A Dozen Years of Shellphish
From DEFCON to the Cyber Grand Challenge

Antonio Bianchi antoniob@cs.ucsb.edu
Jacopo Corbetta jacopo@cs.ucsb.edu
Andrew Dutcher dutcher@cs.ucsb.edu

S —
S 2
7 = N
))
> B\
7)2
o\ =) -
7N <7
ZA BARY
- THE COMPUTER SECURITY GROUP AT UC SANTA BARBARA

Chaos Communication Congress / December 29th, 2015

Shellphish At

e Who are we?
o A team of security enthusiasts
m doresearch in System Security
m play Capture the Flag competitions
m released a couple of tools

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 2

Shellphish At

o Started (in 2004) at:
m Seclab: University of California, Santa Barbara

e PR T s
- b Sl R St i S e

......

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 3

Shellphish

o expanded to:
m Northeastern
University: Boston
m Eurecom: France
|

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge

Mini-primer: What's a CTF 5&((((9(«5«(

e Security competition:
o exploit a vulnerable service / website / device
o reverse a binary
o ...
e Different formats
o Jeopardy — Attack-Defense
o Online — Live
o ..
e Basicidea: find the secret, submit to organizers, ... profit

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 6

Shellphish At

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge V4

Shellphish At

o We do not only play CTFs
o We also organize them!
m UCSBICTF
e Attack-Defense format
e every year, since 2002!
m Trytoinnovate with a different style every year

e Site:ictf.cs.ucsb.edu

e Base: github.com/ucsb-seclab/ictf-framework

e Vigna, et al,, "Ten years of ictf: The good, the bad,
and the ugly." 3GSE, 2014.

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 8

http://ictf.cs.ucsb.edu
https://github.com/ucsb-seclab/ictf-framework

Why we're here 6&((((@(«5((

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 9

Why we're here 6&((((@(«5((

e DARPA Cyber Grand Challenge (CGC)

e Our Cyber Reasoning System (CRS)

e Automated Vulnerability Discovery
e Live example using angr

e Towards the Cyber Grand Challenge Finals (CFE)

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 12

Cyber Grand Challenge (CGC) 6&((((@(«5&(

e 2004: DARPA Grand Challenge
o Autonomous vehicles

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 13

Cyber Grand Challenge (CGC) 6&((((9(«5&(

e 2014: DARPA Cyber Grand Challenge
o Autonomous hacking!

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 14

Cyber Grand Challenge (CGC) 6&((((@(«5((

e Startedin 2014

[
e Qualification event: June 3rd, 2015, online Cﬂa
o ~70teams — 7 qualified teams e

e Final event: August 4th, 2016 @ DEFCON (Las Vegas)
o Winning CRS will also play against humans!

cybergrandchallenge.com / cgc.darpa.mil

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 15

CGC Rules st(lbus

e Attack-Defense CTF
o Soblvingsecurity-challenges — Developing a system that

solves security challenges

e Develop a system that automatically
o Exploit vulnerabilities in binaries
o Patch binaries, removing the vulnerabilities

e No human intervention

e Think it's trivial? How would you play?
o And how would you organize it?

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 16

CGC — Rules st(lbus

e Exploits
o “getting a flag” (how? where?)
o For the quals: exploit = crash
e Defend
o intmain() { return 0; }
m Functionality checks
o SIGSEGV => exit(0)
m No easy “out-of-band” error handling
o QEMU-style interpreter: interrupts => exit(0)
m Performance cost (CPU, memory, file size)

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 17

CGC Qualification Event — Rules 6&((((@(«54

e Basicidea:
o Real(istic) programs
o No “extra” complications
m Is modeling the entire POSIX API a good use of
team resources? What about the file systems? Or
horrible things like interruptible syscalls?

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 18

CGC Qualification Event — Rules 6&((((@(«54

e Architecture: Intel x86, 32-bit

e OS:DECREE

o Linux-like, but with 7 syscalls only

m transmit / receive / fdwait (=select)
m allocate / deallocate (even executable!)
m random

m _terminate

o no signals, threads, shared memory

e “Bring Your Own Defense” approach (and pay for it)
o Not even “the usual”: stack is executable, no ASLR, ...

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 19

Coming up: 6&((((@(«5((

e Our Cyber Reasoning System (CRS)
Fancy term for auto-playing a CTF

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 20

Shellphish CRS At

i[ovtoc

R N

{patched binary}

vulnerable . Cyber
binary Rg;z ::::9

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 21

Shellphish CRS

Automatic

Shellphish CRS.

proposed
exploits

}

|
|
|
: Vulnerability
|
|
|

Finding
vulnerable |!
binary

Automatic
Patching

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge

proposed
patches

-

~

Automatic

4[exploit]

Testing

(=

,[

patched
binary

]

22

Why we're here 6&((((@(«5((

e Automated Vulnerability Discovery

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 23

Automatic Vulnerability Discovery 6&((((@(«54(

“How do | crash a binary?”

'

“How do | reach state X in a binary?”

T

Dynamic Analysis/Fuzzing Symbolic Execution

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 24

Dynamic Analysis/Fuzzing 6&((((@(«5((

e How do I reach the state: “You win!” is printed?

X = 1nt(input())

if x >= 10:
if x < 100:
—— print "You win!"
else:
print "You lose!"
else:

print "You lose!"

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 25

Dynamic Analysis/Fuzzing 6&((((9(«5((

e How do I reach the state: “You win!” is printed?

X = lnt(lnput()) ° Tl'y u1n_) ”YOU[Ose.l”

if x >= 10:
if X < 100: H~IN o” ”
—— print "You win!" e Try"2" — "You lose!
else:
print "You lose!" ®
else:
print "You lose!" e Try“10" — “You win!”

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 26

Dynamic Analysis/Fuzzing 6&((((@(«5((

e How did we use Fuzzing for CGC?

e Coverage-guided fuzzing
o Looking fFor “crashing inputs”
o Based on AFL lcamtuf.coredump.cx/afl/

e In general, it cannot work in some cases
o e.g., "“magic numbers”, computations, ...

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 27

http://lcamtuf.coredump.cx/afl/

Dynamic Analysis/Fuzzing 6&((((@(«5((

e How do I reach the state: “You win!” is printed?

X = 1nt(input())
if x >= 10:
if xA2 == 152399025:
print "You win!"
else:
print "You lose!"
else:
print "You lose!"

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 28

Symbolic Execution

6“(((9(((5(

e Interpret the binary code and replace user-input with

symbolic variables

X = int(input())
if x >= 10:
if x < 100:
print "You win!"
else:
print "You lose!"
else:
print "You lose!"

State A

Variables

X =777

Constraints

{

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge

29

Symbolic Execution 6&((((9(«5((

e Interpret the binary code and replace user-input with
symbolic variables

State A

X = 1nt(1nput())\ Variables
. _ 10 5> X =777

if x < 100: Constraints
print "You win!" U
else:

print "You lose!"”

else:
print "You lose!"

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 30

Symbolic Execution 6&((((@(«5((

e Follow all feasible paths, tracking "constraints" on

variables
State A
X = int(input()) Variables
if x >= 10: X =777
if x < 100; Constraints
print "You win!" U
else: /
print "You lose!" |StateAA
else: Variables
print "You lose!" =
~_Constrint

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 31

Symbolic Execution 6&((((9(«5((

e Follow all feasible paths, tracking "constraints" on

variables
State A
X = int(input()) Variables
if x >= 10: K=
if x < 100: Constraints
print "You win!" &
else: o ~.
print "You lose!" State AA State AB
else: Varia’f?lgs Varia%lgs
print "You lose!" L S
ints Constraints
{x >= 10} > {x <10}

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 32

Symbolic Execution 6&((((9(«5((

e Follow all feasible paths, tracking "constraints" on

variables
. . State AA State AB
X = 1nt(1n pu t()) Variables Variables
if x >= 10; x =777 R EH
if x < 100: ' Constraints Constraints
print "You win!" {x>= 10} {x <10}
else:
print "You lose!"
else:

print "You lose!"

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 33

Symbolic Execution

6“(((@(((5(

e Follow all feasible paths, tracking "constraints" on

variables
X = 1nt(1input())
if x >= 10;
if x < 100;

print "You win!"
else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
X = 2?7

Constraints
{x >=10}

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge

34

Symbolic Execution

6“(((9(((5(

e Follow all feasible paths, tracking "constraints" on

variables

X = 1nt(1input())
if x >= 10:
if x < 100:
print "You win!"
else:
print "You lose!"
else:
print "You lose!"

State AA

Variables
X = 2?7

Constraints
{x >=10}

/

State AAA

Variables
X =???

Constraints
{x>=10, x <100}

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge

T~

State AAB

Variables
X =777

Constraints
{x >=10, x >= 100}

35

Symbolic Execution 6&((((@(«5((

e (Concretize the constraints on the symbolic variables

State AAA
>§f= 1nt(18put()) Variables
if x < 100: ' Constraints
print "You win!" {x>=10, x < 100}
else: vou locel” Y Concretization
. .pr1n ou lose! State AAA
else.) . " Variables
print "You lose! X =99

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 36

Symbolic Execution 6&((((9(«5((

e (Concretize the constraints on the symbolic variables

)] State AAA
).(- lnt(lnPUt()) Variables
if x >= 10: X = 727
if xA2 == 152399025: p——
.] onstraints
print "You win!" {x >= 10,
else: xA2 == 152399025}
else: State AAA
1 " | Variables
print "You lose! Variables

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 37

Symbolic Execution 6&((((@(«5((

e How did we use Symbolic Execution for CGC?
o We used the symbolic execution engine of angr,
the binary analysis platform developed at UCSB

e Symbolically execute the binaries looking fFor
1. Memory accesses outside allocated regions
2. “Unconstrained” instruction pointer
(e.g., controlled by user input)
m eax = <user 1nput>, Jjmp eax
o [feither1.or2.istrue
— we found an input that will make the program crash

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 38

Future directions 6&((((@(«5((

e Combining the two approaches

o “Driller: Augmenting Fuzzing Through Selective
Symbolic Execution”
o Network and Distributed System Security
Symposium (NDSS), February 2016, San Diego

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 39

Future directions 6&((((9(«5((

e “Driller: Augmenting Fuzzing Through Selective
Symbolic Execution”

[BINARIES SYMBOLIC
EXECUTION

DRILLER

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 40

Coming up: 6&((((@««54

e Live example using angr
Open-source binary analysis framework

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 41

angr

e Binary analysis platform, developed at UCSB

e Open source: github.com/angr (star it!)

e Architecture independent
o x86 (ELF, CGC, PE), amd64, mips, mips64, arm,
aarché64, ppc, ppc64

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 42

https://github.com/angr

angr hi(ous

e Written in Python!

o installable with one (two?) command!

" ml.<Vl rtualenv angr\ (optional, but don’t complain if it's broken)
m pip install angr

o interactive shell (using IPython)

o it has aninteractive GUI

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge

43

angr — Demonstration 6&((((@(«5((
Grub: “Back to 28" vulnerability

o Pressing backspace 28 times on the grub username

prompt can get you a rescue shell
o http://hmarco.org/bugs/CVE-2015-8370-Grub?2-

authentication-bypass.html

// Does not checks underflows !!

// Integer underflow !!

grub_printff();
continue;

}

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 44

http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html
http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html
http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html

angr — Demonstration 6&((((@(«5((

Grub: “Back to 28" vulnerability

// Out of bounds overwrite

cur_len:—28

T get username

stack frame

return address

function arguments

caller function
buf stack frame

buf-28 username buffer

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 45

angr — Demonstration 6&((((@(«5((

Grub: “Back to 28" vulnerability

// Out of bounds overwrite

cur_len:—28
* get username get username
stack frame stack frame
return address grub_memset 00 00 00 00
00 00 00 00
function arguments > 00 00 00 00
00000000
caller function 00 00 00 00
buf stack frame 00 00 00 00
00 00 00 00
buf-28 username buffer 00 00 00 00

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 46

angr — Demonstration 6&((((@(«5((
Grub: “Back to 28" vulnerability

Is there life after jumping to 0x0 ?

e Somehow, jumping to
00:0000 is completely
exploitable

e Way beyond the scope
of this demo

AL address 0x0 resides the IVT (Interrupt Vector Table) of the processor. It contains a variety of pointers in the form of
segment:offset.

The lowest part of the IVT interpreted as code.

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 47

angr — Demonstration 6&((((@(«5((
Grub: “Back to 28" vulnerability

e The correct path to the exploit goes around this
loop 28 times, each of which has to follow a
specific path

=y | e The universe will grow old and die before naive
=T symbolic execution finds this bug

E‘ El e Demonstration: this doesn’t work, really!

= e A technique (implemented by angr) called

veritesting’ solves this problem in some cases by
merging states when their instruction pointers
== converge, but in this case the complexity

il generated is too much for the constraint solver

1http://users.ece.cmu.edu/~aavqerin/papers/veritestinq-icse-2014.odf

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 48

http://users.ece.cmu.edu/~aavgerin/papers/veritesting-icse-2014.pdf

angr — Demonstration 6&((((@(«5&(

e Symbolic execution is powerful
e Symbolic execution is stupid

e You are incredibly weak
e You are very clever

Use angr to unlock your true potential

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 49

angr — Demonstration 6&((((@(«5«(

Grub: “Back to 28" vulnerability

Manual examination of the state explosion tells you:
e \Where the wasted computational power is going
e How to be more efficient

~

[The naive approach is doing lots of weird things like entering letters and then deleting
them again and again, or pressing the “home” key several times in a row, which don’t
produce any interesting new states to analyze.

_ You can fix this!)

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 50

angr — Demonstration 6&((((@(«5«(

Grub: “Back to 28" vulnerability

Final demonstration
Finding the bug

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 51

Coming up: 6&((((@(«5((

e Towards the Cyber Grand Challenge Finals (CFE)

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 52

CGC Quals — Results 6&((((@(«5«(

e 7 teams passed the qualification phase
e Shellphishis one of them! :-)
e We exploited 44 binaries out of 131

e Every qualified team received $750,000!

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 53

CGC Finals 6&((((@(«5((

e Different setup

o Round-based attack-defense CTF

o Probably, zero human intervention allowed
m Not even bug fixing?

o Data about previous rounds is available:
m submitted exploits/patched binaries performance
m (anonymized) network traffic
m patches from other teams

o Stealing patched binaries/exploits?

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 54

CGC Finals 6&((((@(«5((

e Exploits are more realistic:
o Two types:
m Crash at a specific location and set a specific
register to a specific value
m Leak data from a specific memory page
o We'll need a more realistic exploit generator:
m angr automatic ROP-chain builder!
e Everyteam can also deploy network-level Filtering rules

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 55

CGC Finals

e Everyteam has accesstoa
cluster of:
o 1280 cores
o 16 TB of RAM
o 128 TB of storage

oo - 23

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge

56

CGC Finals 6&((((@(«5((

team@purple-42: ~ 46x31

1
1
1
1
1
1
]
1
]
1
1
1

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 57

CGC Finals

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 58

CGC Finals 6&((((@(«5((

e Finals will take place on August 2016
o DEFCON, Las Vegas

e Money prices!
o First place: $2'000'000
o Second place: $1'000'000
o Third place: $750'000

e The winning team will compete against human teams at
DEFCON CTF Finals :-)

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 59

Shellphish CGC Team t(bus

...... : ;

¢
OO B

N

—.

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge

I want more...

e angr hands-on workshop
o Just after this talk
o Hall 13 (first Floor)
o Bring your laptop!

3 Wi "R
A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge

61

“That’s all folks!” 6&((((@(«5((

Questions?

References:

CGC: cybergrandchallenge.org - cgc.darpa.mil

DARPA CGC presentation (DEFCON 2015): youtu.be/gnyCbU7|GYA
angr: angr.io — github.com/angr

emails: antoniob@cs.ucsb.edu - jacopo@cs.ucsb.edu — dutcher@cs.ucsb.edu

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 62

http://cybergrandchallenge.org
http://cgc.darpa.mil
https://youtu.be/gnyCbU7jGYA
http://angr.io
https://github.com/angr/angr
mailto:antoniob@cs.ucsb.edu
mailto:jacopo@cs.ucsb.edu
mailto:dutcher@cs.ucsb.edu

