Shopshifting
Warning about potential payment system abuse

Fabian Braunlein <fabian@srlabs.de>

Philipp Maier <dexter@srlabs.de>
Karsten Nohl<nohl@srlabs.de>

D RESEARCH

LABS

Card-based paymentrelies on two protocols

This talk investigates the security of the protocols used to make cashless payment happen
Cashier Payment
station Payment processor
terminal
Authorization request >
= Read
magstripe or
start EMV
transaction
= Ask for PIN Send encrypted
payment details
>
Confirmation
Confirmation <
<
ZVT or OPI protocol ISO 8583/Poseidon protocol

D RESEARCHLABS

Agenda

} Local payment abuse

= Poseidon shopshifting

= Evolutionneed

D RESEARCHLABS

ZVT allows unauthenticated access to magstripe data

- @
ZVT protocol Cashier Payment QW
. Attacker inal ‘
= Configures and station termina
controls payment < >
terminals ARP spoofing to become MITM
= Designed for serial, >
now TCP-based, Authorization_Req >
unencrypted Read card
. . . <
OrlgmaII_y SEslEnEe Magstripe and chip details
by G+D in 1990s
= Now actively used . >
y Authorization_Req
by ~80% of including magstripe
payment terminals
in Germany < <
| Confirmation
RESEARCHLABS

Access to PIN requires cryptographic MAC

How PIN
entry
THIELLY
works

Attackers
would
need MAC
to steal
PIN from
NT

Payment terminal

. Display &
Main CPU HSM PIN pad
- 5 Do PIN transaction
ZVT: Request PIN
Authorize > Poseidon:
with PIN < PIN Encrypted
Encrypted PIN transaction w/ PIN
<
—_— Display text, MAC
ZVT: Text
. . Request number
display with >
numerical PIN
i <
input, MAC Unencrypted PIN
<4—PIN—/ - ;
Poseidon:
Authorize Transaction with no
without PIN PIN (“Lastschrift”)
> ______

Attacker should not be able to create valid MAC Is it?
since MAC key is protected within HSM '

RESEARCHLABS

HSM leaks MAC through timing side channel

Main CPU is easily HSM protects secrets and
hackable: should be much better
4 Active JTAG, RCE, ... | | secured

— <
Main CPU
sends MAC HSM CPU compares MAC
MAC Response Response time i

: = MAC comparison
0. R 26090 1 is done
01 .. Fail 26.000 | Dyte-by-byte
__ = Response time
02 .. Fail 26.000 leaks complete
S I MAC within
B R L 26.005]1 minutes
0301 Fail 26.005 ||~ MACisnot
__ terminal-specific:
0302 ... Fail 26.010 Works across
T TTTTTTTTTTTTTTTTTmmomoommmommoooooo many different
“““““““““““““““““““““ terminals
0302AF ...05 Ok 26.040 |

D RESEARCHLABS

Demo 1l

Mag stripe and PIN
theft via ZVT over LAN

RESEARCHLABS

ZVT also allows local terminal hijacking

Attack
preparation

Transaction
hijacking

Paymen Paymen
v .e t Attacker ayment
terminal processor
< >
ARP spoofing to become MITM
< . Requires static password,
ZVT: Set terminal ID .
which is the same for all
< terminals of a processor

ZVT: Extended diagnose
> >

Poseidon: Extended diagnose

<
Swap bannerp Limits, merchant banner, ...

If terminal was already configured to the right port:

Transactions are done under new terminal ID, money goes to attacker

Otherwise:

>
Stay MITM, change portp

RESEARCHLABS

Demo 2

Redirect merchant

transactions to attacker

account via ZVT

Small complication:
Attackers need their
own merchant
accounts

RESEARCHLABS

Agenda

= Local paymentabuse

} Poseidon shopshifting

= Evolutionneed

RESEARCHLABS

10

Poseidon’s authentication model is simply wrong

Poseidon protocol

* Dialect of global
payment standard
ISO 8583

= De-factostandard in
Germany

= Strong monoculture:
Only one backend
implementation,
used by all
processors

= Apparently also used
in France, Lux, and
Iceland

Payment
terminal

Payment
processor

Poseidon initialization:

Terminal ID
<

Terminal configuration,

encrypted with terminal key

A\

Poseidon authentication uses
pre-shared keys, similar to VPNs.
However, the key is the same for

many terminals!
This cannot be secure.

RESEARCHLABS

11

Few parameters are needed for Poseidon initialization

1. Google

TaskSTAR POS bendtigt mindestens V3.05.00 SP2 Hotfix TA

Versionen
Fir den Betrieb an der Tankstelle ist zumindest die Version%r minalsoftware notig

Kennworter

Tare:_ 000000 V
Servicetechnikery210888

IP-Adressierung

Sofern durch den DSL-Anschluss oder das vo ene Hausnetz nichts anderes erzwungen
werden feste IP-Adressen mit Sub as 255.255.255.000 verwendet. Die Termj
bekommen dann folgende Adressen:

Terminal 1: 192.168.001.101,
Terminal 2: 192.168.001.102,
Terminal 3: 192.168.001.103;

Usw.
DHCP: in der Regel NEIN.,
Die IP-Adressen flr Zugang TeleCash-Zahlungshost lauten 217.073.032.104

217.073.032.105. Die

[Or brute-force over ZVT, or read through JTAG, ...]

[SECURITY RESEARCHLABS

Few parameters are needed for Poseidon initialization

2. Go shopping

-K-U-N-D-E-N-B-E-L-E~G-

SRLABS 'mnEm 'mEE SEEEN

= = =
10118 Berlin
Terminal=1D+

A-Nr 008168 BNr 0002

Kartenzahlung
ELV Offline

EUR Q. g
$EFHRH3183
Karte 7 gultig bis 12/15
Datum 18.12.15 17:54 Unhr

xx Zahlung erfolgt *xx
BITTE BELEG AUFBEWAHREN

Or simply guess TIDs:
They are assigned
incrementally.

D SECURITY RESEARCHLABS

13

Few parameters are needed for Poseidon initialization

3. Brute force TCP port

LT] RELCLVEU vdaLldg 1Vl pPUI L 00471,
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55222:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Receilved Data for port 55223:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55225:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55228:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port|55229: |

081020386000002808000907825000026144835121886543681490978c5ca
Received Data for port 55238:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55315:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55316:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55317:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55318:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55321:
08102038000002808000907825000026144835121886543681490978c5ca
[+] Received Data for port 55322:
AR1A2AIRAAAAAIRARAAAIATRIEANAA2E144R351218R654368149A97R 5 A

RESEARCHLABS

Demo 3

Shopshiftingover
the Internet: Issuing
a refund transaction

D RESEARCHLABS

15

Shop shifting attack puts merchants at significant fraud risk

Merchant Registers

terminal

Poseidon backend at Merchant
payment processor Bank

v

v

Shop-
shifting

Also registers with spoofed terminal ID

Attacker Issues refunds to arbitrary bank accounts

terminal Creates SIM card top-up vouchers

1. Attacker guesses terminal IDs. (They are assigned incrementally)

2. Shopshifts terminals, anonymously over the internet
Worst case

scenario 3. Receivesinbound bank transactions (or top-up vouchers) from up
to hundreds of thousands of merchants

4. (Perhaps extends attack to other ISO8583 dialects to scale globally)

D RESEARCHLABS

Customers and merchants are vulnerable to various payment abuse
scenarios

Over the
internet

Attack victim

Customer

Merchant

= Magstripe and PIN
theft through ZVT

= (Variant of ZVT abuse
without MITM against
hundreds of Internet-
exposed terminals)

= Merchant transaction
redirect through
ZNT MITM

= Shopshifting over
Poseidon

Common
vulnerability
cause:
Missing
authentication or
authentication
with symmetric
system-wide keys
(in HSM)

|

RESEARCHLABS

17

Agenda

= Local paymentabuse

= Poseidon shopshiftZ HSM HaCl(i"‘}

= Evolution need

D SECURITY RESEARCHLABS

18

ik Fole &l

i 3V Lithium
MADE IN GERMAN
_

*

HSM Hacking
Challenge -
Secrets are
stored in a
battery-backed
RAM under a
plastic cover.

When a metal
mesh in this
plastic cover is
breached, the
secrets are
erased.

Tool of choice -
The Hacking
Needle

19

Needle fits underneath mesh, overwrites mesh check

RESEARCHLABS

With security check deactivated, RAM inside HSM can be read

RESEARCHLABS

‘Flash cont 'Z-"’;‘::“:; o X
Flash contentis - - '\

_ S — e) LA A = Ko 4
_read with Arduino — ("
eI = 2 ;

Active JTAG in HSM allows for debugging

D RESEARCHLABS

23

HSM compromise affects keys for ZVT, Poseidon, EMV and others

ZNT MAC computationinside HSM:

0002e780
0002e790
0002e7a0
0002e7b0

0002e7cO
[...]

0000310
00003200
00003210

D RESEARCHLABS 24

Agenda

= Local paymentabuse

= Poseidon shopshifting

} Evolution need

RESEARCHLABS

25

ZVT and Poseidon are not secure by design

Vulnerability root causes

ZVT Poseidon

System-wide System-wide
signature keys auth keys

Q

Used with symmetric crypto

Also, but not making matters
worse:

Q Stored in insecure HSMs

Stored in insecure HSMs

Both protocols mix “security through obscurity” (system-wide keys)
with “security certification” (HSMs).
Neither implements “security by design”

D RESEARCHLABS

Heuristic defenses are needed in the short term

Payment system need better protocols and more secure hardware!
While these are being developed, a few stop-gap measures are available:

ZVT Poseidon

Deactivate = Remote manageability with = Refund (activated by default!)

unnecessary | static password —Should = SIM card top-up (deactivated by
functions require a confirmation on default)

terminal instead

Detect = Magstripe transaction from = Terminal IDs connecting to wrong port
suspicious EMV- capable card (must be (already implemented in some places)
behavior checked online since card = Serial number changes for a terminal ID

data cannot be trusted) (not effective when HSM is hacked)

= Refunds that do not correspond to
transaction in cash register
(double-entry accounting)

D RESEARCHLABS 27

Other payment standards appear equally vulnerable

Main ZVT alternative: OPI

Poseidon’s family: ISO 8583

= Open Payment Initiative protocol is
more modern than ZVT: XML-based,
2003

= Still lacks authentication and
encryption

= Misses some of the functionality that
can be abused in ZVT (good!)

= VVendors use proprietary extensions to
bring back such vulnerable
functionality in OPI (bad!), including
remote maintenance

= Poseidon is one of many ISO 8583 dialects

= System-wide symmetric keys, Poseidon’s
Achilles heel, are not mandatory in 1ISO 8583

"= |t does not appear that current terminals go
through key exchanges as part of their
initialization, suggesting that other 1SO 8583
dialects also suffer from Poseidon’s security
issues

= International security research community:
Your help is needed

D RESEARCHLABS

28

Take aways

= Payment systems allow for magstripe/PIN
theft and remote attacks on merchants

= Payment protocols need actual
authentication using individual keys

= Victims of card abuse should fight their
banks, researchers should help

Questions?

Fabian Braunlein <fabian@srlabs.de>
Philipp Maier <dexter@srlabs.de>
Karsten Nohl <nohl@srlabs.de>

[SECURITY RESEARCHLABS

29

