
CloudABI: Pure capability-based
security for UNIX
Speaker:
Ed Schouten, ed@nuxi.nl

32C3, Hamburg 2015-12-28

Overview

● What’s wrong with UNIX?
● Introducing CloudABI
● Developing CloudABI software
● Starting CloudABI processes
● Use cases for CloudABI

2

What is wrong with UNIX?

3

UNIX is awesome, but in my opinion:
● it doesn’t stimulate you to run software securely.
● it doesn’t stimulate you to write reusable and

testable software.

UNIX security problem #1

A web service only needs to interact with:
● incoming TCP connections (HTTP),
● optional: a directory containing data files,
● optional: database backends.
Once compromised, an attacker can:
● create a tarball of all world-readable data under /,
● invoke setuid tools: cron, write, etc.
● turn the system into a botnet node.

4

Access controls: AppArmor

In my opinion not a real solution to the problem:
● Puts the burden on package maintainers and users.
● Application configuration can easily get out of sync

with security policy.
● Common solution if security policy doesn’t work:

disable AppArmor.

5

Capabilities: Capsicum

Technique available on FreeBSD to sandbox software:
1. Program starts up like a regular UNIX process.
2. Process calls cap_enter().

○ Process can still interact with file descriptors.
read(), write(), accept(), openat(), etc.

○ Process can’t interact with global namespaces.
open(), etc. will return ENOTCAPABLE.

Used by dhclient, hastd, ping, sshd, tcpdump, etc.

6

● Capsicum is awesome! It works as advertised.
● Code isn’t designed to have system calls disabled.

○ C library: locales unusable, incorrect timezone, etc.
○ Crypto libraries: non-random PRNG.
○ Heisenbugs, Mandelbugs and Hindenbugs.

● ‘Capsicum doesn’t scale’.
○ Using in-house maintained code, it works (Chrome).
○ Using off-the-shelf libraries becomes a lot harder.

Experiences using Capsicum

7

UNIX security problem #2

Untrusted third-party applications:
● Executing them directly: extremely unsafe.
● Using Jails, Docker, etc.: still quite unsafe.
● Inside a VM: safe, but slow.

Why can’t UNIX just safely run third-party executables
directly? Can’t the operating system provide isolation?

8

Claim: UNIX programs are
hard to reuse and test as a whole.

Reusability and testability

9

Reuse and testing in Java #1
class WebServer {
 private Socket socket;
 private String root;
 WebServer() {
 this.socket = new TCPSocket(80);
 this.root = “/var/www”;
 }
}

10

Reuse and testing in Java #2
class WebServer {
 private Socket socket;
 private String root;
 WebServer(int port, String root) {
 this.socket = new TCPSocket(port);
 this.root = root;
 }
}

11

Reuse and testing in Java #3
class WebServer {
 private Socket socket;
 private Filesystem root;
 WebServer(Socket socket, Filesystem root) {
 this.socket = socket;
 this.root = root;
 }
}

12

UNIX programs are like to the first two examples:
● Parameters are hardcoded.
● Parameters are specified in configuration files

stored at hard to override global locations.
● Resources are acquired on behalf of you, instead of

allowing them to be passed in.
Dependencies are not injected. A double standard.

Reusability and testability

13

Reusable and testable web server
#include <sys/socket.h>

#include <unistd.h>

int main() {

int fd;

while ((fd = accept(0, NULL, NULL)) >= 0) {

const char buf[] = “HTTP/1.1 200 OK\r\n”

 “Content-Type: text/plain\r\n\r\n”

 “Hello, world\n”;

write(fd, buf, sizeof(buf) - 1);

close(fd);

}

}

14

Reusable and testable web server

Web server is reusable:
● Web server can listen on any address family (IPv4,

IPv6), protocol (TCP, SCTP), address and port.
● Spawn more on the same socket for concurrency.

Web server is testable:
● It can be spawned with a UNIX socket. Fake

requests can be sent programmatically.

15

Overview

● What’s wrong with UNIX?
● Introducing CloudABI
● Developing CloudABI software
● Starting CloudABI processes
● Use cases for CloudABI

16

Introducing CloudABI
CloudABI is a new POSIX-like runtime environment:
● Capability-based security with less foot-shooting.

○ No more state transition: Capsicum is always turned on.
○ Capsicum-conflicting APIs have been removed.
○ Our Heisenbugs now become compiler errors.

● Global namespaces are entirely absent.
○ Processes can no longer hardcode paths and identifiers.
○ Resources cannot be acquired out of the blue.
○ Result: dependency injection is enforced.

● Symbiosis, not assimilation.

17

Default rights

18

By default, CloudABI processes can only perform
actions that have no global impact:
● They can allocate memory, create pipes, socket

pairs, shared memory, etc.
● They can spawn threads and subprocesses.
● They can interact with clocks (gettimeofday, sleep).
● They cannot open paths on disk.
● They cannot create network connections.
● They cannot observe the global process table.

File descriptors are used to grant additional rights:
● File descriptors to directories: expose parts of the

file system to the process.
● Sockets: make a process network accessible.

○ File descriptor passing: receive access to even more
resources at run-time.

● Process descriptors: replacement for wait()/kill().
File descriptors have permission bitmasks, allowing
fine-grained limiting of actions performed on them.

Additional rights: file descriptors

19

A web service running on CloudABI could get started
with the following file descriptors:
● an AF_INET(6) socket for incoming HTTP requests,
● a read-only file descriptor of a directory, storing the

files to be served over the web,
● an append-only file descriptor of a log file.
When exploited, an attacker can do little to no damage.

Secure web service

20

Observation: POSIX becomes tiny if you remove all
interfaces that conflict with capability-based security.
● CloudABI only has 58 system calls. Most of them are

not that hard to implement.
● Goal: Add support for CloudABI to existing POSIX

operating systems.
● Allows reuse of binaries without recompilation.
● Upstream: FreeBSD/arm64 and FreeBSD/x86-64.
● Beta: Linux/x86-64 and NetBSD/x86-64.

Cross-platform support

21

Overview

● What’s wrong with UNIX?
● Introducing CloudABI
● Developing CloudABI software
● Starting CloudABI processes
● Use cases for CloudABI

22

Developing CloudABI software

Building software for CloudABI manually is not easy:
● Cross compiling is hard, not just for CloudABI.
● Toolchain depends on a lot of components.
● Most projects need to be patched in some way:

○ Removal of capability-unaware APIs breaks the build,
which is good!

○ cloudlibc tries to cut down on obsolete/unsafe APIs.
○ Autoconf from before 2015-03 doesn’t support CloudABI.

23

Introducing CloudABI Ports

● Collection of cross compiled libraries and tools.
● Packages are built for FreeBSD, Dragonfly BSD,

NetBSD, OpenBSD, Debian and Ubuntu.
○ Native packages, managed through apt-get, pkg.
○ Consistent development environment on all systems.

● Packages don’t contain any native build tools.
○ Should be provided by the native package collection.

● Packages include Boost, cURL, GLib, LibreSSL, Lua.

24

Install Clang and Binutils from FreeBSD Ports:

$ pkg install cloudabi-toolchain

Install core libraries from CloudABI Ports:

$ vi /etc/pkg/CloudABI.{conf,key}
$ pkg update
$ pkg install x86_64-unknown-cloudabi-cxx-runtime

Build a simple application using Clang and cloudlibc:

$ x86_64-unknown-cloudabi-cc -o hello hello.c

CloudABI Ports in action

25

Overview

● What’s wrong with UNIX?
● Introducing CloudABI
● Developing CloudABI software
● Starting CloudABI processes
● Use cases for CloudABI

26

Simple CloudABI program: ls
#include <dirent.h>
#include <stdio.h>

int main() {
DIR *d = fdopendir(0);
FILE *f = fdopen(1, “w”);
struct dirent *de;
while ((de = readdir(d)) != NULL)

fprintf(f, “%s\n”, de->d_name);
closedir(d);
fclose(f);

}

27

Executing our ls through the shell
$ x86_64-unknown-cloudabi-cc -o ls ls.c
$ kldload cloudabi64 # FreeBSD ≥ 11.0
$./ls < /etc
.
..
fstab
rc.conf
[...]

28

Isn’t there a better way?

29

Starting processes through the shell feels unnatural:
● The shell cannot (in a portable way) create sockets,

shared memory objects, etc.
● How would you know the ordering of the file

descriptors that the program expects?
● How do you deal with a variable number of file

descriptors?
● You can no longer configure programs through a

single configuration file.

Introducing cloudabi-run

$ cloudabi-run /my/executable < my-config.yaml

● Allows you to start up a CloudABI process with an
exact set of file descriptors.

● Merges the concept of program configuration with
resource configuration listing.

● Replaces traditional command line arguments by a
YAML tree structure.

30

hostname: nuxi.nl
concurrent_connections: 64
listen:
 - 148.251.50.69:80

logfile: /var/log/httpd/nuxi.nl.access.log

rootdir: /var/www/nuxi.nl

Configuration for a web server

31

%TAG ! tag:nuxi.nl,2015:cloudabi/

hostname: nuxi.nl
concurrent_connections: 64
listen:
 - !socket
 bind: 148.251.50.69:80
logfile: !file
 path: /var/log/httpd/nuxi.nl.access.log
rootdir: !file
 path: /var/www/nuxi.nl

Configuration for a web server

32

%TAG ! tag:nuxi.nl,2015:cloudabi/

hostname: nuxi.nl
concurrent_connections: 64
listen:
 - !fd 0

logfile: !fd 1

rootdir: !fd 2

Configuration for a web server

33

From a programmer’s perspective
#include <argdata.h>
#include <program.h>

void program_main(const argdata_t *ad) {
 argdata_get_bool(ad, …);
 argdata_get_fd(ad, …);
 argdata_get_int(ad, …);
 argdata_get_str(ad, …);
 argdata_iterate_map(ad, …);
 argdata_iterate_seq(ad, …);
}

34

For users and system administrators:

● Configuring a service requires no additional effort.
● Impossible to invoke programs with the wrong file

descriptor layout, as there is no fixed ordering.
● No accidental leakage of file descriptors.
● YAML: Easy to generate and process.

For software developers:

● No need to write a configuration file parser.
● No need to write code to acquire resources on startup.

Advantages of using cloudabi-run

35

Overview

● What’s wrong with UNIX?
● Introducing CloudABI
● Developing CloudABI software
● Starting CloudABI processes
● Use cases for CloudABI

36

Secure hardware appliances

Hardware appliance vendors can run arbitrary code
without any compromise to system security:
● Email appliances: third-party virus scanner and

spam filter modules sandboxed safely.
● Network appliances: users can run custom packet

filters without compromising system stability.

37

CloudABI as the basis of a cluster management suite:
● Dependencies of software are known up front.
● Allows for smarter scheduling.

○ Automatic capacity planning.
○ Improving locality.

● Automatic migration of processes between systems.
● Automatic routing of traffic on external addresses

to internal processes, load balancing, etc.

High-level cluster management

38

‘CloudABI as a Service’

A service where customers can upload executables and
have them executed in the cloud.
● Unlike Amazon EC2, there is no virtualization

overhead.
● Unlike Amazon EC2, there is no need to maintain

entire systems; just applications.
● Unlike Google App Engine, applications could be

written in any language; not just Python/Java/Go.

39

https://nuxi.nl/
#cloudabi on EFnet

https://github.com/NuxiNL/cloudlibc
https://github.com/NuxiNL/cloudabi-ports

More information

40

https://nuxi.nl/
https://nuxi.nl/
https://github.com/NuxiNL/cloudlibc
https://github.com/NuxiNL/cloudlibc
https://github.com/NuxiNL/cloudabi-ports
https://github.com/NuxiNL/cloudabi-ports

