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Card-based paymentrelies on two protocols

This talk investigates the security of the protocols used to make cashless payment happen
Cashier Payment
station Payment processor
terminal
Authorization request >
= Read
magstripe or
start EMV
transaction
= Ask for PIN Send encrypted
payment details
>
Confirmation
Confirmation <
<
ZVT or OPI protocol ISO 8583/Poseidon protocol
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ZVT allows unauthenticated access to magstripe data

- @
ZVT protocol Cashier Payment QW
. Attacker inal ‘
= Configures and station termina
controls payment < >
terminals ARP spoofing to become MITM
= Designed for serial, >
now TCP-based, Authorization_Req >
unencrypted Read card
. . . <
OrlgmaII_y SEslEnEe Magstripe and chip details
by G+D in 1990s
= Now actively used . >
y Authorization_Req
by ~80% of including magstripe
payment terminals
in Germany < <
| Confirmation
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Access to PIN requires cryptographic MAC

How PIN
entry
THIELLY
works

Attackers
would
need MAC
to steal
PIN from
NT

Payment terminal

. Display &
Main CPU HSM PIN pad
- 5 Do PIN transaction
ZVT: Request PIN
Authorize > Poseidon:
with PIN < PIN Encrypted
Encrypted PIN transaction w/ PIN
<
—_— Display text, MAC
ZVT: Text
. . Request number
display with >
numerical PIN
i <
input, MAC Unencrypted PIN
<4—PIN—/ - ;
Poseidon:
Authorize Transaction with no
without PIN PIN (“Lastschrift”)
> ______

Attacker should not be able to create valid MAC Is it?
since MAC key is protected within HSM '
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HSM leaks MAC through timing side channel

Main CPU is easily HSM protects secrets and
hackable: should be much better
4 Active JTAG, RCE, ... | | secured

— <
Main CPU
sends MAC HSM CPU compares MAC
MAC Response Response time i

: = MAC comparison
0. R 26090 1 is done
01 .. Fail 26.000 | Dyte-by-byte
________________________________________ = Response time
02 .. Fail 26.000 leaks complete
S I MAC within
B R L 26.005]1  minutes
0301 Fail 26.005 ||~ MACisnot
________________________________________ terminal-specific:
0302 ... Fail 26.010 Works across
T TTTTTTTTTTTTTTTTTmmomoommmommoooooo many different
“““““““““““““““““““““ terminals
0302AF ...05 Ok 26.040 |
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Demo 1l

Mag stripe and PIN
theft via ZVT over LAN
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ZVT also allows local terminal hijacking

Attack
preparation

Transaction
hijacking

Paymen Paymen
v .e t Attacker ayment
terminal processor
< >
ARP spoofing to become MITM
< . Requires static password,
ZVT: Set terminal ID .
which is the same for all
< terminals of a processor

ZVT: Extended diagnose
> >

Poseidon: Extended diagnose

<
Swap bannerp Limits, merchant banner, ...

If terminal was already configured to the right port:

Transactions are done under new terminal ID, money goes to attacker

Otherwise:

>
Stay MITM, change portp
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Demo 2

Redirect merchant

transactions to attacker

account via ZVT

Small complication:
Attackers need their
own merchant
accounts
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Poseidon’s authentication model is simply wrong

Poseidon protocol

* Dialect of global
payment standard
ISO 8583

= De-factostandard in
Germany

= Strong monoculture:
Only one backend
implementation,
used by all
processors

= Apparently also used
in France, Lux, and
Iceland

Payment
terminal

Payment
processor

Poseidon initialization:

Terminal ID
<

Terminal configuration,

encrypted with terminal key

A\

Poseidon authentication uses
pre-shared keys, similar to VPNs.
However, the key is the same for

many terminals!
This cannot be secure.
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Few parameters are needed for Poseidon initialization

1. Google

TaskSTAR POS bendtigt mindestens V3.05.00 SP2 Hotfix TA

Versionen
Fir den Betrieb an der Tankstelle ist zumindest die Version%r minalsoftware notig

Kennworter

Tare:_ 000000 V
Servicetechnikery210888

IP-Adressierung

Sofern durch den DSL-Anschluss oder das vo ene Hausnetz nichts anderes erzwungen
werden feste IP-Adressen mit Sub as 255.255.255.000 verwendet. Die Termj
bekommen dann folgende Adressen:

Terminal 1: 192.168.001.101,
Terminal 2: 192.168.001.102,
Terminal 3: 192.168.001.103;

Usw.
DHCP: in der Regel NEIN.,
Die IP-Adressen flr Zugang TeleCash-Zahlungshost lauten 217.073.032.104

217.073.032.105. Die

[ Or brute-force over ZVT, or read through JTAG, ... ]
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Few parameters are needed for Poseidon initialization

2. Go shopping

-K-U-N-D-E-N-B-E-L-E~G-

SRLABS 'mnEm 'mEE SEEEN

= = =
10118 Berlin
Terminal=1D+

A-Nr 008168 BNr 0002

Kartenzahlung
ELV Offline

EUR Q. g
$EFHRH3183
Karte 7 gultig bis 12/15
Datum 18.12.15 17:54 Unhr

xx Zahlung erfolgt *xx
BITTE BELEG AUFBEWAHREN

Or simply guess TIDs:
They are assigned
incrementally.
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Few parameters are needed for Poseidon initialization

3. Brute force TCP port

LT] RELCLVEU vdaLldg 1Vl pPUI L 00471,
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55222:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Receilved Data for port 55223:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55225:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55228:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port|55229: |

081020386000002808000907825000026144835121886543681490978c5ca
Received Data for port 55238:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55315:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55316:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55317:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55318:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55321:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55322:
AR1A2AIRAAAAAIRARAAAIATRIEANAA2E144R351218R654368149A97R 5 A
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Demo 3

Shopshiftingover
the Internet: Issuing
a refund transaction
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Shop shifting attack puts merchants at significant fraud risk

Merchant Registers

terminal

Poseidon backend at Merchant
payment processor Bank

v

v

Shop-
shifting

Also registers with spoofed terminal ID

Attacker Issues refunds to arbitrary bank accounts

terminal Creates SIM card top-up vouchers

1. Attacker guesses terminal IDs. (They are assigned incrementally)

2. Shopshifts terminals, anonymously over the internet
Worst case

scenario 3. Receivesinbound bank transactions (or top-up vouchers) from up
to hundreds of thousands of merchants

4. (Perhaps extends attack to other ISO8583 dialects to scale globally)
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Customers and merchants are vulnerable to various payment abuse
scenarios

Over the
internet

Attack victim

Customer

Merchant

= Magstripe and PIN
theft through ZVT

= (Variant of ZVT abuse
without MITM against
hundreds of Internet-
exposed terminals)

= Merchant transaction
redirect through
ZNT MITM

= Shopshifting over
Poseidon

Common
vulnerability
cause:
Missing
authentication or
authentication
with symmetric
system-wide keys
(in HSM)

|
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ik Fole &l

i 3V Lithium
MADE IN GERMAN
_

*

HSM Hacking
Challenge -
Secrets are
stored in a
battery-backed
RAM under a
plastic cover.

When a metal
mesh in this
plastic cover is
breached, the
secrets are
erased.

Tool of choice -
The Hacking
Needle
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Needle fits underneath mesh, overwrites mesh check
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With security check deactivated, RAM inside HSM can be read
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‘Flash cont 'Z-"’;‘::“:; o X
Flash contentis - - '\

_ S — e ) LA A = Ko 4
_read with Arduino — ("
eI = 2 ;




Active JTAG in HSM allows for debugging
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HSM compromise affects keys for ZVT, Poseidon, EMV and others

ZNT MAC computationinside HSM:

0002e780
0002e790
0002e7a0
0002e7b0

0002e7cO
[...]

0000310
00003200
00003210
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ZVT and Poseidon are not secure by design

Vulnerability root causes

ZVT Poseidon

System-wide System-wide
signature keys auth keys

Q

Used with symmetric crypto

Also, but not making matters
worse:

Q Stored in insecure HSMs

Stored in insecure HSMs

Both protocols mix “security through obscurity” (system-wide keys)
with “security certification” (HSMs).
Neither implements “security by design”
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Heuristic defenses are needed in the short term

Payment system need better protocols and more secure hardware!
While these are being developed, a few stop-gap measures are available:

ZVT Poseidon

Deactivate = Remote manageability with = Refund (activated by default!)

unnecessary | static password —Should = SIM card top-up (deactivated by
functions require a confirmation on default)

terminal instead

Detect = Magstripe transaction from = Terminal IDs connecting to wrong port
suspicious EMV- capable card (must be (already implemented in some places)
behavior checked online since card = Serial number changes for a terminal ID

data cannot be trusted) (not effective when HSM is hacked)

= Refunds that do not correspond to
transaction in cash register
(double-entry accounting)
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Other payment standards appear equally vulnerable

Main ZVT alternative: OPI

Poseidon’s family: ISO 8583

= Open Payment Initiative protocol is
more modern than ZVT: XML-based,
2003

= Still lacks authentication and
encryption

= Misses some of the functionality that
can be abused in ZVT (good!)

= VVendors use proprietary extensions to
bring back such vulnerable
functionality in OPI (bad!), including
remote maintenance

= Poseidon is one of many ISO 8583 dialects

= System-wide symmetric keys, Poseidon’s
Achilles heel, are not mandatory in 1ISO 8583

"= |t does not appear that current terminals go
through key exchanges as part of their
initialization, suggesting that other 1SO 8583
dialects also suffer from Poseidon’s security
issues

= International security research community:
Your help is needed
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Take aways

= Payment systems allow for magstripe/PIN
theft and remote attacks on merchants

= Payment protocols need actual
authentication using individual keys

= Victims of card abuse should fight their
banks, researchers should help

Questions?

Fabian Braunlein <fabian@srlabs.de>
Philipp Maier <dexter@srlabs.de>
Karsten Nohl <nohl@srlabs.de>
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