poly1305

Key

plain text

Nonce

Cipertext

MAC

Salt gives us what is called 'authenticated encryption', which gives us authenticity, integrity and confidentiality

NaCl and Threema

NaClPublic Key

Secret Key

ECDH HSalsa20

Nonce
Random
Generator XSalsa20 Poly1305

Key

plain text

Nonce

Cipertext

MAC

Salt gives us what is called 'authenticated encryption', which gives us authenticity, integrity and confidentiality

Threema’s Handshake Between the App and the Messaging Server

Threema
App

Threema
Messaging
Server

Client Hello

Server Hello

Client Auth Pkt

Server Ack

Exchange a set of ephemeral keys and verify each
others long term identity keys.

Threema’s Handshake Between the App and the Messaging Server

Threema
App

Threema
Messaging
Server

Client Hello

Server Hello

Client Auth Pkt

Server Ack

Client Hello Packet
Client-Server Handshake

Client Hello
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ephemeral Client Public Key

Client Nonce Prefix

Server Hello
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Server Nonce Prefix

Ephemeral Server Public Key

Client Nonce Prefix


Ciphertext

• Client generates a ephemeral key pair
• Client generates random nonce prefix

Threema’s Handshake Between the App and the Messaging Server

Threema
App

Threema
Messaging
Server

Client Hello

Server Hello

Client Auth Pkt

Server Ack

Server Hello Packet

Client-Server Handshake

Client Hello
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ephemeral Client Public Key

Client Nonce Prefix

Server Hello
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Server Nonce Prefix

Ephemeral Server Public Key

Client Nonce Prefix


Ciphertext

• Server generates ephemeral key pair
• Server generates random nonce
• Ciphertext encrypted with Server Nonce, Client
Ephemeral Key and Server Long-Term Key

Ciphertext is is not readable by someone with clients LTK (forward sec).

Proves servers possesion of LTK

Threema’s Handshake Between the App and the Messaging Server

Threema
App

Threema
Messaging
Server

Client Hello

Server Hello

Client Auth Pkt

Server Ack

Client Authentication Packet
Client Authentication Packet
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Threema ID User Agent String

Server nonce Prefix

Random Nonce

Ciphertext (Ephemeral Client Public Key)


Ciphertext

Server Acknowledgement
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Zeros
}
Ciphertext

• Outer Encryption with ephemeral Keys
• Ciphertext links clients ephemeral key pair to it’s
long term key pair

Threema’s Handshake Between the App and the Messaging Server

Threema
App

Threema
Messaging
Server

Client Hello

Server Hello

Client Auth Pkt

Server Ack

Server Acknowledgement Packet

Client Authentication Packet
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Threema ID User Agent String

Server nonce Prefix

Random Nonce

Ciphertext (Ephemeral Client Public Key)


Ciphertext

Server Acknowledgement
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Zeros
}
Ciphertext

• Server comfirms everything worked fine by
encrypting something with both ephemeral keys

• We have established a forward secure channel
between app and messaging server.

A 2-Layer Tunnel

Has Forward Secrecy Doesn't have Forward Secrecy

Now we have explained all layers of the protocol. But what do we want to do with it?

We want to exchange messages. Our messages, as explained, are the inner channel

And that's what we will look at next

Threema Packet Format

Message Packet (Threema Protocol Layer)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

 Header

Ciphertext

• Only the MSB of Flags is used

Sender and recipient are on the 'envelope' as outlined earlier

Threema Text Messages

Text Message
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

 Header

0
x0

1

Text
Variable-length Padding

 Ciphertext

Threema Image Messages

Image Message
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

 Header

0
x4

3

Blob ID Size Key

Variable-length Padding

 Ciphertext

• Blob is symmetrically encrypted using Key and uploaded to asset server.

• Image captions are stored inside the image’s EXIF data. These data leak upon creating such an image
while the “save media to gallery” option is enabled.

Sending an Image Message

Messaging
Server

Media
Server

Directory
Server

BobPublic Key

AlicePublic Key

Sending an Image Message

Messaging
Server

Media
Server

Directory
Server

BobPublic Key

AlicePublic Key

Blob

Blob ID

Sending an Image Message

Messaging
Server

Media
Server

Directory
Server

BobPublic Key

AlicePublic Key

Blob

Blob ID

Sending an Image Message

Messaging
Server

Media
Server

Directory
Server

BobPublic Key

AlicePublic Key

Blob

Blob ID

Sending an Image Message

Messaging
Server

Media
Server

Directory
Server

BobPublic Key

AlicePublic Key

Blob

Blob ID

Blob ID

Blob

Recap

Basic messaging functionality achieved.

Group Messages

Group Message Packet
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

Message Header

0
x4

1

Creator ID Group ID
Text

Variable-length Padding

 Ciphertext

Group IDs aren't unique. They are created locally and only work together with the group creator's ID

The structure of group messages makes it impossible for Threema to introduce multiple group administrators on a protocol level without breaking compatibility to older clients.

Group Management Messages

Group creation messageGroup Management Message - Add Users
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

Message Header

0
x4

A

Group ID
Member IDs

Variable-length Padding

 Ciphertext

Group Management Messages

Group rename messageGroup Management Message - Rename Group
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

Message Header

0
x4

B

Group ID
Group Name

Variable-length Padding

 Ciphertext

Implementation of Addon Features

Captions in Image Messages

JPEG Image

Exif Data
..x...1}....y....l.a..
e}...q.Gy....w.m....w.
......p8..H....x..I.!
Greetings from Iceland
....." ..,...{.]......
..G..8....O<R.....x.\.

Image data

Captions are stored in Exif.Photo.UserComment and Exif.Image.Artist

Implementation of Addon Features

Quoted MessagesQuoted Text Message
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

 Header
0
x0

1

> 1EE733C3: I’m a quoted message.

And I’m a comment!

Variable-length Padding


Ciphertext

Has to be a Threema ID, not a nickname

Our Library

Our reverse-engineering efforts led to a re-implementation of Threema’s API.

• Fully Threema-compatible
• Almost feature-complete
• Completely undocumented (yet)

You can find the repositories at this location:
https://github.com/o3ma

https://github.com/o3ma

Done!

Thank You!
Roland Schilling

 schilling@tuhh.de

 @NerdingByDoing

Frieder Steinmetz

 frieder.steinmetz@tuhh.de

 @twillnix

Beamer Theme: Metropolis by Matthias volgelsang
Color Theme: Owl by Ross Chirchley
Icons: The BIG collection by Sergey Demushkin

Foundation Icon Fonts 3 by ZURB
NaCl slide was adapted from a figure in Threema’s Cryptography Whitepaper
Threema Screenshots taken from the Threema press package

Thanks to Jan Ahrens and Philipp Berger – their work has made ours somewhat easier
Thanks to Maximilian Köstler for his initial work on Threema

schilling@tuhh.de
@NerdingByDoing
frieder.steinmetz@tuhh.de
@twillnix
https://github.com/matze/mtheme
https://github.com/rchurchley/beamercolortheme-owl
https://thenounproject.com/mockturtle/collection/big/
http://zurb.com/playground/foundation-icon-fonts-3
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://threema.ch/en/press

Appendix

Message Packet (Threema Protocol Layer)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

 Header

Ciphertext

• Only the MSB of Flags is used

Appendix

Message Packet on the Wire
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Length

Threema Client-to-Server Ciphertext

Appendix

Text Message
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

 Header

0
x0

1

Text
Variable-length Padding

 Ciphertext

Appendix

Image Message
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

 Header

0
x4

3

Blob ID Size Key

Variable-length Padding

 Ciphertext

• Blob is symmetrically encrypted using Key and uploaded to asset server.

• Image captions are stored inside the image’s EXIF data. These data leak upon creating such an image
while the “save media to gallery” option is enabled.

Appendix

Audio Message
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

 Header

0
x0

2

D
ur
at
io
n

Blob ID Size Key

Variable-length Padding

 Ciphertext

Appendix

Group Message Packet
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

Message Header

0
x4

1

Creator ID Group ID
Text

Variable-length Padding

 Ciphertext

Appendix

Group Image Message
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

Message Header

0
x4

1

Creator ID Group ID Blob ID

Size Key

Variable-length Padding

 Ciphertext

Appendix

Group Picture Update
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

Message Header

8
0 Group ID Blob ID Size

Symmetric key

Variable-length Padding

Appendix

Create/Update Group (members)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

Message Header

7
4 Group ID

Group Members

Appendix

Acknowledgement Packet to Server
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Length Pkt Type Sender Message ID

←− Length −→

Appendix

Client-Server Handshake

Client Hello
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ephemeral Client Public Key

Client Nonce Prefix

Server Hello
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Server Nonce Prefix

Ephemeral Server Public Key

Client Nonce Prefix


Ciphertext

Appendix

Client Authentication Packet
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Threema ID User Agent String

Server nonce Prefix

Random Nonce

Ciphertext (Ephemeral Client Public Key)


Ciphertext

Server Acknowledgement
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Zeros
}
Ciphertext

Appendix

PKCS7 Padding

03 03 03

04 04 04 04

08 08 08 08 08 08 08 08

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

05 05 05 05 05

06 06 06 06 06 06

Appendix

Group Management Message - Add Users
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

Message Header

0
x4

A

Group ID
Member IDs

Variable-length Padding

 Ciphertext

Appendix

Group Management Message - Rename Group
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

Message Header

0
x4

B

Group ID
Group Name

Variable-length Padding

 Ciphertext

Appendix

Quoted Text Message
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pkt Type Sender Recipient Message ID Time

Flags Public Nickname (string)

Nonce

 Header

0
x0

1

> 1EE733C3: I’m a quoted message.

And I’m a comment!

Variable-length Padding


Ciphertext

	Appendix

