When Coding Style Survives Compilation:
De-anonymizing Programmers
from Executable Binaries

Aylin Caliskan-Islam*, Fabian Yamaguchi ,
Edwin Dauber ¥ Richard Harang§, Konrad Rieck T,
Rachel Greenstadt ¥, and Arvind Narayanan*
*Princeton University, aylinc @princeton.edu, arvindn@cs.princeton.edu
TUniversity of Goettingen, fabian.yamaguchi@cs.uni-goettingen.de, konrad.rieck @cs.uni-goettingen.de
!Drexel University, egd34 @drexel.edu, greenie@cs.drexel.edu
S us. Army Research Laboratory, richard.e.harang.civ@mail.mil

Abstract—The ability to identify authors of computer pro-
grams based on their coding style is a direct threat to the privacy
and anonymity of programmers. Previous work has examined at-
tribution of authors from both source code and compiled binaries,
and found that while source code can be attributed with very high
accuracy, the attribution of executable binary appears to be much
more difficult. Many potentially distinguishing features present in
source code, e.g. variable names, are removed in the compilation
process, and compiler optimization may alter the structure of a
program, further obscuring features that are known to be useful
in determining authorship.

We examine executable binary authorship attribution from the
standpoint of machine learning, using a novel set of features that
include ones obtained by decompiling the executable binary to
source code. We show that many syntactical features present in
source code do in fact survive compilation and can be recovered
from decompiled executable binary. This allows us to add a
powerful set of techniques from the domain of source code
authorship attribution to the existing ones used for binaries,
resulting in significant improvements to accuracy and scalability.
We demonstrate this improvement on data from the Google
Code Jam, obtaining attribution accuracy of up to 96% with 20
candidate programmers. We also demonstrate that our approach
is robust to a range of compiler optimization settings, and
binaries that have been stripped of their symbol tables. Finally,
for the first time we are aware of, we demonstrate that authorship
attribution can be performed on real world code found *in
the wild” by performing attribution on single-author GitHub
repositories.

Index Terms—Authorship attribution; Decompilation; Ma-
chine Learning;

I. INTRODUCTION

If we encounter an executable binary sample in the wild,
what can we learn from it? In this work, we show that the
programmer’s stylistic fingerprint, or coding style, is preserved
in the compilation process and can be extracted from the
executable binary. This means that it may be possible to infer
the programmer’s identity if we have a set of known potential
candidate programmers, along with executable binary samples
(or source code) known to be authored by these candidates.

Besides its intrinsic interest, programmer de-anonymization
from executable binaries has implications for privacy and

anonymity. Perhaps the creator of a censorship circumvention
tool distributes it anonymously, fearing repression. Our work
shows that such a programmer could be de-anonymized. Fur-
ther, there are applications for software forensics, for example
to help adjudicate cases of disputed authorship or copyright.

Rosenblum et al. studied this problem and presented en-
couraging early results [40]. We build on their work and make
several advances to the state of the art, detailed in Section
First, whereas Rosenblum et al. extract structures such as
control-flow graphs directly from the executable binaries, our
work is the first to show that automated decompilation of exe-
cutable binaries gives additional categories of useful features.
Specifically, we generate abstract syntax trees of decompiled
source code. Abstract syntax trees have been shown to greatly
improve author attribution of source code [18]]. We find that
properties of these trees—including frequencies of different
types of nodes, edges, and average depth of different types
of nodes—also improve the accuracy of executable binary
attribution techniques.

Second, we demonstrate that using multiple disassembly
or decompilation tools in parallel increases the accuracy of
de-anonymization. This appears to be because different tools
generate different representations of code that capture different
aspects of the programmer’s style. We present a machine-
learning framework based on information gain for dimension-
ality reduction, followed by random-forests classification, that
allows us to effectively use these disparate types of features
in conjunction.

These innovations allow us to significantly improve the scale
and accuracy of programmer de-anonymization compared to
Rosenblum et al.’s work. We performed experiments with a
controlled dataset collected from Google Code Jam, allowing
a direct comparison since the same dataset was used in the pre-
vious work. The results of these experiments are discussed in
detail in Section[V] Specifically; for an equivalent accuracy we
are able to distinguish between five times as many candidate
programmers (100 vs. 20) while utilizing a smaller number
of training samples per programmer. Alternately, holding the



number of programmers constant, our accuracy jumps to 78%
compared to 61%, with a smaller number of training samples.
The accuracy of our method degrades gracefully as the number
of programmers increases, and we present experiments with as
many as 600 programmers. Similarly, we are able to tolerate
scarcity of training data: our accuracy for de-anonymizing sets
of 20 candidate programmers with just a single training sample
per programmer is over 75%.

Third, we find that enabling compiler optimizations or
stripping debugging symbols in executable binaries results
in only a modest decrease in classification accuracy. These
results, described in Section are an important step toward
establishing the practical significance of the method.

The fact that coding style survives compilation is unintu-
itive, and may leave the reader wanting a “sanity check" or an
explanation for why this is possible. In Section we present
several experiments that help illuminate this mystery. First, we
show that decompiled source code isn’t necessarily similar
to the original source code in terms of the features that we
use; rather, the feature vector obtained from disassembly and
decompilation can be used to predict, using machine learning,
the features in the original source code. Even if no individual
feature is well preserved, there is enough information in the
vector as a whole to enable this prediction. On average, the
cosine similarity between the original feature vector and the re-
constructed vector is over 80%. Further, we investigate factors
that are correlated with coding style being well-preserved, and
find that more skilled programmers are more fingerprintable.
This suggests that programmers gradually acquire their own
unique style as they gain experience.

All these experiments were carried out using the controlled
Google Code Jam dataset; the availability of this dataset
is a boon for research in this area since it allows us to
develop and benchmark our results under controlled settings
[10, 40]. Having done that, we present a case study with a
real-world dataset collected from GitHub in Section VI-Cl
This data presents difficulties, particularly limited training
data. However, we show that our approach classifies a set of
programmers with only one training executable binary sample
(and one testing executable binary sample) with 62% accuracy
and that the accuracy improves greatly in cases where more
executable binary training samples are available.

We emphasize that research challenges remain before pro-
grammer de-anonymization from executable binaries is fully
ready for practical use. Many programs are authored by mul-
tiple programmers and may include statically linked libraries.
We have not yet performed experiments that model these
scenarios. Also, while identifying the authors of executable
malware binaries is an exciting potential application, attribu-
tion techniques will need to deal with obfuscated malware.
Nonetheless, we believe that our results have significantly
advanced the state of the art, and present immediate concerns
for privacy and anonymity.

II. PROBLEM STATEMENT

In this work, we consider an analyst interested in determin-
ing the author of an executable binary purely based on its
style. Moreover, we assume that the analyst only has access
to executable binary samples each assigned to one of a set of
candidate programmers.

Depending on the context, the analyst’s goal might be
defensive or offensive in nature. For example, the analyst
might be trying to identify a misbehaving employee that
violates the non-compete clause in his company by launching
an application related to what he does at work. Similarly, a
malware analyst might be interested in finding the author or
authors of a malicious executable binary.

By contrast, the analyst might belong to a surveillance
agency in an oppressive regime who tries to unmask anony-
mous programmers. The regime might have made it unlawful
for its citizens to use certain types of programs, such as
censorship-circumvention tools, and might want to punish
the programmers of any such tools. If executable binary
stylometry is possible, it means that compiling code is not
a way of anonymization. Because of its potential dual use,
executable binary stylometry is of interest to both security
and privacy researchers.

In either (defensive or offensive) case, the analyst (or ad-
versary) will seek to obtain labeled executable binary samples
from each of these programmers who may have potentially
authored the anonymous executable binary. The analyst pro-
ceeds by converting each labeled sample into a numerical fea-
ture vector, and subsequently deriving a classifier from these
vectors using machine learning techniques. This classifier can
then be used to attribute the anonymous executable binary to
the most likely programmer.

Since we assume that a set of candidate programmers is
known, we treat it as a closed-world, supervised machine
learning task. It is a multi-class machine learning problem
where the classifier calculates the most likely author for the
anonymous executable binary sample among multiple authors.

Additional Assumptions. For our experiments, we assume
that we know the compiler used for a given program binary.
Previous work has shown that with only 20 executable binary
samples per compiler as training data, it is possible to use a
linear Conditional Random Field [26] to determine the com-
piler used with accuracy of 93% on average [41]]. Other work
has shown that by using pattern matching, library functions
can be identified with precision and recall between 0.98 and
1.00 based on each of three criteria; compiler version, library
version, and linux distribution [24].

In addition to knowing the compiler, we assume we know
the optimization level used for compilation of the binary. Past
work has shown that toolchain provenance, including compiler
family, version, optimization, and source language, can be
identified with a linear Conditional Random Field with accu-
racy of 99.9% for language, compiler family, and optimization
and 91.9% for compiler version [39]. More recent work has
looked at a stratified approach which, although having lower



accuracy, is designed to be used at the function level to enable
preprocessing for further tasks including authorship attribution
[37]. Due to the success of these techniques, we make the
assumption that these techniques will be used to identify the
toolchain provenance of the executable binaries of interest and
that our method will be trained using the same toolchain.

III. RELATED WORK

Any domain of creative expression allows authors or cre-
ators to develop a unique style, and we might expect that there
are algorithmic techniques to identify authors based on their
style. This class of techniques is called stylometry. Natural-
language stylometry, in particular, is well over a century old
[30]. Other domains such as source code and music also have
linguistic features, especially grammar. Therefore stylometry
is applicable to these domains as well, often using strikingly
similar techniques [11} 43|

Linguistic stylometry. The state of the art in linguistic
stylometry is dominated by machine-learning techniques [e.g.,
7., 18 31]. Linguistic stylometry has been applied successfully
to security and privacy problems, for example Narayanan et
al. used stylometry to identify anonymous bloggers in large
datasets, exposing privacy issues [31]. On the other hand,
stylometry has also been used for forensics in underground
cyber forums. In these forums the text consists of a mixture of
languages and information about underground forum products,
which makes it more challenging to identify personal writing
style. Not only have the forum users been de-anonymized but
also their multiple identities across and within forums have
also been linked through stylometric analysis [8].

Authors may deliberately try to obfuscate or anonymize
their writing style [7, [14, 29]. Brennan et al. [14] show
how stylometric authorship attribution can be evaded with
adversarial stylometry. They present two ways for adversarial
stylometry, namely obfuscating writing style and imitating
someone else’s writing style. Afroz et al. [7] identify the
stylistic changes in a piece of writing that has been obfuscated
while [29]] present a method to make writing style modification
recommendations to anonymize an undisputed document.

Source code stylometry. Several authors have applied
similar techniques to identify programmers based on source
code [e.g., 1518} 33]. It has applications in software forensics
and plagiarism detectionE]

The features used for machine learning in these works range
from simple byte-level [22]] and word-level n-grams [[16} [17] to
more evolved structural features obtained from abstract syntax
trees [18, 33]]. In particular, Burrows et al. [17] present an
approach based on n-grams that reaches an accuracy of 76.8%
in differentiating 10 different programmers.

Similarly, Kothari et al. [25] combine n-grams with lexical
markers such as the line length, to build programmer profiles
that allow them to identify 12 authors with an accuracy of
76%. Lange and Mancoridis [27] further show that metrics

'Note that popular plagiarism-detection tools such as Moss [9]] are not
based on stylometry; rather they try to detect code that may have been copied,
possibly with modifications. This is an orthogonal problem.

based on layout and lexical features along with a genetic
algorithm allow an accuracy of 75% to be obtained for 20
authors. Finally, Caliskan-Islam et al. [18]] incorporate abstract
syntax tree based structural features to represent programmers’
coding style. They reach 94% accuracy in identifying 1,600
programmers of the Google Code Jam data set.

Executable binary stylometry. In contrast, identifying pro-
grammers from compiled code is considerably more difficult
and has received little attention to date. Code compilation
results in a loss of information and obstructs stylistic features.
We are aware of only two prior works: Rosenblum et al.
[40] and Alrabaee et al. [LO]. Both [40] and [10] perform
their evaluation and experiments on controlled corpora that are
not noisy, such as the Google Code Jam dataset and student
homework assignments.

Rosenblum et al. [40] present two main machine learning
tasks based on programmer de-anonymization. One is based
on supervised classification to identify the authors of compiled
code. The second machine learning approach they use is based
on clustering to group together programs written by the same
programmers. They incorporate a distance based similarity
metric to differentiate between features related to programmer
style to increase the clustering accuracy.

Rosenblum et al. [40] use the Paradyn project’s Parse
API for parsing executable binaries to get the instruction
sequences and control flow graphs whereas we use four
different resources to parse executable binaries to generate a
richer representation. Their dataset consists of Google Code
Jam and homework assignment submissions. A linear support
vector machine classifier [20] is trained on the numeric repre-
sentations of varying numbers of executable binaries. Google
Code Jam programmers have eight to sixteen files and students
have four to 7 files. Students collaborated on the homework
assignments and the skeleton code was available.

Malware attribution. While the analysis of malware is a
well developed field, authorship attribution of malware has
received much less attention. Stylometry may have a role in
this application, and this is a ripe area for future work. The
difficulty in obtaining ground truth labels for samples has led
much work in this area to focus on clustering malware in
some fashion, and the wide range of obfuscation techniques
in common use have led many researchers to focus on dynamic
analysis rather than the static features we consider. The work
of Marquis-Boire et al. [28] examines several static features
intended to provide credible links between executable malware
binary produced by the same authors, however many of
these features are specific to malware, such as command and
control infrastructure and data exfiltration methods, and the
authors note that many must be extracted by hand. In dynamic
analysis, the work of Pfeffer et al. [34] examines information
obtained via both static and dynamic analysis of malware
samples to organize code samples into lineages that indicate
the order in which samples are derived from each other. Bayer
et al. [12] convert detailed execution traces from dynamic
analysis into more general behavioral profiles, which are then
used to cluster malware into groups with related functionality



and activity. Supervised methods (specifically a support vector
machine) are used by Rieck et al. [38] to match new instances
of malware with previously observed families, again on the
basis of dynamic analysis.

IV. APPROACH

Our ultimate goal is to automatically recognize program-
mers of compiled code. We approach this problem using
supervised machine learning, that is, we generate training data
from sample executable binaries with known authors. The
advantage of such learning-based methods over techniques
based on manually specified rules is that the approach is
easily retargetable to any set of programmers for which sample
executable binaries exist. A drawback is that the method is
inoperable if sample executable binaries are not available or
too few in number. We study the amount of sample data
necessary for successful classification in Section

Data representation is critical to the success of machine
learning. Accordingly, we design a feature set for executable
binary authorship attribution with the goal of faithfully repre-
senting properties of executable binaries relevant for program-
mer style. We obtain this feature set by augmenting lower-level
features extractable from disassemblers with additional string
and symbol information, and, most importantly, incorporating
higher-level syntactical features obtained from decompilers.

In summary, this results in a method consisting of the
following four steps (see Figure [I).

« Disassembly. We begin by disassembling the program to
obtain features based on machine code instructions, ref-
erenced strings, and symbol information (Section [[V-A)).

« Decompilation. We proceed to translate the program into
C-like pseudo code via decompilation. By subsequently
passing the code to a fuzzy parser for C, we thus obtain
abstract syntax trees from which syntactical features and
n-grams can be extracted (Section [[V-B).

o Dimensionality Reduction. With features from disas-
semblers and decompilers at hand, we select those among
them that are particularly useful for classification by
employing a standard feature selection technique based
on information gain (Section [[V-C).

o Classification. Finally, a random-forest classifier is
trained on the corresponding feature vectors to yield a
program that can be used for automatic executable binary
authorship attribution (Section [[V-D).

In the following, we describe each of these steps in greater
detail and provide background information on static code
analysis and machine learning where necessary.

A. Feature extraction via disassembly

As a first step, we disassemble the executable binary to
extract low-level features that have been shown to be suitable
for authorship attribution in previous work. In particular, we
follow the example set by Rosenblum et al. and extract raw
instructions from the executable binary [40]. In addition to
this, disassemblers commonly make available symbol infor-
mation as well as strings referenced in the code, both of which

greatly simplify manual reverse engineering. We augment the
feature set with this information accordingly, to make use of
it for executable binary authorship attribution. We obtain this
information by querying the following two disassemblers.

e The Netwide Disassembler. We begin by exploring
whether simple instruction decoding alone can already
provide useful features for de-anonymization. To this end,
we process each executable binary using the netwide
disassembler (ndisasm) [42]], a rudimentary disassembler
that is capable of decoding instructions but is unaware
of the executable’s file format. Due to this limitation, it
resorts to simply decoding the executable binary from
start to end, skipping bytes when invalid instructions are
encountered. A problem with this approach is that no
distinction is made between bytes that represent data,
and bytes that represent code. We explore this simplistic
approach nonetheless as these inaccuracies may not be
relevant given the statistical nature of machine learning
approaches.

e The Radare2 Disassembler. We proceed to apply the
radare2 disassembler [32], a state-of-the-art open-source
disassembler based on the capstone disassembly frame-
work [36]. In contrast to the ndisasm, radare2 under-
stands the executable binary format, allowing it to pro-
cess relocation and symbol information in particular. We
make use of this to extract symbols from the dynamic
(.dynsym) as well as the static symbol table (.symtab)
where present, as well as any strings referenced in the
code. In particular, our approach thus gains knowledge
over functions of dynamic libraries used in the code.

For both disassemblers, we subsequently tokenize their

output, and create token uni-grams and bi-grams, which serve
as our disassembly features.

B. Feature extraction via decompilation

Decompilers are the second source of information that we
consider for feature extraction in this work. In contrast to
disassemblers, decompilers do not only uncover the program’s
machine code instructions, but additionally reconstruct higher
level constructs in an attempt to translate an executable binary
into equivalent source code. In particular, decompilers can
reconstruct control structures such as different types of loops
and branching constructs. We make use of these syntactical
features of code as they have been shown to be valuable in
the context of source code authorship attribution [18]]. Similar
to our experiments on features gained from disassemblers, we
assess both the value of the data produced by a sophisticated
state-of-the-art decompiler (Hex-Rays []), as well as a more
simple open-source decompiler (Snowman [46]).

1) Obtaining features from Hex-Rays: Hex-Rays [1] is a
commercial state-of-the-art decompiler. It converts executable
programs into a human readable C-like pseudo code to be read
by human analysts. It is noteworthy that this code is typically
significantly longer than the original source code. For example,
decompiling an executable binary generated from 70 lines of
source code with Hex-Rays produces on average 900 lines



Binary Code Disassembly Decompilation Fuzzing Parsing
1000 0101 1111 test edi, edi int f(int a) {
1111 1011 1000 mov  eax, 0x0 if (a < 0)
0000 0000 0000 [—> | cmovs edi, eax a=0;
Instruction Word AST & CFG
features features features
—> Analysis of Random G
information Forest
> grain Classifier -
Dimensionality Classification =~ De-anonymized
reduction programmer

Figure 1. Overview of our method. Instructions, symbols, and strings are extracted using disassemblers (1), syntactical and control-flow features are obtained
from decompilers (2). Dimensionality reduction is performed to obtain representative features (3). Finally, a random forest classifier is trained to de-anonymize

programmers (4).

of decompiled code. We extract two types of features from
this pseudo code: lexical features, and syntactical features.
Lexical features are simply the word unigrams, which capture
the integer types used in a program, names of library functions,
and names of internal functions when symbol information
is available. Syntactical features are obtained by passing the
C-pseudo code to joern [45], a fuzzy parser for C that is
capable of producing fuzzy abstract syntax trees (ASTs) from
Hex-Rays pseudo code output. We derive syntactic features
from the abstract syntax tree, which represent the grammatical
structure of the program. Such features are AST node uni-
grams, labeled AST edges, AST node term frequency inverse
document frequency (TFIDF), and AST node average depth.
Previous work on source code authorship attribution [18| |44]]
shows that these features are highly effective in representing
programming style. Fig [2] illustrates this process.

2) Obtaining features from Snowman: Snowman is an
open source decompiler, which supports multiple different
instruction sets and executable binary formats, including the
Intel 32 bit instruction set and the ELF binary format consid-
ered in this work. In addition to decompiling code, Snowman
constructs control flow graphs. The nodes of the control flow
graph are the basic blocks, that is, sequences of statements that
are known to always be executed in direct succession. These
blocks provide a natural segmentation of a programs state-
ments, which our method exploits. To this end, we normalize
the code in basic blocks, and treat each basic block as a word.
We then extract word uni-grams and bi-grams, that is, single
basic blocks and sequences of two basic blocks, and apply the
TF-IDF weighting scheme [] to obtain our final features.

C. Dimensionality Reduction via information gain

Our feature extraction process based on disassemblers and
decompilers produces a large amount of features, resulting in
sparse feature vectors with thousands of elements. However,

Abstract syntax tree (AST) Syntactic features

AST unigrams:
[ func [dect ][ if ][ int ]
[ int I [ = ] lpredl [St’”tl AST bigrams:
func func decl
0 11 .
e
IL] &] AST depth: 5

Control-flow graph (CFG) Control-flow features

CFG unigrams:

CFG bigrams:

Figure 2. Feature extraction using decompilation and fuzzy parsing: the C-
like pseudo code produced by hexrays is transformed into an abstract syntax
tree and control-flow graph to obtain syntactic and control-flow features.

not all features are equally relevant to express a programmer’s
style. This makes it desirable to perform feature selection in
order to obtain a more compact representation of the data
that reduces the computational burden during classification.
Moreover, sparse feature vectors may result in large number
of zero-valued attributes being selected during random forest’s
random subsampling of the attributes to select a best split.
Reducing the dimensions of the feature set is also important
for avoiding overfitting. One example to overfitting would be a



rare assembly instruction uniquely identifying an author. For
these reasons, we use information gain criteria to select the
most informative attributes that represent each author as a
class. This reduces vector size and sparsity while increasing
accuracy and machine learning model training speed. For ex-
ample, we get 200,000 features from the 900 executable binary
samples of 100 programmers. If we use all of these features in
classification, the accuracy is slightly above 20% because the
random forest might be randomly selecting features with val-
ues of zero in the sparse feature vectors. Once the dimension of
the feature vector is reduced, we get less than 500 information
gain features. Extracting less than 500 features or training a
machine learning model where each instance has less than
500 attributes is computationally efficient. On the other hand,
no sparsity remains in the feature vectors after dimensionality
reduction which is one reason for the performance benefits of
dimensionality reduction. After dimensionality reduction, the
correct classification accuracy of 100 programmers increases
from 20% to close to 80%.

We employed the dimensionality reduction step using
WEKA’s [23] information gain [35] attribute selection crite-
rion, which evaluates the difference between the entropy of
the distribution of classes and the entropy of the conditional
distribution of classes given a particular feature:

IG(A, M;) = H(A) — H(A|M;) 1

where A is the class corresponding to an author, H is
Shannon entropy, and M; is the i*" attribute of the data
set. Intuitively, the information gain can be thought of as
measuring the amount of information that the observation of
the value of attribute ¢ gives about the class label associated
with the example.

In order to reduce the total size and sparsity of the feature
vector, we retained only those features that individually had
non-zero information gain. We refer to these features as
IG-features throughout the rest of the paper. Note that, as
H(A|M;) < H(A), information gain is always non-negative.
While the use of information gain on a variable-per-variable
basis implicitly assumes independence between the features
with respect to their impact on the class label, this conservative
approach to feature selection means that only those features
that have demonstrable value in classification are included in
our selected features.

D. Classification

We used the random forest ensemble classifier [13] as our
classifier for programmer de-anonymization. Random forests
are ensemble learners built from collections of decision trees,
each of which is trained on a subsample of the data obtained
by randomly sampling N training samples with replacement,
where N is the number of instances in the dataset. To reduce
correlation between trees, features are also subsampled; com-
monly (logM) + 1 features are selected at random (without
replacement) out of M, and the best split on these (logM )+ 1
features is used to split the tree nodes. The number of

selected features represents one of the few tuning parameters
in random forests: increasing the number of features increases
the correlation between trees in the forest which can harm
the accuracy of the overall ensemble, however increasing the
number of features that can be chosen between at each split
also increases the classification accuracy of each individual
tree making them stronger classifiers with low error rates. The
optimal range of number of features can be found using the
out of bag error estimate, or the error estimate derived from
those samples not selected for training on a given tree.

During classification, each test example is classified via each
of the trained decision trees by following the binary decisions
made at each node until a leaf is reached, and the results
are then aggregated. The most populous class can be selected
as the output of the forest for simple classification, or several
possible classifications can be ranked according to the number
of trees that ‘voted’ for the label in question when performing
relaxed attribution (see Section [V-F).

We employed random forests with 500 trees, which em-
pirically provided the best tradeoff between accuracy and
processing time. Examination of numerous out of bag error
values across multiple fits suggested that (logM ) 4 1 random
features (where M denotes the total number of features) at
each split of the decision trees was in fact optimal in all of
the experiments listed in Section[V] and was used throughout.
Node splits were selected based on the information gain
criteria, and all trees were grown to the largest extent possible,
without pruning.

The data was analyzed via k-fold cross-validation, where the
data was split into training and test sets stratified by author
(ensuring that the number of code samples per author in the
training and test sets was identical across authors). k varies
according to datasets and is equal to the number of instances
present from each author. The cross-validation procedure was
repeated 10 times, each with a different random seed, and
average results across all iterations are reported, ensuring that
results are not biased by improbably easy or difficult to classify
subsets.

Following previous work [10, 40] in this area, we report
our classification results in accuracy. On the other hand,
programmer de-anonymization is a multi-class classification
problem where accuracy, the true positive rate, represents the
correct classification rate in the most meaningful way.

V. EXPERIMENTS WITH GOOGLE CODE JAM DATA

In this section, we go over the details of the various
experiments we performed to address the research question
formulated in Section

A. Dataset

We evaluate our executable binary authorship attribution
method on a dataset based on the annual programming com-
petition Google Code Jam [5]. It is an annual contest that
thousands of programmers take part in each year, including
professionals, students, and hobbyists from all over the world.
The contestants implement solutions to the same tasks in



a limited amount of time in a programming language of
their choice. Accordingly, all the correct solutions have the
same algorithmic functionality. There are two main reasons
for choosing Google Code Jam competition solutions as an
evaluation corpus. First, it enables us to directly compare
our results to previous work on executable binary authorship
attribution as both Alrabaee et al. [10] and Rosenblum et al.
[40] evaluate their approaches on data from Google Code Jam
(GCJ). Second, we eliminate the potential confounding effect
of identifying programming task rather than programmer by
identifying functionality properties instead of stylistic proper-
ties. GCJ is a less noisy and clean dataset known definitely
to be single authored. GCJ solutions do not have significant
dependencies outside of the standard library and contain few
or no third party libraries.

We focus our analysis on compiled C++ code, the most
popular programming language used in the competition. We
collect the solutions from the years 2008 to 2014 along with
author names and problem identifiers.

B. Code Compilation

To create our experimental datasets, we first compiled the
source code with GNU Compiler Collection’s gcc or g++
without any optimization to Executable and Linkable Format
(ELF) 32-bit, Intel 80386 Unix binaries.

Next, to measure the effect of different compilation options,
such as compiler optimization flags, we additionally compiled
the source code with level-1, level-2, and level-3 optimizations,
namely the O1, O2, and O3 flags. The compiler attempts to
improve the performance and/or code size when the compiler
flags are turned on. Optimization has the expense of increasing
compilation time and complicating program debugging.

C. Dimensionality Reduction

We are interested in identifying features that represent
coding style preserved in executable binaries. With the current
approach, we extract more than 200,000 representations of
code properties of 100 authors, but only a subset of these
representations are the result of individual programming style.
We are able to capture the features that represent each author’s
programming style that is preserved in executable binaries by
applying information gain criteria to these 200,000 features.
After applying information gain, we reduce the feature set
size to 426 to effectively represent coding style properties that
were preserved in executable binaries. Considering the fact that
we are reaching such high accuracies on de-anonymizing 100
programmers with 900 executable binary samples (discussed
below), these features are providing strong representation of
style that survives compilation. We also see that all of our
feature sources, namely disassembly, CFG, and decompiled
code are capturing the preserved coding style.

D. We can de-anonymize programmers from their executable
binaries.

This is the main experiment that demonstrates how de-
anonymizing programmers from their executable binaries is

Feature Source Number Information
of Possible | Gain
Features Features

word unigrams hex-rays 29,686 102
decompiled
code

AST node TF* hex-rays 14,663 24
decompiled
code

Labeled AST edge | decompiled 25,941 88

TF* code

AST node TFIDF** decompiled 14,663 8
code

AST node average | decompiled 14,663 21

depth code

C++ keywords decompiled 73 5
code

radare2 disassembly | radare disas- 12,629 45

unigrams sembly

radare2 disassembly | radare disas- | 33,919 75

bigrams sembly

ndisasm disassembly | ndisasm dis- | 532 8

unigrams assembly

ndisasm disassembly | ndisasm dis- | 4,570 25

bigrams assembly

CFG unigrams Snowman 11,503 5
CFG

CFG unigram | Snowman 11,503 10

TFIDF** CFG

CFG bigrams Snowman 38,554 10
CFG

Total 201,396 426
TF* = term frequency

TFIDF** = term frequency inverse document frequency

Table T
PROGRAMMING STYLE FEATURES IN EXECUTABLE BINARIES

possible. After preprocessing the dataset to generate the exe-
cutable binaries without optimization, we further process the
executable binaries to obtain the disassembly, control flow
graphs, and decompiled source code. We then extract all the
possible features detailed in Section We take a set of 20
programmers who all have 14 executable binary samples. With
14-fold-cross-validation, the random forest classifier correctly
classifies 280 test instances with 96.0% accuracy. With a set of
100 programmers who all have 9 executable binary samples,
the random forest classifier correctly classifies 900 instances
with 78.3%, which is significantly higher than the accuracies
reached in previous work. Table [[I| summarizes programmer
de-anonymization results with different number of authors and
samples.

There is an emphasis on the number of folds used in
these experiments because each fold corresponds to the im-
plementation of the same algorithmic function by all the
programmers in the GCJ dataset (e.g. all samples in fold 1
may be attempts by the various authors to solve a list sorting
problem). Since we know that each fold corresponds to the
same Code Jam problem, by using stratified cross validation
without randomization, we ensure that all training and test
samples contain the same algorithmic functions implemented
by all of the programmers. The classifier uses the excluded fold
in the testing phase, which contains executable binary samples



that were generated from an algorithmic function that was
not previously observed in the training set for that classifier.
Consequently, the only distinction between the test instances
is the coding style of the programmer, without the potenially
confounding effect of identifying an algorithmic function.

Number of | Number of | Cross Validation | Accuracy
Program- Training
mers Samples
20 5 S-fev* 95.0%
20 13 13-fcv* 96.0%
20 8 8-fev* 96.0%
100 8 8-fev* 78.3%
*k-fcv refers to k-fold cross validation

Table 1T

PROGRAMMER DE-ANONYMIZATION

E. Even a single training sample per programmer is suffi-
cient for de-anonymization.

A drawback of supervised machine learning methods, which
we employ, is that they require labeled examples to build a
model. The ability of the model to accurately generalize is
often strongly linked to the amount of data provided to it
during the training phase, particularly for complex models.
In domains such as executable binary authorship attribution,
where samples may be rare and obtaining “ground truth” for
labeling training samples may be costly or laborious, this can
pose a significant challenge to the usefulness of the method.

We therefore devised an experiment to determine how
much training data is required to reach a stable classification
accuracy, as well as to explore the accuracy of our method
with severely limited training data. As programmers produce
a limited number of code samples per round of the GCJ com-
petition, and programmers are eliminated in each successive
round, the GCJ dataset has an upper bound in the number of
code samples per author as well as a limited number of authors
with a large number of samples. Accordingly, we identified a
set of 20 programmers that had exactly 14 program samples
each, and examined the ability of our method to correctly
classify each author out of the candidate set of 20 authors
when training on between 1 and 13 files per author.

As shown in Figure [3] the classifier is capable of correctly
identifying the author of a code sample from a potential field
of 20 with 75.4% accuracy on the basis of a single training
sample. The classifier also reaches a point of dramatically
diminishing returns with as few as three training samples,
and obtains a stable accuracy by training on 6 samples. Given
the complexity of the task, this combination of high accuracy
with extremely low requirement on training data is remarkable,
and suggests the robustness of our features and method. It
should be noted, however (see Section [V-K) that this set
of programmers with a large number of files corresponds to
more skilled programmers, as they were able to remain in the
competition for a longer period of time and thus produce this
large number of samples.

To examine the question of programmer skill, and to exam-
ine the analogue to a perhaps more realistic setting where a
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Figure 3. Required Amount of Training Data for De-anonymizing 20
Programmers

much larger field of candidate authors is available, we examine
a larger set of 100 authors who were successful enough in the
competition to produce 9 code samples. As in the previous
experiment, we train the classifier on from 1 to 8 code samples
per author, and ask it to correctly classify the authorship of a
test sample out of the potential set of 100. Due to the larger
set of class labels to choose from and the lower overall skill
level of the authors represented in this set, we expect this
task to be substantially more difficult. Indeed, Figure [4] shows
that, while we are able to obtain relatively high classification
accuracy even over a field of 100 programmers with a limited
number of samples (64.4% accuracy using just 4 samples per
author, compare to approximately 61% accuracy using 8 to 16
files per author in Rosenblum et al. [40]), the accuracy keeps
increasing as more training data is utilized by the random
forest model and does not display the sharp cutoff observed
in Figure [3] In section [V-F, we examine relaxed attribution
methods for reducing the effective number of classes, allowing
us to improve accuracy further, at the cost of a higher manual
inspection burden on the analyst.
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Programmers



FE. Relaxed Classification: In difficult scenarios, the classi-
fication task can be narrowed down to a small suspect set.

In Section [V-E] the previously unseen anonymous exe-
cutable binary sample is classified such that it belongs to the
most likely author’s class. In cases where we have too many
classes or the classification accuracy is lower than expected,
we can relax the classification to fop—n classification. In top—n
relaxed classification, if the test instance belongs to one of the
most likely n classes, the classification is considered correct.
This can be useful in cases when an analyst or adversary is
interested in finding a suspect set of n authors, instead of
a direct fop—I classification. Being able to scale down an
authorship investigation for an executable binary sample of
interest to a reasonable sized set of suspect authors among
hundreds of authors greatly reduces the manual effort required
by an analyst or adversary. Once the suspect set size is
reduced, the analyst or adversary could adhere to content based
dynamic approaches and reverse engineering to identify the
author of the executable binary sample.

Top-n Relaxed Classification on 20 Programmers
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Figure 5. De-anonymizing 20 Programmers
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Figure 6. De-anonymizing 100 Programmers

It is important to note from Figure [3] that, by using only
a single training sample in a 20-class classification task, the
machine learning model can correctly classify new samples

with 75.0% accuracy. This is of particular interest to an analyst
or adversary who does not have a large amount of labeled
samples in her suspect set. Figure [3] shows that an analyst
or adversary can narrow down the suspect set size from 20
authors to 4 authors, guaranteed that the main suspect is among
the 4, by using only one training sample from each of the 20
authors.

Top-5 Relaxed Classification of 20 Programmers with
One Training Sample
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Figure 7. De-anonymizing 20 Programmers with One Training Sample

G. The feature set selected via information gain works
across different sets of programmers.

In our earlier experiments, we trained the classifier on
the same set of binaries that we used for selecting features
via information gain. While this is a perfectly valid choice,
we would like to compare it to the accuracy achieved if
we had chosen different sets of programmers for computing
information gain and for training the classifier. If we are
able to reach accuracies similar to what we got earlier, we
can conclude that these information gain features are not
overfitting to the 100 programmers they were generated from.
This also implies that the information gain features in general
capture programmer style.

Recall that analyzing 900 executable binary samples of the
100 programmers resulted about 200,000 features, and after di-
mensionality reduction, we are left with 426 information gain
features. We picked a different (non-overlapping) set of 100
programmers and re-did the de-anonymization experiment.
This resulted in very similar accuracies: we obtained 78.3%
accuracy with the first set of programmers, as reported above,
compared to 77.9% with the validation set of programmers.
This confirms that the information gain features obtained from
the main set of 100 programmers do actually represent coding
style in executable binaries and can be used across different
datasets.

H. Large Scale De-anonymization: We can de-anonymize
600 programmers from their executable binaries.

We would like to see how well our method scales up to 600
users. An analyst with a large set of labeled samples might
be interested in performing large scale de-anonymization. For
this experiment, we use 600 contestants from GCJ with 9 files.
We only extract the information gain features from the 600
users. This reduces the amount of time required for feature



extraction. On the other hand, this experiment shows how well
the information gain features represent overall programming
style. The results of large scale programmer de-anonymization
are in Figure [8]
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Figure 8. Large Scale Programmer De-anonymization

1. We advance the state of executable binary authorship
attribution.

Rosenblum et al. [40] present the largest scale evaluation
of executable binary authorship attribution in related work.
[40]’s largest dataset contains 191 programmers with at least
8 training samples per programmer. We compare our results
with [40]’s and in Table show how we advance the state
of the art both in accuracy and on larger datasets. [40] use
1,900 coding style features to represent coding style whereas
we use 426 features, which might suggest that our features are
more powerful in representing coding style that is preserved
in executable binaries.

Related Work Number of | Number of | Accuracy
Programmers Training
Samples
Rosenblum et al. 20 8-16 77%
This work 100 8 78%
Rosenblum et al. 20 8-16 77%
This work 20 2 78%
This work 20 6 95%
This work 20 8 96%
Rosenblum et al. 100 8-16 61%
This work 100 8 78%
Rosenblum et al. 191 8-16 51%
This work 191 8 63%
This work 600 8 52%
Table III

COMPARISON TO PREVIOUS RESULTS

Programmer style is preserved in executable binaries.

We show throughout the results that it is possible to de-
anonymize programmers from their executable binaries with a
high accuracy. To quantify how stylistic features are preserved
in executable binaries, we calculated the correlation of stylistic
source code features and decompiled code features. We used
the stylistic source code features from previous work [18]]
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on de-anonymizing programmers from their source code. We
took the most important 150 features in coding style that
consist of AST node frequency, AST node average depth,
AST node bigram frequency, AST node TFIDF, word unigram
recency, and C++ keyword frequency. For each executable
binary sample, we have the corresponding source code sample.
We extract 150 information gain features from the original
source code. We extract decompiled source code features
from the decompiled executable binaries. For each executable
binary instance, we set one corresponding information gain
feature as the class to predict and we calculate the correlation
between the decompiled executable binary features and the
class value. A random forest classifier with 500 trees predicts
the class value of each instance, and then Pearson’s correlation
coefficient is calculated between the predicted and original
values. The correlation has a mean of 0.32 and ranges from
-0.12 to 0.69 for the most important 150 features.

To see how well we can reconstruct the original source
code features from decompiled executable binary features,
we reconstructed the 900 instances with 150 features that
represent the highest information gain features. We calculated
the cosine similarity between the original 900 instances and
the reconstructed instances after normalizing the features to
unit distance. The cosine similarity for these instances is
in Figure O] where a cosine similarity of 1 means the two
feature vectors are identical. The high values (average of 0.81)
in cosine similarity suggest that the reconstructed features
are similar to the original features. When we calculate the
cosine distance between the feature vectors of the original
source code and the corresponding decompiled code’s feature
vectors (no predictions), the average cosine distance is 0.35.
This result suggests that the predicted features are much
similar to original source code than the features extracted
from decompiled code but decompiled code still preserves
transformed forms of the original source code features well
enough to reconstruct the original source code features.

K. Programmer skill set has an effect on coding style that
is preserved in executable binaries.

In order to investigate the effect of programmer skill set
on coding style that is preserved in executable binaries, we
took two sets with 20 programmers. We considered the GCJ
contestants who were able to advance to more difficult rounds
as more advanced programmers as opposed to contestants that
were eliminated in easier rounds. The programmers with more
advanced skill sets were able to solve 14 problems and the
programmers that had a less advanced skill set were only
able to solve 7 problems. All of the 40 programmers had
implemented the same 7 problems from the easiest rounds.
We were able to identify the more advanced 20 programmers
with 88.2% accuracy while we identified the less advanced 20
programmers with 80.7% accuracy. This might indicate that,
programmers who are advanced enough to answer 14 problems
likely have more unique coding styles compared to contestants
that were only able to solve the first 7 problems.

To investigate the possibility that contestants who are able to
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Figure 9. Feature Transformations: Each data point on the x-axis is a different
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the feature vector extracted from the original source code and the feature
vector that tries to predict the original features. The average value of these
900 cosine distance measurements is 0.81.

advance further in the rounds have more unique coding styles,
we performed a second round of experiments on comparable
datasets. We took a dataset with 6 solution files and 20 authors
and also a dataset that contains these 6 files but has 12 files
in total and 20 programmers. We were able to identify the
more advanced 20 programmers with 86.7% accuracy while
we identified the less advanced 20 programmers with 78.1%
accuracy. These results suggest that programmer skill set has
an effect on coding style, and this effect on coding style is
preserved in compilation.

A = #authors, F = max #problems completed
N = #problems included in dataset (N < F)
A =20
F=14 F=7 F=12 F=6
[N=7easier] N=7 [N =6easier | N=6
Average accuracy after 10 iterations
88.2% [ 80.7%! | 86.7% [ 78.1%!
TDrop in accuracy due to programmer skill set.
Table IV

EFFECT OF PROGRAMMER SKILL SET ON CODING STYLE PRESERVED IN
EXECUTABLE BINARIES
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VI. EXPERIMENTS WITH REAL WORLD SCENARIOS

A. Compiler Optimization: Programmers of optimized exe-
cutable binaries can be de-anonymized.

In Section [V] we discussed how we evaluated our approach
on a controlled and clean real world dataset. Section [V] shows
how we advance over all the previous methods that were
all evaluated with clean datasets such as GCJ or homework
assignments. In this section, we investigate a more complicated
dataset which has been optimized during compilation, where
the executable binary samples have been normalized further
during compilation.

Compiling with optimization tries to minimize or maximize
some attributes of an executable computer program. The goal
of optimization is to minimize the time it takes to execute a
program or to minimize the amount of memory a program
occupies. The compiler applies optimizing transformations
which are algorithms that take a program and transform it to
a semantically equivalent program that uses fewer resources.

GCC has predefined optimization levels that turn on sets
of optimization flags. Compilation with optimization level-1,
tries to reduce code size and execution time, takes more time
and much more memory for large functions than compilation
with no optimizations. Compilation with optimization level-
2 optimizes more than level-1 optimization, uses all level-1
optimization flags and more. Level-2 optimization performs
all optimizations that do not involve a space-speed tradeoff.
Level-2 optimization increases compilation time and perfor-
mance of the generated code when compared to optimization
with level-1. Level-3 optimization yet optimizes more than
both level-1 and level-2.

This work shows that programming style features survive
compilation without any optimizations. As compilation with
optimizations transforms code further, we investigate how
much programming style is preserved in executable binaries
that have gone through compilation with optimization. Our
results summarized in Table [V|show that programming style is
preserved to a great extent even in the most aggressive level-
3 optimization. This shows that programmers of optimized
executable binaries can be de-anonymized and optimization is
not a highly effective code anonymization method.

Number of | Number of | Compiler Accuracy
Programmers Training Optimiza-

Samples tion Level
100 8 None 78.3%
100 8 1 64.2%
100 8 2 61.3%
100 8 3 60.1%

Table V

PROGRAMMER DE-ANONYMIZATION WITH COMPILER OPTIMIZATION

B. Removing symbol information does not anonymize exe-
cutable binaries.

To investigate the relevance of symbol information for
classification accuracy, we repeat our experiments with 100
authors presented in the previous section on fully stripped



executable binaries, that is, executable binaries where symbol
information is missing completely. We obtain these executable
binaries using the standard utility GNU strip on each ex-
ecutable binary sample prior to analysis. Upon removal of
symbol information, without any optimizations, we notice
a drop in classification accuracy by 12.4%, showing that
stripping symbol information from executable binaries is not
effective enough to anonymize an executable binary sample.

C. GitHub Programmer De-anonymization in the “Wild”

We developed our method and evaluated it on the Google
Code Jam dataset, but collecting code from open source
projects is another option for constructing a dataset. Open
source projects do not guarantee ground truth on authorship.
The feature vectors might capture topics of the project instead
of programming style. As a result, open source code does
not constitute the ideal data for authorship analysis; however,
it allows us to better assess the applicability of programmer
de-anonymization in the wild. We therefore present results
from a dataset collected from the hosting platform GitHub,
which we obtain by spidering the platform to collect C and
C++ repositories. We collect two GitHub [6] datasets in C
and C++. The first GitHub dataset consists of repositories
that have been authored by multiple programmers, whereas
the second GitHub dataset includes repositories authored by a
single programmer. Table shows the statistics of the first
dataset.

Type Amount

Authors 118

Repositories 338

Files 4112

Repositories / Author 2-10

Files / Author 10 — 203
Table VI

MULTIPLE AUTHORED GITHUB REPOSITORIES

The conditions the files in Table satisfy are as follows:
Crawling:
The repository is marked as C/C++ by Github.
The repository is not a fork of another repository.
The repository has at least 10 stars on Github.
Moreover, some repository names are black-listed, such
as repositories which are often mirrors or very large. The
current blacklist is ‘linux’, ‘kernel’, ‘osx’, ‘gcc’, ‘llvm’,
‘next’.

Cloning: The collected repositories are cloned from Github,
such that all files are available for analysis. This enables
further filtering of the data. Files are only included in the
dataset if they satisfy the following conditions:

The file name ends with a typical C/C suffix, such as ‘c’
and ‘cpp’.

The file contains at least 50 lines.

The file has a main author that is “git-blamed” for 90%
of the lines.

The main author contributed at least 5 commits to the
file.
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o The commit messages do not contain ‘signed-oft’.

Indexing:

In the final step, the remaining files are indexed and further
filtered using the identified authors. In particular, an author
and her/his files are only included in the dataset if they satisfy
the following conditions.

o The author has contributed to at least 2 repositories

o The author has written at least 10 different files

The second dataset has the statistics listed in Table [VIIL
There have been two additions to the crawling method when
compared to the dataset in Table This dataset includes
repositories if only one author has committed to the repository
and the total number of lines of code is at least 500. While
cloning, the file does not need to contain at least 50 lines. The
one and only main author must be “git-blamed” for 100% of
the lines. There is no limit on the number of different files
that need to be authored by the main programmer.

Type Amount
Authors 49
Repositories 117
Files 782
Repositories / Author 2-5
Files / Author 2 - 88

Table VII
SINGLE AUTHORED GITHUB REPOSITORIES

At this stage, we had a set of C and C++ source files divided
into repositories for each author. In order to compile the code,
we needed the entire repositories. Therefore, the final step in
data collection was to download the zipped folder for each
selected repository.

We can de-anonymize GitHub programmers.

Generating executable binaries from GitHub repositories
requires manual effort. Furthermore, some repositories are
unable to be compiled to 32-bit Intel 80386 Unix executable
binaries. Therefore, we compiled a subset of the collected
repositories to obtain 50 executable binary samples from 12
authors. The number of executable binary samples per author
ranges from 2 to 11, with most authors having 2 or 3 samples.
Some of the repositories had a single author and some had
multiple authors. We extract the information gain features
obtained from GCJ data from this GitHub dataset. Overall,
we reach 62.0% accuracy in correctly identifying the author
of an executable binary sample.

GitHub datasets are noisy for two reasons. First, most of
the executable binaries are the result of a collaborative effort.
However, in our dataset at least 90% of the source code used to
generate the executable binary can be attributed to one main
GitHub programmer. Second, the executable binary used in
de-anonymization might contain properties from third party
libraries and code. For these two reasons, it is more difficult to
attribute authorship to anonymous executable binary samples
from GitHub, but nevertheless we reach 62.0% accuracy in
correctly classifying these programmers’ executable binaries.

Another difficulty in this particular dataset is that there is
not much training data to train an accurate random forest



classifier that models each programmer. For example, we can
de-anonymize the two programmers with the most samples,
one with 11 samples and one with 7, with 100% accuracy.

We perform the classification in different ways to see how
the accuracy changes according to the number of folds. For
classification, we use 50% of the samples for training a model
and the remaining data for testing. We do this with all possible
permutations to use all instances as both training and testing
data. The accuracy ranges between 60% and 63%, and the
average is 62%. We also take a random dataset from GCJ
with 12 programmers that have the same number of files as
the GitHub programmers in this case study. By using the
same classification methods, the accuracy on a GCJ dataset
with 12 programmers and 50 files is 68.0%. These results
are summarized in Table [VIIIl and show that the IG-features
we obtain from GCJ are a robust representation of coding
style preserved in executable binaries and also that our method
performs similarly well on noisy datasets.

Being able to de-anonymize programmers in the wild by
using less than 500 stylistic features obtained from our clean
evaluation dataset is a promising step towards attacking more
challenging real world de-anonymization problems.

Dataset Authors Total Files Accuracy

GitHub 12 50 62.0%

GCJ 12 50 68.0%
Table VIII

GITHUB PROGRAMMER DE-ANONYMIZATION

VII. DISCUSSION

Our experiments are devised for a setting where the pro-
grammer is not trying to hide his coding style. Therefore we
have not included any experiments based on identifying the
authors of obfuscated executable binary samples. We focused
on the general case of executable binary authorship attribution,
which is a serious threat to privacy but at the same time an
aid for forensic analysis.

By using the GitHub dataset, we show that we can per-
form programmer de-anonymization with executable binary
authorship attribution in the wild. We de-anonymize GitHub
programmers by using stylistic features obtained from the
Google Code Jam (GCJ) dataset. This supports the supposition
that, in addition to its other useful properties for scientific
analysis of attribution tasks, the GCJ dataset is a valid and
useful proxy for real-world authorship attribution tasks.

The advantage of using the GCJ dataset is that we can
perform the experiments in a strictly controlled environment
where the most distinguishing difference between program-
mers’ solutions is their programming style. Every contestant
implements the same functionality, in a limited amount of
time while at each round problems get more difficult. This
provides the opportunity to control the difficulty level of the
samples and the skill set of the programmers in the dataset. In
contrast, GitHub offers a noisy dataset due to the collaborative
nature of the samples. However, our results show that in cases
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where larger amounts of training data are available because
the author contributed to many repositories, high accuracies
are still achievable.

Previous work shows that coding style is quite prevalent in
source code. We were surprised to find out that coding style is
preserved to a great degree even in compiled source code. We
can de-anonymize programmers from compiled source code
with great accuracy and furthermore we can de-anonymize
programmers from source code compiled with optimization.
Optimizations transform executable binaries further to improve
performance or memory usage. In our experiments, we see that
even though optimization or stripping symbols transforms exe-
cutable binaries more than plain compilation, stylistic features
are still preserved to a large degree. However, our experiments
in these cases were done using the information-gain features
determined from the unoptimized case with symbol tables in-
tact. Future work that customizes the dimensionality reduction
for these cases (for example, removing features from the trees
that are no longer relevant) may be able to improve upon these
numbers, especially since the dimensionality reduction was
able to provide such a large boost in the unoptimized case.

In source code authorship attribution [18]], programmers
who can implement more sophisticated functionality have a
more distinct programming style. We observe the same pattern
in executable binary samples and gain some software engi-
neering insights by analyzing stylistic properties of executable
binaries.

Even though executable binaries look cryptic and difficult
to analyze, by the help of available tools, we can extract
many useful features from them. We extract features from
disassembly, control flow graphs, and also decompiled code
to identify features relevant to only programming style. We
extract features from different feature spaces to obtain a rich
representation of the binary. After dimensionality reduction
with information gain, we see that each of the feature spaces
provides programmer style information. All the feature spaces
contain a total of more than 200,000 features for 900 exe-
cutable binary samples of 100 authors. Approximately 400
features suffice to capture enough key features of coding style
to enable robust authorship attribution. Even though 400 is a
small number to represent hundreds of programmers’ styles,
these features are quite powerful in de-anonymizing program-
mers. We see that the information gain features are valid
in different datasets with different programmers, including
optimized programmers or GitHub programmers. Also, the
information gain features are helpful in scaling up the pro-
grammer de-anonymization approach. While we can identify
100 programmers with 78% accuracy, we can de-anonymize
600 programmers with 52% accuracy using the same set of 400
features. 52% is a very high number for such a challenging
de-anonymization task where the random chance of correctly
identifying an author is 0.17%.

VIII. LIMITATIONS

Our experiments suggest that our method is able to assist in
de-anonymizing programmers with significantly higher accu-



racy than state-of-the-art approaches. However, there are also
assumptions that underlie the validity of our experiments as
well as inherent limitations of our method that we discuss in
the following paragraphs.

First, we assume that our ground truth is correct, but in
reality programs in Google CodeJam or on GitHub might be
written by programmers other than the stated programmer, or
by multiple programmers. Such a ground truth problem would
cause the classifier to train on noisy models which would lead
to lower de-anonymization accuracy and a noisy representation
of programming style.

Second, many source code samples from Google Code Jam
contestants cannot be compiled. Consequently, we perform
evaluation only on that subset of samples which can be com-
piled. This has two effects: first, we are performing attribution
with fewer executable binary samples than the number of
available source code samples. This is a limitation for our
experiments but it is not a limitation for an attacker who first
gets access to the executable binary instead of the source code.
If the attacker gets access to the source code instead, she could
perform regular source code authorship attribution. Second,
we must assume that whether or not a code sample can be
compiled does not correlate with the ease of attribution for
that sample.

Third, we only consider C/C++ code compiled using the
GNU compiler gcc in this work, and assume that the exe-
cutable binary format is the Executable and Linking Format
(ELF). This is important to note as dynamic symbols are
typically present in ELF binary files even after stripping
of symbols, which may ease the attribution task relative to
other executable binary formats that may not contain this
information. We defer the investigation of the impact that other
compilers, languages, and executable binary formats might
have on the attribution task to future work.

Finally, we do not consider executable binaries that are ob-
fuscated to hinder reverse engineering. While simple systems,
such as packers [2] or encryption stubs that merely restore the
original executable binary into memory during execution may
be analyzed by simply recovering the unpacked or decrypted
executable binary from memory, more complex approaches are
becoming increasingly commonplace, particularly in malware.
A wide range of anti-forensic techniques exist [21]], including
methods that are designed specifically to prevent easy access
to the original bytecode in memory via such techniques
as modifying the process environment block or triggering
decryption on the fly via guard pages. Other techniques such
as virtualization [3, 4] transform the original bytecode to
emulated bytecode running on one or many virtual machines,
making decompilation both labor-intensive and error-prone.
Finally, the use of specialized compilers that lack decompilers
and produce nonstandard machine code — see [19] for an
extreme but illustrative example — may likewise hinder our
approach, particularly if the compiler is not generally available
and cannot be fingerprinted. We leave the examination of these
techniques, both with respect to their impact on authorship
attribution and to possible mitigations, to future work.
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IX. CONCLUSION

De-anonymizing programmers has direct implications for
privacy and security. Being able to attribute authorship to
anonymous executable binary samples has applications in
software forensics. Executable binary authorship attribution
is an immediate concern for programmers that would like
to remain anonymous. In this work, we de-anonymize 100
programmers from their executable binary samples with 78%
accuracy. This is a significant advance over previous work
and shows that coding style is preserved in compilation,
contrary to the belief that compilation wipes away stylistic
properties. We show that surprisingly, programmer style is
embedded in executable binaries at a great degree, even when
the executable binary has been generated with aggressive
compiler optimizations or when the symbols of the executable
binary samples have been stripped. These findings suggest that
while compilation, optimizations, and stripping symbols do
reduce the accuracy of stylistic analysis, they are not effective
in anonymizing coding style. We are able to identify GitHub
authors from their executable binary samples in the wild, even
though GitHub authors’ executable binary samples are noisy
and products of collaborative efforts. We have shown that
attribution is sometimes possible with only small amounts
of training binaries, however, having more binaries to train
on helps significantly and that advanced programmers (as
measured by progression in the Google Code Jam contest)
can be attributed more easily than their less skilled peers.

We scale up the machine learning problem of automated
programmer de-anonymization to 600 programmers and we
still achieve 52% accuracy. This is a significant success
in correct classification accuracy for such a large dataset,
especially when compared to previous work that was able to
reach this accuracy on a dataset with at most 191 programmers.
Additionally, we are able to achieve high de-anonymization
success with less than 500 stylistic features, out of 200,000
executable binary properties that are embedded in executable
binaries. These information gain features obtained from the
Google Code Jam dataset effectively represent authors’ coding
style in optimized executable binary and GitHub executable
binary samples. We achieve such a precise representation
of coding style by incorporating two different disassemblers,
control flow graphs, and an executable binary to source code
decompiler.

Our results present a clear concern for people who would
like to release binaries anonymously. In future work, we plan
to investigate if stylistic properties can be completely stripped
from binaries to render them anonymous. We also plan to look
at different real world executable binary authorship attribution
cases, such as identifying authors of malware, which go
through a mixture of sophisticated obfuscation methods by
combining polymorphism and encryption. Our results so far
suggest that while stylistic analysis is unlikely to provide
a “smoking gun” in the malware case, it may contribute
significantly to attribution efforts.
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