
How the Great Firewall
discovers

hidden circumvention servers

Roya Ensafi
David Fifield

Philipp Winter
Nick Weaver

Nick Feamster
Vern Paxson

Much already known about GFW

● Numerous research papers and blog posts

○ Open access library: censorbib.nymity.ch

● We know...

○ What is blocked

○ How it is blocked

○ Where the GFW is, topologically

● Unfortunately, most studies are one-off

○ Continuous measurements challenging

Many domains are blocked

DNS request for
www.facebook.com

Client in China
DNS resolver
outside China

Many domains are blocked

DNS request for
www.facebook.com

Client in China
DNS resolver
outside China

Many domains are blocked

DNS request for
www.facebook.com

Client in China
DNS resolver
outside China

facebook is at

8.7.198.45

Many domains are blocked

DNS request for
www.facebook.com

Client in China
DNS resolver
outside China

facebook is at
173.252.74.68

facebook:
8.7.198.45

Many keywords are blocked

GET /www.facebook.com HTTP/1.1
Host: site.com

Client in China
Web server

outside China

Many keywords are blocked

Client in China
Web server

outside China

GET /www.facebook.com HTTP/1.1
Host: site.com

Many keywords are blocked

Client in China
Web server

outside China

TCPreset

GET /www.facebook.com HTTP/1.1
Host: site.com

Encryption reduces blocking accuracy

Encrypted
connection

Client in China Server in Germany

HTTPS?
VPN? Tor?

Encryption reduces blocking accuracy

Client in China Server in Germany

Port number?
Type of encryption?

Handshake parameters?
Flow information?

Encrypted
connection

HTTPS?
VPN? Tor?

Censors often test how far they can go

Censors often test how far they can go

Active Probing

Assume an encrypted tunnel

TLS connection

Client in China Server in Germany

1. GFW does DPI

TLS connection

Client in China Server in Germany

1. GFW does DPI

TLS connection

Client in China Server in Germany

c02bc02fc00ac009
c013c014c012c007
c011003300320045
0039003800880016
002f004100350084
000a0005000400ff

Cipher list in
TLS client hello

looks like
vanilla Tor!

2. GFW launches active probe

TLS connection

Client in China Server in Germany

Active prober

To
r h

an
ds

ha
ke

2. GFW launches active probe

TLS connection

Client in China Server in Germany

To
r h

an
ds

ha
ke

To
r h

an
ds

ha
ke

Active prober

3. GFW blocks server

TLS connection

Client in China Server in Germany

To
r h

an
ds

ha
ke

To
r h

an
ds

ha
ke

Block server

Yes, it was
vanilla Tor!

Active prober

Our “Shadow” dataset

● Clients in China repeatedly connected

to bridges under our control Clients in
CERNET

Clients in
UNICOM

EC2 Tor bridge

EC2 Tor bridge

Tor, obfs2, obfs3

Tor, obfs2, obfs3

Our “Sybil” dataset

● Redirected 600 ports to Tor port

Vanilla Tor
bridge in France

Client in China

Our “Sybil” dataset

● Redirected 600 ports to Tor port

Vanilla Tor
bridge in France

Client in China

Holy moly,
600 bridges
on a single
machine!

Our “Log” dataset

● Web server logs dating back

to Jan 2010 Active probes

Web server

Where are the probes coming from?

● Collected 16,083 unique prober IP addresses

● 95% of addresses seen only once

● Reverse DNS suggests ISP pools

○ adsl-pool.sx.cn

○ kd.ny.adsl

○ online.tj.cn

● Majority of probes come from three

autonomous systems

○ ASN 4837, 4134, and 17622

Sybil
1,090

Shadow
135

Log
14,802

Where are the probes coming from?

● Collected 16,083 unique prober IP addresses

● 95% of addresses seen only once

● Reverse DNS suggests ISP pools

○ adsl-pool.sx.cn

○ kd.ny.adsl

○ online.tj.cn

● Majority of probes come from three

autonomous systems

○ ASN 4837, 4134, and 17622

Sybil
1,090

Shadow
135

Log
14,802

202.108.181.70

Are probes hijacking IP addresses?

● While probe is active, no other communication with probe possible

○ Traceroutes time out several hops before destination

○ Port scans say all ports are filtered

● What do probes have in common?

○ IP TTL

○ IP ID

○ TCP ISN

○ TCP TSval

○ TLS client hello

○ Pcaps online: nymity.ch/active-probing/

IP

TCP

TLS

Tor

What do probes have in common?

● All probes…

○ Have narrow IP TTL distribution

○ Use source ports in entire 16-bit port range

○ Exhibit patterns in TCP TSval

● Does not seem like off-the-shelf networking stack

● User space TCP stack? IP

TCP

TLS

Tor

TCP’s initial sequence numbers

● TCP uses 32-bit initial sequence numbers (ISNs)

● Protects against off-path attackers

● Attacker must guess correct ISN range to inject segments

● Every SYN segment should have random ISN

TCP reset

Seq = ???

TCP connection

Seq = 0x1AF93CBA

IP

TCP

TLS

Tor

What we expected to see

What we did see

What we did see

TLS fingerprint

● Probes all share uncommon TLS client hello

● Not running original Tor client

○ No randomly-generated SNI

○ Unique (?) cipher suite

● Measured on a busy Tor guard relay:

○ Observed 236,101 client hellos over 24 hours

○ Only 67 (0.02%) had identical setup

○ Recorded only client hellos, no IP addresses

IP

TCP

TLS

Tor

Tor probing

IP

TCP

TLS

Tor

Active prober Tor bridge

VERSION
S

VERSIONS

NETINF
O

Establish TCP and TLS
connection

Close TCP and TLS
connection

Physical infrastructure

● State leakage shows that probes are controlled by centralised entity

● Not clear how central entity controls probes

● Proxy network?

○ Geographically distributed set of proxy machines

● Off-path device in ISP’s data centre?

○ Machines connected to switch mirror ports

Blocking is reliable, but fails predictably

In 2012, probes were batch-processed

Today, probes are invoked in real-time

● Median arrival time of only 500 ms

● Odd, linearly-decreasing outliers

Blocked protocols

Protocols that are probed or blocked

● SSH
○ In 2011, not anymore?

● VPN
○ OpenVPN occasionally
○ SoftEther

● Tor
○ Vanilla Tor
○ obfs2 and obfs3

● AppSpot
○ To find GoAgent?

● TLS
● Anything else?

Oddities in obfs2 and obfs3 probing

● Tor probes don’t use reference implementations

○ obfs3 padding sent in one segment instead of two

● Probes sometimes send duplicate payload

○ State leakage?

Probe type and frequency since 2013

Find your own probes

● SoftEther: POST /vpnsvc/connect.cgi

● AppSpot: GET /twitter.com

● tcpdump ‘host 202.108.181.70’

● More instructions on nymity.ch/active-probing

Trolling the GFW

Block list exhaustion

for ip_addr in “$ip_addrs”; do

 for port in $(seq 1 65535); do

 timeout 5 tor --usebridges 1 --bridge “$ip_addr:$port”

 done

done

One /24 network can add 16 million blocklist entries

File descriptor exhaustion

● Processes have OS-enforced file descriptor limit

○ Often 1,024, but configurable

○ Every new, open socket brings us closer to limit

● What’s the limit for active probes?

● Attract many probes and don’t ACK data, don’t close socket

● Will GFW be unable to scan new bridges?

Make GFW block arbitrary addresses

● See VPN Gate’s “innocent IP mixing”
○ See censorbib.nymity.ch/#Nobori2014a

● For a while, GFW blindly fetched and blocked IP
addresses

● Add critical IP addresses to server list
○ Windows update servers
○ DNS root servers
○ Google infrastructure

● GFW operators soon started verifying addresses

Circumvention

Problems in the GFW’s DPI engine

● DPI engine must reassemble stream before pattern matching

● TCP stream often not reassembled

○ Server-side manipulation of TCP window size can “hide” signature

○ Exploited in brdgrd: gitweb.torproject.org/brdgrd.git/

● Ambiguities in TCP/IP parsing

○ See censorbib.nymity.ch/#Khattak2013a

● TCP/IP-based circumvention difficult to deploy

○ “Hey, how about you run this kernel module for me?”

Pluggable transports to the rescue

● SOCKS interface on client

● Turn Tor into something else

○ Payload

○ Flow

● Several APIs

○ Python

○ Go

○ C

Vanilla Tor
obfs2

obfs3

T
im

e

Pluggable transports that work in China

● ScrambleSuit
○ Flow shape polymorphic
○ Clients must prove knowledge of shared secret

● obfs4
○ Extends ScrambleSuit
○ Uses Elligator elliptic curve key agreement

● meek
○ Tunnels traffic over CDNs (Amazon, Azure, Google)

● FTE
○ Shapes ciphertext based on regular expressions

● More is in the making!
○ WebRTC-based transport

Q&A

Roya Ensafi — rensafi@cs.princeton.edu — @_royaen_

David Fifield — david@bamsoftware.com

Philipp Winter — phw@nymity.ch — @_ _phw

Code, data, and paper: nymity.ch/active-probing/

