
When hardware must 
“just work”
David Kaplan
Farhan Rahman



Introduction

• Hardware development is different than software

• Long development timeline 

• $$$

• Difficult to test everything before fabrication

• X86 cores are especially challenging

• Highly complex (~60M NAND equivalent gates, ~1M lines of code)

• Super fast clock rate

• Must work ~100% of the time



Are CPUs perfect? LOL

http://support.amd.com/TechDocs/51810_16h_00h-0Fh_Rev_Guide.pdf

• High profile CPU bugs

• Intel Pentium divide bug (1994)

• AMD Phenom TLB bug (2007)

• Many other minor bugs reported in errata guides

• They’re minor though… 



Hardware design process

Design and 
Verification

Fabrication Validation Production



Verification
(Pre-silicon)



What is verification?

• Verification is a specific discipline in silicon design that 
ensures a design conforms with the design specification
(contains functional, power, and performance details)

• Goal of verification is to find design defects (aka, Bugs!)



What is a testbench?

• Testbench:

• Generate stimulus

• Apply stimulus to Design being Verified (DBV)

• Capture the response

• Check for correctness

• Coverage analysis: Hit/analyze 100% as defined as functional coverage in verification plan.



Testbench speed

• System level testing (~1Hz)

• Full design, verify system level features

• Core level testing (~10Hz)

• CPU core only, verify single core behavior

• Multi-unit level testing (~50Hz)

• Multiple CPU blocks (e.g. Instruction Fetch + Decode)

• Unit level testing (~100Hz)

• Single CPU block (e.g. Decode)

• Actual silicon (~3000000000Hz)



Emulation

• Synopsys Zebu

• Emulate smaller IPs (core, etc.)

• Very fast, limited debug visibility

• Cadence Palladium XP

• Emulate a full System on a chip

• Fast; great debug visibility

Emulation accelerates simulation and helps find corner-case bugs 

http://www.synopsys.com/Tools/Verification/hardware-verification/emulation/Pages/zebu-server-asic-emulator.aspx http://www.cadence.com/products/sd/palladium_xp_series/pages/default.aspx



What about formal verification?

Functional Formal

Operate on large designs over 
10M nand gates

Yes No

Verification scheme Stimulus:
- Directed (hand written)
- Random (auto generated)

Constraint driven exhaustive 
testing

Designs Full cpu, IP, SOC, etc. Small blocks: Multiply, Divide, 
CRC, Floating-point, etc.

Development work Testbench, stimulus, reference 
models, etc.

Lemmas, constraint, etc. 

Connectivity checks Yes Yes

Power aware verification Yes No



What’s not found?

Easy to find bugs

• Basic functional behavior (functional verif)

• Does this mode work?

• Are exceptions correctly generated?

• Cache coherency

• Formal proofs (formal verif)

• Is multiplier output correct?

• Coverage holes

• Can all exceptions be generated?

• Are all instructions executed?

Hard to find bugs

• System level behavior

• Protocol violations

• FIFO overruns/underruns

• Multiple random events

• 5 unlikely asynchronous events in a 
row

• Long runtime events

• Statistically unlikely matches

• Multiple loads where 20 address bits 
match



Validation
(Post-silicon)



Debug cycle

Fix

Retry

Investigate 
the 

problem



What happened?
• Modern processors support JTAG (IEEE 1149.1)

• JTAG hardware implements various commands

• BYPASS

• EXTEST

• IDCODE

• Anything else the vendor wants

• JTAG commands can be used to implement a simple debugger

• Read/write CPU register state

• Read/write memory

• Read/write I/O

• Single-step execution

• Set debug breakpoints

• Etc.

http://support.amd.com/TechDocs/31412.pdf

http://support.amd.com/TechDocs/31412.pdf


What if the CPU is hung?

• Answer: Scan!

• Scan enables reading all flip-flop state in the CPU (like a crash dump)

• Flops are chained together to enable shifting out data through the JTAG port

• Limitations:

• Only get data in flops

• Only from a single point in time

• Interesting information may be long gone

Flop
D Q

Data

Scan In

Scan Enable

Flop
D Q

Data

Scan In

Scan Enable

Flop
D Q

Data

Scan In

Scan Enable



Ok, we found the problem...now what?
• To fix the issue, we may need to re-spin the silicon

• But we may not need to change the entire design

• Typical chips may have a base layer and up to ~9 metal layers

• Base layer

• Implements the logic gates in the design

• $$$ to remake, long delay through the fab

• Metal layer(s)

• Wires up the various logic gates in the design

• $$ to remake, shorter delay through the fab

• Often, extra gates will be built so simple changes can be made in 
metal

if (~Reset)

DoStuff<=1’b0;

/* MUCH better now */

if (~Reset)

DoStuff<=1’b1;



Less costly solutions

http://nimfpa.deviantart.com/art/Laser-cat-201298166
By english User:Cm the p (English version) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-
sa/3.0/)], via Wikimedia Commons



Practical, less costly solutions

• Designers will often build “disable” bits for risky features (aka chicken bits)

• Typically used for performance or power enhancements

http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf



Microcode patch
• Modern x86 CPUs use microcode to implement more complex functionality such as

• Complex x86 instructions (e.g. IRET, RSM, etc.)

• Interrupt delivery

• Power management

• Microcode is built into the silicon, but a patch RAM exists

• Can be used to replace/supplement existing microcode to fix bugs

• Limited in size and capability

• Microcode can implement workarounds like:

• Serialize the machine after CLFLUSH to work around a memory bug

• Handle a rare corner case during a hardware task switch

• Etc.

• For more info on microcode patch loading, see the Linux patch loaders under 
arch/x86/kernel/cpu/microcode/



Putting it together

Fix/Workaround

Retry

Investigate the 
problem

JTAG debugging
Scan

Base spin
Metal spin
Microcode patch
Chicken bits
FIB



A little note on security

• Do you really know who’s using your backdoors debug interfaces???

• Debug interface security should always be considered and tested

• Typical solutions

• Disable some or all JTAG commands (including scan) on production parts

• Ensure debug access to sensitive information is blocked in production

• Require authentication to use a debug interface

• Require signed CPU microcode updates



Takeaways



Takeaways

• Testing

• Break down large designs into small, manageable chunks

• Use tools to ensure you’re getting the most out of your test time

• Know your weaknesses!

• Design for failures

• Build in debug features if appropriate

• Anticipate the risk areas and how you can fix them

• A software upgrade is not always the answer

• Please secure your debug interfaces 



Further resources

• Actual CPU technical documentation

• BIOS and Kernel Developers Guide (BKDG)

• e.g. http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf

• CPU Revision Guides 

• e.g. http://support.amd.com/TechDocs/51810_16h_00h-0Fh_Rev_Guide.pdf

• Or http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-
family-desktop-specification-update.pdf

• Or just google it

• Verification resources

• https://www.youtube.com/watch?v=dKFwQNsXaNU (Overview of Modern Functional Verif)

• https://www.youtube.com/watch?v=266ub4vb_H8 (Challenges in Functional Verif)

• https://www.youtube.com/watch?v=Q2m1oMEB2Ak (Technology Evolution in Functional Verif)

• Or just google “what is functional verification”

http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf
http://support.amd.com/TechDocs/51810_16h_00h-0Fh_Rev_Guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-family-desktop-specification-update.pdf
https://www.youtube.com/watch?v=dKFwQNsXaNU
https://www.youtube.com/watch?v=266ub4vb_H8
https://www.youtube.com/watch?v=Q2m1oMEB2Ak

