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ABSTRACT

Recently, the operators of the national censorship infras-
tructure of China began to employ “active probing” to de-
tect and block the use of privacy tools. This probing works
by passively monitoring the network for suspicious traffic,
then actively probing the corresponding servers, and block-
ing any that are determined to run circumvention servers
such as Tor.

We draw upon multiple forms of measurements, some
spanning years, to illuminate the nature of this probing. We
identify the different types of probing, develop fingerprint-
ing techniques to infer the physical structure of the system,
localize the sensors that trigger probing—showing that they
differ from the “Great Firewall” infrastructure—and assess
probing’s efficacy in blocking different versions of Tor. We
conclude with a discussion of the implications for design-
ing circumvention servers that resist such probing mecha-
nisms.

Categories and Subject Descriptors

C.2.0 [General]: Security and protection (e.g., firewalls);
C.2.3 [Network Operations]: Network monitoring

General Terms

Measurement

Keywords

Active Probing, Deep Packet Inspection, Great Firewall of
China, Censorship Circumvention, Tor

1. INTRODUCTION
Those in charge of the Chinese censorship apparatus spend

considerable effort countering privacy tools. Among their
most advanced techniques is what the Tor community terms
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Figure 1: The firewall cannot determine, by mere inspec-
tion, whether the encrypted connection carries a prohibited
circumvention protocol. Therefore it issues its own probes
and observes how the server responds.

“active probing”: passively monitoring the network for sus-
picious traffic, actively probing the corresponding servers,
and blocking those determined to run circumvention services
such as Tor.

The phenomenon of active probing arose presumably in
response to enhanced circumvention systems that better re-
sist traditional forms of blocking. For example, instead of
employing a protocol recognizable by deep packet inspec-
tion (DPI), some of these systems embed their traffic inside
TLS streams. Barring any subtle “tells” in the circumven-
tion system’s communication, the censor cannot distinguish
circumventing TLS from any other TLS, and thus cannot
readily block the circumvention without incurring signifi-
cant collateral damage. Active probing enables the censor
to disambiguate the otherwise opaque traffic and once again
obtain a measure of control over it.

Figure 1 illustrates the general scheme of active probing.
The censor acts like a user and issues its own connections
to a suspected circumvention server. If the server responds
using a prohibited protocol, then the censor takes a block-
ing action, such as adding its IP address to a blacklist. If
the circumvention server does not incorporate access control
mechanisms or techniques to distinguish the censor’s probes
from normal user connections, the censor can reliably iden-
tify and block it.

The effectiveness of active probing is reflected in its diverse
uses. As of September 2015, researchers have documented



its use against Tor [32], SSH [20], and VPN protocols [21,
10], and here we document additional probing targets.

Through this work we aim to better understand the nature
of active probing as conducted today against privacy tools
and censorship circumvention systems. We seek to answer
questions such as: What stimuli cause active probing? How
long does it take until a server gets probed? What types of
probes do we see, and from where do they originate? How
effective is active probing? What does its operation reveal
about ways to thwart it?

We consider only “reactive probing:” probing that is trig-
gered by the observation of some stimulus. Censors could
also conceivably employ“proactive probing”by scanning the
Internet (on a particular port, say) without waiting for a
stimulus, but we did not seek to study that. The only pos-
sible exception is in our examination of the logs of a server
that began to receive active probes without our having in-
stigated them—though the server’s status as a Tor bridge
may help explain that.

We draw upon a number of datasets from several vantage
points, including some extensive longitudinal data, to exam-
ine these questions. Our work makes these contributions:

• We describe measurement infrastructure for studying
active probing systems.

• We identify various probe types, including some previ-
ously undocumented, and chart their volume over time
since their first appearance in our data in 2013. The
vast majority originate from Chinese IP addresses.

• Using network protocol fingerprinting techniques, we
infer the physical structure of the probing system.

• We localize the sensors that trigger active probes and
show they are likely distinct from China’s main cen-
sorship infrastructure, the “Great Firewall” (GFW).

We structure the rest of the paper as follows. Section 2
covers related work, followed by background in Section 3.
Section 4 describes our datasets, and Section 5 delves into
their analysis; Section 6 concludes.

2. RELATED WORK
Academia and civil society have spent significant efforts

analyzing and circumventing the GFW, providing us with a
comprehensive understanding of how it blocks IP addresses
and TCP ports [7], DNS requests [1, 24], and HTTP re-
quests [22, 3]; and the nature of its TCP processing [13].

McLachlan and Hopper [19] warned of the possibility of
Tor bridge discovery by Internet scanning in 2009. The
study of practical, in-the-wild “active probing” associated
with Chinese censorship began in late 2011, when Nixon no-
ticed suspicious entries in his SSH log files [20], including
non-conformant payloads of seemingly random byte strings.
Careful analysis revealed a pattern: these strange probes,
which originated from IP addresses in China, were triggered
by prior genuine SSH logins, by real users, from different
Chinese IP addresses. In 2012, Wilde documented a similar
phenomenon, this time targeting the Tor protocol [30]. Mo-
tivated by reports that China was blocking Tor bridges only
minutes after their first use from within China, he inves-
tigated and observed the GFW performing active probing,
triggered by observing a particular list of TLS cipher suites,

the one offered by Tor clients. The probing took the form of
TLS connections that attempted to establish Tor circuits.
Wilde also observed “garbage” random binary probes like
the ones seen by Nixon for SSH.

Later in 2012, Winter and Lindskog revisited Wilde’s anal-
ysis using a server in Beijing [32]. They attracted probers
over a period of 17 days and analyzed the probers’ IP ad-
dress distribution, how blocking was effected, and how long
bridges remained blocked. They conjectured, but did not
establish, that the GFW uses IP address hijacking to obtain
its large pool of source IP addresses; that is, that the prob-
ing apparatus temporarily borrowed IP addresses that were
otherwise allocated.

In 2013, reports suggested that the GFW had begun active
probing against obfs2 [31], an obfuscation transport for Tor
specifically designed to be difficult to detect by DPI. (A
description of obfs2 appears in the next section.) The timing
of these reports corresponds well with our own data.

A year later, Nobori and Shinjo discussed their experience
with running a large VPN cluster for circumvention [21].
They likewise observed a pattern of connections from China
shortly prior to blocking of a server. Other reports indicate
that VPN services receive similar probing [10].

Our work aims to broaden the above perspectives, which
have generally relied upon one-time measurements from sin-
gle vantage points; and to illuminate the nature of active
probing in greater depth, including its range of probing, re-
sponse times, and system infrastructure.

3. BACKGROUND:

CIRCUMVENTION PROTOCOLS
Active probing is a reaction against the increasing effec-

tiveness of censorship circumvention. In this section we
briefly describe Tor’s place in the world of circumvention,
and the obfuscated protocols (“transports”) that cloak Tor
traffic and make it more resistant to censorship. Three of
these protocols—“vanilla” Tor, obfs2, and obfs3—underlie
and motivate our experiments. More than that, though,
these protocols tell a small part of the story of the global
censorship arms race. In their technological advancement,
one can see the correspondingly increasing sophistication of
censors: starting from their ignorance of Tor, moving on to
simple IP address-based blocking, then online detection of
obfuscation, and now active probing.

3.1 Tor
Years ago, Tor found success in evading various types of

censorship such as web site blocks. Censored users found
they could treat the network as a simple proxy service with
many access points (its anonymity properties being of sec-
ondary importance to these users). Despite this success,
however, the unadorned “vanilla” Tor protocol is not partic-
ularly suited to circumvention. Once censors began looking
for it, they found it easy to block. Tor’s biggest weakness
in this respect is its global public list of relays. A censor
can simply download this list and add each IP address to a
blacklist—and censors began to do exactly that.

In response to the blocking of its relays, the operators of
the Tor network began to reserve a portion of new relays as
secret, non-public “bridges.” Unlike ordinary relays, bridges
are not easily enumerable [6]. They are carefully distributed
through rate-limited out-of-band channels such as email and



HTTPS, and only a few at a time. The goal is to make it
possible for anyone to learn a few bridge addresses, while
making it hard for anyone to learn them all. By design,
learning many bridge addresses requires an attacker to con-
trol resources such as an abundance of IP addresses and
email addresses, or the ability to solve CAPTCHAs.

Even using secret bridge relays, Tor remains vulnerable to
detection by deep packet inspection (DPI). Tor uses TLS in
a fairly distinctive way that causes it to stand out from other
TLS-based protocols. Censors can inspect traffic looking for
the “tells” that distinguish Tor from other forms of TLS,
and block connections as they arise. After early efforts to
make their use of TLS less conspicuous [28], the developers
of Tor settled on a more sustainable strategy: wrapping the
entire Tor TLS stream in another layer—a“pluggable trans-
port” [29]—that assumes responsibility for protocol-level ob-
fuscation. This model allows for independent innovation in
circumvention, while leaving the core of Tor free to focus on
its main purpose of anonymity.

3.2 Obfs2
The first pluggable transport was obfs2 [25], introduced

in 2012. It was designed as a simple, expedient workaround
for DPI of the kind that was then occurring in Iran [4]. It
provides a lightweight obfuscation layer around Tor’s TLS,
re-encrypting the entire stream with a separate key in a
way that leaves no plaintext or framing information that
can serve as a basis for blocking—the entire communication
looks like a uniformly random byte stream in both direc-
tions. The simple scheme of obfs2 had immediate success.
The protocol has a serious deficiency, though: it is possible
to detect it completely passively and with high confidence.
Essentially, obfs2 works by first sending a key, then sending
ciphertext encrypted with that key. Therefore a censor can
simply read the first few bytes of every TCP connection,
treat them as a key, and speculatively decrypt the first few
bytes that follow. If the decryption is meaningful (matching
a TLS handshake, for example), then obfs2 is detected and
the censor can terminate the connection.

We turned the weakness of obfs2 to our advantage. Its
easy passive detectability, coupled with its lack of use for
anything but circumvention (and active probing), meant
that we could mine past network logs looking for obfs2 con-
nection attempts. Later we will describe how we used obfs2
probes to seed a list of past prober IP addresses.

3.3 Obfs3
The follow-up protocol obfs3 [26] was designed to remedy

this critical flaw in obfs2. Its key innovation is a Diffie-
Hellman negotiation that determines the keys to be used to
encrypt the rest of the stream. (The key exchange is not
as trivial as it may seem, because it, like the rest of the
protocol, must be indistinguishable from randomness.) This
enhancement in obfs3 deprives the censor of the simple, pas-
sive, reliable distinguisher it had for obfs2. The censor must
either intercede in the key exchange (using a man-in-the-
middle attack to learn the secret encryption keys), or settle
for heuristic detection of random-looking streams. While
either of these options may be problematic to implement,
heuristic detection becomes entirely workable when com-
bined with active probing. An initial, inaccurate test can
identify potential obfs3 connections; then an active probe
confirms or denies the suspicion.
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Figure 2: The estimated user numbers of the three trans-
port protocols we study—vanilla Tor, obfs2, and obfs3—in
July and August 2015. Obfs3 is the most popular proto-
col, followed by vanilla Tor. Obfs2 is superseded and sees
practically no use any more.

3.4 Other Protocols
Though we limited the focus of our active experiments

to Tor-related protocols, in the course of gathering data we
incidentally found evidence of probing for other protocols,
unrelated to Tor except that they also have to do with cir-
cumvention. The first of these probes, which we have labeled
AppSpot in this paper, is an HTTPS-based check for domain
fronting [8], a circumvention technique that disguises access
to a proxy by making it appear to be access to an innocu-
ous web page. In all of the examples we found, the probes
checked whether a server is capable of fronting for Google
App Engine at its domain appspot.com. The other probe we
discovered we label SoftEther, because it resembles the client
portion of the handshake of SoftEther VPN, the VPN soft-
ware underlying the VPN Gate circumvention system [21].
Because we found these ancillary types of probe activity by
accident, we make no claims to thoroughness in our coverage
of them, and suggest that there may be other, yet unknown
types of active probing to discover.

Our study focuses on vanilla Tor, obfs2, and obfs3, these
being the commonly used protocols that remain vulnerable
to active probing. There are other, newer protocols, includ-
ing spiritual successors ScrambleSuit [33] and obfs4 [27], that
have resistance to active probing as an explicit design crite-
rion. Although they are gaining in popularity, they have not
yet eclipsed obfs3. The key enhancement of these successor
protocols is that they require the client, in its initial mes-
sage, to prove knowledge of a server-specific secret (trans-
mitted out of band). Put another way, mere knowledge of
an IP address and port is not enough to confirm the exis-
tence of a circumvention server. As of this writing, obfs3
remains Tor’s most-used transport, having around 8,000 si-
multaneous users on average, as shown in Figure 2. The
obfs2 protocol is deprecated, no longer offered in the user
interface, and its use is on the wane.

4. EXPERIMENTS
We base our results on several experiments, each result-

ing in a dataset that offers a distinct view into the behavior
of active probing. The datasets cover different time ranges
(see Table 1) and involve different setups. Table 2 sum-
marizes the phenomena that each can illuminate, with each
contributing at least one facet not covered by the others.
We now describe each experiment in detail.



Dataset Time span

Shadow Dec 2014 – Feb 2015 (three months)
Sybil Jan 29, 2015 – Jan 30, 2015 (20 hours)
Log Jan 2010 – Aug 2015 (five years)
Counterprobe Apr 22 – Apr 27 (six days)

Table 1: Timeline of our experiments. We created four
datasets that span hours, days, months, and years.

Counter-

Shadow Sybil Log probe

Probing rate X

ISN patterns X

TSval patterns X X X

obfs2/3 blocking X X

Tor bootstrapping X

Probing types X

Architecture X X

Topology X

Table 2: Observed phenomena and their visibility in our
datasets.

4.1 Shadow Infrastructure
We built a “shadow infrastructure” of our own Tor clients

and bridges for a controlled experiment of active probing
over time. These clients and bridges were not actually used
by any real users, but rather were dedicated exclusively to
our own experimental purposes. The infrastructure tested
vanilla Tor, obfs2, and obfs3 in equal measure, since active
probing is known to target all three of these protocols. Fig-
ure 3 illustrates this setup.

We had six Tor clients within China: three in China Uni-
com, a large country-wide ISP; and three in CERNET, the
Chinese Research and Education Network. (We chose CER-
NET because previous work suggested that censorship of
CERNET might differ from the rest of China [7].) Outside
of China, we ran six Tor bridges in Amazon’s EC2 cloud.
Two of the bridges ran vanilla Tor, two ran obfs2, and two
ran obfs3. We assigned each of our six clients in China to a
unique EC2 machine; the clients never contacted any bridge
other than their own assigned one. Initially, all clients at-
tempted to connect to their assigned bridge every 15 min-
utes. After one month, we changed this to five minutes after
preliminary analysis showed that finer granularity in timing
might be useful.

We also created a control group consisting of nine bridges
(six in Amazon EC2, three in a US university) and a sin-
gle client outside of China. We never connected to any of
the control bridges from one of the clients within China; by
comparing the traffic received by our “active” and control
bridges, we can isolate general background scanning from
active probing by the GFW. The three control bridges not
hosted on EC2 allow us to determine whether the GFW
treats EC2-hosted servers differently from others. The con-
trol client outside of China connects to all of the bridges.
If our control client could not establish a Tor connection to
one of the “active” bridges, we discarded the measurement
we did from China for that bridge.

We took various steps to prevent our bridges from being
discovered by any means other than active probing. We con-
figured all of them to be private bridges, which means that

Figure 3: Experimental setup for the “Shadow” dataset.

they did not advertise themselves publicly, neither to the
public Tor directory, nor to its database of secret bridges.
As a result, no genuine Tor user should attempt to connect
to one of our bridges. The bridges listened on random ports
in the ephemeral range, to reduce the chance of their dis-
covery by blind Internet scanning. Finally, we used another
EC2 machine to proxy the communication between our Tor
bridges and the first public Tor relay in a circuit. This extra
proxy hop is to prevent another potential bridge-discovery
attack, wherein a malicious Tor relay makes a list of all the
IP addresses that connect to it (cf. [14, §III.D]).

4.2 Sybil Infrastructure
To obtain broader insight into the extent of the censor’s

active probing infrastructure, we designed another experi-
ment to attract1 many active probers in a short period of
time.

We did so by constructing a “Sybil infrastructure,” so
named because it seemingly consisted of hundreds of dis-
tinct Tor servers. We used a virtual private server (VPS) in
France and one in China. We ran a vanilla Tor bridge on the
VPS in France and redirected the port range 30000–30600
to our Tor port using firewall port redirection. The actual
Tor server ran on a separate port in the ephemeral range.

Then, from our VPS in China, we established Tor con-
nections to every port in the port range in ascending or-
der. This took approximately two hours, because we waited
several seconds in between connection attempts. Since the
GFW blocks by IP:port tuple, not just IP address [32], the
GFW interpreted every single port in the range as a distinct
Tor bridge and probed them separately. This experiment
resulted in 622 active probing connections (and significantly
more TCP connections, as we will discuss later) to the VPS
in France.

4.3 Server Log Analysis
This dataset comes from the application logs of a server

operated by one of the authors, some stretching back to
January 2010. The server runs various common network
services, including the three we use in the analysis: HTTP,
HTTPS, and SSH. In addition to common networking ports,
the server has hosted a Tor bridge since January 2011, an
ordinary vanilla bridge without pluggable transports. By
mining the application logs, we found that the server has
been receiving active probes from China for over 2.5 years.
An important difference in the Log experiment compared

1Our earlier analysis confirmed that simply establishing an
initial TLS handshake with a server suffices to attract a
prober.



to the others is that it is not the result of artificial activity
to induce probing. Our server received its first probes in
January 2013, slightly earlier than the first public reports
of obfs2 probing [31]. On average, it has received dozens of
probes every day since active probing began—though there
are long stretches during which it received few probes.

This dataset provides an invaluable longitudinal perspec-
tive, though with the significant limitation that application
logs do not record as much forensic information as we would
like: they omit source ports and other transport-layer infor-
mation, and usually truncate probe payloads (see below).

Data Types and Ranges.
The HTTP and HTTPS log go back to January 2010, be-

fore the earliest reports of active probing of any kind. The
SSH log dates only to September 2014; probing of that port
was already in effect at the beginning of the log. While ap-
plication logs do not contain as much information as would,
say, packet captures, they suffice in many cases to iden-
tify the type of probe and the prober’s IP address. The
HTTPS log is even superior to a packet capture in one re-
spect: for TLS probes it contains the decrypted application
data, which would not be accessible from a packet capture.

Along with the application logs, the system has full packet
captures for ports 23, 80, and 443, between December 2014
and May 2015. The packet captures enable us to perform
more detailed analysis on the network- and transport-layer
features of probes. We opened port 23 (Telnet) specially
during this period, and used it to host a multi-protocol hon-
eypot server capable of responding to probes of various types
(TLS, obfs2, and obfs3), and recording the protocol layers
inside them. (To avoid inadvertently capturing potentially
sensitive activity, we do not perform any packet capture or
additional logging on the SSH and Tor ports.)

The server from which we gathered the Log data is a
working server that performs a number of functions apart
from simply absorbing active probes. In order to distin-
guish active probes from operational traffic, we used a form
of conservative snowball sampling. We started by extract-
ing incontrovertible probes; namely, obfs2 probes and non-
protocol-conforming payloads that we could not otherwise
explain, for example random binary garbage written to the
HTTP port. (It is easy to detect obfs2, with negligible
false positives, because of the protocol weakness described
in Section 3.2. It requires only the first 20 bytes sent by the
client.) We then made a list of the IP addresses that had
sent those probes, and examined all other traffic they had
sent at any point in time. Despite that the GFW’s active
probing rarely reuses source IP addresses, we occasionally
found a new probe type. When we did, we added it to our
list of known probes and repeated the process. In this way,
we slowly expanded our universe of known active prober IP
addresses, all the while checking manually to make sure we
were not sweeping up non-probing traffic.

This conservative approach enabled us to find a variety of
probing behaviors with few false positives, at the potential
cost of missing some novel probes from IP addresses that did
not also send a recognized probe type. This technique led
to our discovery of the “AppSpot” and “SoftEther” probes,
even though we seeded the process only with Tor-related
probes. Except for a handful of manually excluded hosts
(e.g., systems under our control), we did not consider the
source IP address in deciding whether a log entry indicated

a probe. Specifically, we did not employ IP geolocation to
find probes emanating from China, though Figure 7 shows
that the probes we found did in fact overwhelmingly come
from China.

We found a small amount of non-probing traffic (e.g., or-
dinary HTTP requests for actual pages) from IP addresses
that also sent a probes at some other time. The shortest
separation between probe and non-probe was three weeks,
and the longest was two years.

Limitations.
Our application logs have several limitations. The HTTP

and HTTPS (Apache) log truncates at the first ‘\0’, ‘\n’, or
‘\r\n’ sequence, and omits a leading ‘\n’ (we account for this
possibility when classifying probes). The SSH (OpenSSH)
log truncates at the first ‘\0’, ‘\r’, or ‘\n’, and has a hard
limit of 100 bytes.

A significant effect of these limitations is that application
logs will not record any Tor probes as such, not even when
they are received by the HTTPS port, which removes the
outer TLS layer. The first message that a Tor client sends
after the TLS handshake is a VERSIONS cell, which happens to
start with a ‘\0’ byte, causing the payload to be truncated
to a length of zero in the server log.

4.4 Counterprobing
Active probers seem to share their IP address pools with

normal Internet users. To investigate this, we scanned some
probers repeatedly using network diagnostic tools such as
ping, traceroute, and Nmap. We started the first scan the
moment a prober showed up. From then on, we repeated
the scan hourly for 24 hours. Interestingly, the very first
scan never yielded anything. The probers were unrespon-
sive to all packets. Later scans, however, painted a different
picture. In many cases, our port scans identified the IP ad-
dresses that were used for active probing just hours before
as various versions of Windows and Linux. We found open
ports used for file sharing, FTP, HTTP, RPC, and many
other services typical for home users. This indicates that
in many cases active probers share their address pools with
Internet users. We were able to run a small number of coun-
terprobes from a host within China, and the results matched
those of simultaneous counterprobes from outside the coun-
try: prober IP addresses were initially unresponsive, but
occasionally became responsive as disparate and seemingly
ordinary Internet hosts.

With the previous experiments in hand, we then set out
to develop tests to probe the architecture of the passive
monitor that triggers the probes, and the active compo-
nent responsible for sending them. A unidirectional three-
packet sequence—SYN, ACK, and a Tor TLS client hand-
shake packet—sent from a Chinese host suffices to trigger
an active probe.

We built several tests and ran them from a Unicom host
and a CERNET host to our EC2 infrastructure. These tests
included a traceroute for the monitor; a fragmentation test
that splits the request across multiple TCP packets to ex-
pose whether the passive detection maintains per-flow state;
a SYN-ACK traceroute that uses TTL-limited packets to
respond to probe requests; and a “milker” that repeatedly
sends triggering requests to a Tor bridge.



Client Succeeded Failed Total

CERNET vanilla 639 (12%) 4,490 (88%) 5,129
Unicom vanilla 90 (2%) 3,864 (98%) 3,954
CERNET obfs2 4,584 (98%) 81 (2%) 4,665
Unicom obfs2 4,153 (89%) 515 (11%) 4,668

CERNET obfs3 5,015 (98%) 95 (2%) 5,110
Unicom obfs3 3,402 (86%) 552 (14%) 3,954

Table 3: Connection success statistics for our clients in
China. While vanilla Tor is mostly unreachable, obfusca-
tion protocols are mostly reachable.

5. ANALYSIS
In this section, we study the following questions:

• Is active probing successful at discovering Tor bridges?
(§ 5.1)

• What is the delay between a connection attempt to
a Tor bridge and subsequent active probing of the
bridge? (§ 5.2)

• Where in the network are the probes coming from?
(§ 5.3)

• What types of probers do we see? (§ 5.4)

• Do active probers have “fingerprints” that distinguish
them from normal clients? (§ 5.5)

• What is the underlying architecture of the probing sys-
tem? (§ 5.6)

5.1 Effectiveness of Active Probing
To determine whether China’s active probing infrastruc-

ture is effectively discovering and blocking Tor bridges, we
analyzed the log files of our Tor clients inside China to see
which connection attempts were successful in connecting to
their assigned bridge. We consider a connection unblocked
if the TCP handshake succeeded, because previous work
showed that the Chinese censors block Tor bridges by drop-
ping SYN-ACK segments [32]; if a bridge is blocked, it will
be blocked at the TCP layer. We did this for each of the pro-
tocols supported by our clients and bridges: “vanilla” Tor,
and the obfs2 and obfs3 obfuscation protocols.

Table 3 shows the results of this experiment. Our results
show that obfs2 and obfs3 were almost always reachable for
our clients both in CERNET and Unicom. This result is sur-
prising because the Great Firewall has the ability to probe
for obfs2 and obfs3 (Section 4.3). Vanilla Tor, on the other
hand, is almost completely blocked. Figure 4 illustrates our
attempts to connect to Tor bridges using vanilla Tor clients
over time. We find that although Tor is mostly blocked, Tor
clients succeed in connecting roughly every 25 hours. We
believe that this reflects an implementation artifact of the
GFW (e.g., many commercial firewalls“fail open”when their
access control lists are being updated).

5.2 Delay Between Connection and Probing
We investigate how long it takes the Chinese censors to

probe a Tor bridge after we initiate a connection to it. In
2011, Wilde observed that active probing occurred in 15-
minute intervals [30], suggesting that the censors maintained
a“probing queue” that was processed every 15 minutes. The

12-17 12-24 12-31 01-07 01-14 01-21

Time

blocked
(vanilla CERNET)

available
(vanilla CERNET)

blocked
(vanilla Unicom)

available
(vanilla Unicom)

Figure 4: Successful Tor connections of our vanilla Tor
clients in China over time. Every dot represents one con-
nection attempt.

Sybil experiment helps us determine whether this is still the
case. We calculated the time between when we established
a connection to our Sybil node in France and when we ob-
served the Chinese censors’ subsequent probing connections.
Figure 5 illustrates the results of this experiment. It shows
the time difference in seconds (Y-axis) for every port (X-
axis) on our decoy bridge. There are two interesting as-
pects. First, 56% of all probing connections arrived after
less than one second (median 552 ms). We conclude that
the Chinese censors have abandoned a 15-minute queue and
now operate in real time. Second, there are several curious
delay spikes where the Chinese censors took more than one
minute to probe our bridge. We removed four outliers that
had a probing delay above 800 seconds. Interestingly, all
spikes decreased linearly until they reached the default of
real-time probing.

Figure 6 shows a superset of the same data, but with the
bridge port on the Y-axis and the absolute time on the X-
axis. The line to the left consists of our decoy connections
(red circles), which were quickly followed by probing con-
nections (black crosses), which is basically the data shown
in Figure 5. What Figure 5 did not show is the line to the
right, a secondary “swarm” of probing connections. We cap-
tured these connections approximately 12 hours after our
initial decoy connections (at which point our bridge was no
longer running). The probers tried to connect several times,
without success. Presumably, the Chinese censors were re-
connecting to all bridges in order to verify whether they were
still online.

5.3 Origin of the Probers
In total, we collected 16,083 unique prober IP addresses.

There are 158 IP addresses in the Shadow dataset; 1,182 in
the Sybil; and 14,912 in the Log. 111 of the addresses appear
in two of the three datasets, and just one—202.108.181.70—
appears in all three.

Prober IP addresses are rarely reused. Consider just the
Log experiment: it recorded 16,464 probes carrying 15,249
distinct payloads; these probes were sent by 14,163 dis-
tinct IP addresses. 95% of addresses appear only once;
another 4% appear twice. This lack of IP address reuse
precludes simple blacklisting as a counter to active prob-
ing: a blacklisted prober IP is unlikely to be seen again.
There is one clear outlier among probers, the aforementioned
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Figure 5: The time difference between decoy connections through our Sybil node and probing connections for every port on
our Tor decoy bridge; the censors probe the ports on this bridge in rapidly ascending order. While the censors probed most
ports immediately, some port ranges were only scanned significantly later.
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Figure 6: The arrival rate of probing connections. Decoy
connections through our Sybil node are immediately fol-
lowed by probing connections from the Chinese censors (the
red circles and first set of black crosses are nearly on top
of one another). After approximately 12 hours, the Chinese
censors probed the same port range again.

202.108.181.70, which appears 248 times in the Log dataset.
This special IP address has previously been associated with
the GFW’s active probing by Winter and Lindskog [32] and
Majkowski [16]. We have observed it to send the obfs2,
obfs3, and TLS probe types. It lies in AS4837, along with
many other probers. No other prober IP address is in its
/16 network.

Various measurements place the probing IP addresses al-
most entirely within China. Figure 7 shows the distribution
of autonomous systems of prober IP addresses. Nearly ev-
ery probe is from a Chinese AS. Table 4 shows the DNS
Start of Authority (SOA) of the prober IP addresses. The
most common SOA is ns1.apnic.net (Asia Pacific Network
Information Centre, the regional Internet registry for the
Asia Pacific region). The next most common SOAs are .cn
domains and Chinese ISPs.

5.4 Probe Types
We categorized the probes we received into probe types.

We discovered five distinct probe types across all four of
our experiments, plus one “TLS” pseudo-type, as we de-
scribe below. Although the probes differ in important ways,
they have in common the targeting of circumvention pro-
tocols. Section 5.5 describes how seemingly independent

Count SOA

7,379 ns1.apnic.net
2,013 none

501–1,000 ns.jlccptt.net.cn, ns.zjnbptt.net.cn
201–500 ns.sdjnptt.net.cn, ns3.tpt.net.cn, soa,

ns.sxtyptt.net.cn, ns.hbwhptt.net.cn,
ns.bta.net.cn, ns.hazzptt.net.cn,
hzdns.zjnetcom.com, dns.fz.fj.cn,
nmdns.hh.nm.cn

101–200 ns.timeson.com.cn, dnssvr1.169ol.com,
HNGTDNS2.hunan.unicom.com,
HNGTDNS1.hunan.unicom.com,
nmc1.ptt.js.cn, NS2.NET.EDU.CN,
ns.dcb.ln.cn, ns1.jscnc.net,
ns.yn.cninfo.net, ns1.ah.cnuninet.net,
localhost.localdomain

1–100 53 others

Table 4: DNS Start of Authority of prober IP addresses.

probes share low-level features (suggesting that they may
originate from shared physical infrastructure), and high-
lights some of the features that may be useful for distin-
guishing active probers from genuine clients.

TLS.
The“TLS”probe type is a TLS client hello, one whose ap-

plication payload we did observe, or one that did not match
any more specific probe type. This was the case, for ex-
ample, in the Log experiment when a TLS probe arrived at
a plaintext port: the application log records the beginning
of the TLS header but nothing else. “TLS” probes could
have been one of our other known types—Tor, SoftEther, or
Appspot—or something else entirely.

Tor.
The“Tor”probe type is a Tor VERSIONS cell received within

a TLS connection. The probes we observed used a rela-
tively obsolete “v2 handshake,” superseded since 2011 [28].
This probe type is presumably aimed at the discovery of Tor
bridges.

Obfs2.
The “obfs2” probe type is the client part of the handshake

of obfs2. Recall that obfs2’s handshake is intended to look



CHINATELECOM-CORE-WAN-CN2 China Telecom Next Generation Carrier Network,CN

CNNIC-KUANCOM-AP Beijing Kuancom Network Technology Co.,Ltd.,CN

CMNET-V4HEBEI-AS-AP Hebei Mobile Communication Company Limited,CN

CMNET-HUNAN-AP China Mobile communications corporation,CN

CHINATELECOM-TJ-AS-AP ASN for TIANJIN Provincial Net of CT,CN

CMNET-JIANGSU-AP China Mobile communications corporation,CN

CMNET-V4TIANJIN-AS-AP tianjin Mobile Communication Company Limited,CN

CNCGROUP-GZ China Unicom Guangzhou network,CN

CTTNET China TieTong Telecommunications Corporation,CN

CMNET-GD Guangdong Mobile Communication Co.Ltd.,CN

CHINA169-GZ China Unicom IP network China169 Guangdong province,CN

CHINA169-BJ CNCGROUP IP network China169 Beijing Province Network,CN

GIGAINFRA Softbank BB Corp.,JP

ERX-CERNET-BKB China Education and Research Network Center,CN

CSTNET-AS-AP Computer Network Information Center,CN

CHINANET-BACKBONE No.31,Jin-rong Street,CN

CHINA169-BACKBONE CNCGROUP China169 Backbone,CN

AS4809

AS17969

AS24547

AS56047

AS17638

AS56046

AS38019

AS17622

AS9394

AS9808

AS17816
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AS17676

AS4538
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Figure 7: Three autonomous systems—AS4837, AS4134, and AS7497—account for 95% of probes observed in the Log ex-
periment. We identified probing behavior by content, not by source address. Despite that, essentially all probes turn out to
originate from China. All of the main ASes sent a variety of probe types; they do not appear to specialize. The most prolific
prober, 202.108.181.70, lies in AS4837.

like a random bytestream; however its in-band key transmis-
sion makes it easy to identify, a great aid to our retrospective
analysis. The first 20 bytes of a connection suffice to identify
obfs2 with a negligible error rate.

Obfs3.
The “obfs3” probe type is an obfs3 client handshake mes-

sage. By design, obfs3 is resistant to passive detection,
which poses problems for our retroactive analysis. Though
we have many samples of probes whose properties are con-
sistent with obfs3—that is, they appear random, of length
between 192 and 8,386 bytes, and are not obfs2—it is not
possible to say with certainty that they are obfs3 probes
(and not, for example, some other random-looking proto-
col). To test our guess that the probes were probably obfs3,
for a short period (Feb. 3–19, 2015) we enabled an obfs3 lis-
tener on the multi-protocol honeypot running on the server
of the Log experiment. The listener would complete the
server half of the obfs3 handshake, and then log everything
received within the encrypted channel. By participating in
the handshake, we found that the probes we would have sus-
pected of being obfs3 were, in fact, obfs3. We have therefore
labeled all probes bearing such as signature “obfs3,” even
though it is confirmed to be the case only in a small fraction
of cases.

SoftEther.
The “SoftEther” probe type is an HTTPS POST request:

“POST /vpnsvc/connect.cgi HTTP/1.1”. It resembles the first
part of the client handshake of SoftEther VPN, the software
that powers the VPN Gate circumvention system [21]. We
discovered this probe type because it appeared many times

in our HTTPS log; and we were able to observe it in de-
tail (including its POST body) when it arrived on port 23
during the time we were running the multi-protocol honey-
pot listener. We further conjecture that some of the “TLS”
probes that arrived at port 80 were in fact SoftEther probes,
because they share a TCP timestamp sequence with other
SoftEther probes. We first observed SoftEther probes in
Aug. 2014. This is five months after the first active probes
seen by the creators of VPN Gate, shortly after the release
of their software [21].

AppSpot.
The “AppSpot” probe type is an HTTPS GET request

with a special Host header:

GET / HTTP/1.1

Host: webncsproxyXX.appspot.com

The ‘XX’ is a number that varies across probes. The Host

header reveals that this probe type is likely intended to dis-
cover servers that are capable of providing access to Google
App Engine through domain fronting [8]. When a typical
web server receives a request with an alien Host header such
as this, it will respond with its default document, or an er-
ror message. But when a Google server receives the request,
it will forward the request to the web application running
at webncsproxyXX.appspot.com. Circumventors can and do run
various proxies on App Engine using precisely this technique.
These probes would be useful for eliminating any gaps left in
the GFW’s near-total block of Google services. We observed
this probe type only on port 443. Though originating from
the same pool of IP addresses as the other probe types, this
one seems somewhat independent, in its TLS fingerprint,



the rate of its TCP timestamp counter (Figure 11c), and
the temporal patterns in its activity (Figure 8).

We crawled webncsproxyXX.appspot.com for values of XX be-
tween 1 and 100. Some of them were instances of GoAgent
(a circumvention tool based on App Engine), while others
are instances of a web-based proxy. This probe type exists
in a few variations. For a time, they probes switched from
requesting / to requesting /twitter.com, which would have
caused the webncsproxy application to retrieve the Twitter
home page. In July 2015, AppSpot probes began to arrive
in pairs separated by a few seconds and originating from
different IP addresses. The second probe in a pair had a
different set of header fields; it also had a similar Host:

webncsproxyXX.appspot.com header, though the value of ‘XX’
was generally different from that of the first probe.

Figure 8 shows the complete probe history of the HTTP
and HTTPS ports in the Log dataset. It is apparent that
obfs2 and obfs3 are temporally related, and that “short”
probes of less than 20 bytes also follow the same temporal
pattern. The volume of TLS and SoftEther probes is much
less than that of the other probe types. AppSpot appears to
follow its own independent pattern. There are conspicuous
lulls in probing behavior: between Dec. 2013 and Aug. 2014;
between Feb. and Mar. 2015; and after May 2015. We do
not know why probing nearly ceased during these periods.

5.5 Fingerprinting Active Probers
We now seek out telltale fingerprints in active probing:

clues that may help distinguish probers from genuine clients,
as well as clues as to how the probing infrastructure is im-
plemented. We proceed layer by layer, starting with the
IP layer and moving up through several application layers.
Our analysis shows that despite there being a large number
of probing IP addresses, there are likely only a small number

of independent processes controlling them. In particular, our
analysis of TCP initial sequence numbers and timestamps
shows that shared state exists between disparate probing IP
addresses.

IP Layer.
In 2014, anonymous researchers inferred the structure of a

DNS-poisoning censor node by analyzing side channels in the
IP TTL and IP ID [1]. Figure 9 shows the TTL distribution
of all SYN segments we received from probers in our Sybil
experiment. Five TTL values account for the overwhelming
majority of observed TTLs. We did not, however, find any
discernible patterns in the distribution of the IP ID field.

TCP Layer.
The TCP header is rich with potentially fingerprintable

fields, particularly initial sequence numbers (ISNs), source
ports, timestamps, and options. Patterns across TCP con-
nections initiated by different IP addresses indicate that all
the traffic originates from only a few processes (two in the
Shadow dataset, one in the Sybil dataset, and about a dozen
in the Log dataset). We analyzed in detail the TCP headers
of SYN segments received in the Sybil experiment and found
that they are all very similar.

TCP options: With respect to TCP options, all SYN seg-
ments:

• Employ an MSS of either 1400 (88% of probes), or
1460 (12%).

36 41 42 43 45 46 47 48 49 50 51

TTL value

F
re

q
u
e
n
c
y

0
5
0
0

1
0
0
0

1
5
0
0

Figure 9: The TTL values in the SYN segments sent by
probers. 99% of all observed TTL values are in between 45
and 51.

• Use window scaling of 7.

• Permit selective ACKs.

• Use the TCP timestamp option.

• Use the “no operation” option.

In particular, the OS identification tool p0f3 [35] yielded
the following (truncated) signatures. The shaded part is
identical in all three observed signatures.
0:1460:mss*4,7:mss,sok,ts,nop,ws:df,id+:0 (1% of probes)
0:1460:mss*20,7:mss,sok,ts,nop,ws:df,id+:0 (11% of probes)
0:1400:mss*4,7:mss,sok,ts,nop,ws:df,id+:0 (88% of probes)

Initial sequence numbers: To protect TCP connections
from off-path attackers, initial sequence numbers must not
be guessable by an attacker. Modern operating systems use
strong randomness to select ISNs. As a result, if all prob-
ing connections came from independent systems, we would
expect no patterns in the distribution of ISNs.

We extracted the 32-bit ISNs of all SYN segments sent
by probers. Figure 10 shows the ISN value on the Y-axis
versus the time captured on the X-axis. To our surprise, the
time series shows a striking, non-random pattern. Instead
of uniformly distributed points over time, we see a “zigzag”
pattern. ISNs increase until 232 and then wrap around to 0.
We conclude that the infrastructure derives ISNs from the
current time.

The Sybil experiment induces a large amount of active
probing over a short period of time—which was necessary
for finding this ISN pattern. Our other experiments had too
low a sample rate for the pattern to become apparent.

Source ports: We did not find any apparent patterns in
the distribution of source ports. Interestingly, however, the
source port distribution covers the entire 16-bit port range,
including ports below 1024. This selection of ephemeral
ports differs from that of standard operating systems, which
typically only use port numbers above 1024.

TCP timestamps: We extracted the TSval from the TCP
timestamp option [2] in all SYN segments sent by probers
in the Shadow, Sybil, and Log experiments. Figure 11 il-
lustrates the result. Though the SYN segments came from
many different IP addresses, their timestamps form only a
small number of distinct sequences (visible as straight lines
in the graphs). We can characterize every line by its slope
(i.e., its timestamp clock rate) and intercept (i.e., its system
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Figure 8: Probe types and volume of the HTTP and HTTPS ports in the Log experiment. The log file starts in Jan. 2011,
but probes only began in 2013. The “HTTP,”“AppSpot,” and “SoftEther” rows are HTTPS requests to port 443; the others
(including “TLS”) are probes to port 80. The “short” probes are those that appear random, but are too short (< 20 bytes) for
the obfs2 test. We believe that the“short”and“empty”probe types are actually truncated“obfs2”or“obfs3”probes. (Apache’s
log file truncates requests at the first ‘\0’ or ‘\n’ byte; a random byte string has about a 15% chance of being truncated in
the first 20 bytes.) The “HTTP” row represents not probes, but ordinary requests for web pages on the server. They may be
ordinary web users that happened to have an IP address that at another time sent some other type of probe; or they may be
firewall operators web browsing from their probing infrastructure. (The requested pages were related to circumvention, which
would be of interest to Chinese Internet users and firewall operators alike.) Two “HTTP” data points, at Aug. 2011, are not
shown on the graph. They are from an IP address that would later send a “short” probe in May 2013.
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Figure 10: Initial sequence numbers of SYN segments sent by probers. Despite the probers coming from different IP addresses,
a clear linear pattern manifests.

uptime). If all probes came from different physical systems,
we would expect a larger number of distinct sequences.

SSL/TLS Layer.
The Tor protocol is encapsulated within TLS. The TLS

protocol has many features that enable fingerprinting. We
analyze the TLS “client hello,” the first message sent by a
client—or an active prober—after establishing a TCP con-
nection. We used a TLS fingerprinting patch [15] for the
passive network fingerprinting tool p0f [35]. We captured
a total of 621 client hellos in the Sybil dataset. They all
had the same TLS fingerprint: TLSv1.0, with a particular
list of 11 cipher suites, support for the TLS session ticket
extension, and support for compression.

To better understand how common this fingerprint is, we
extracted the offered cipher suites of all Tor clients connect-

ing to a Tor guard relay under our control.2 Over a 24-hour
period, we observed 236,101 client hellos, out of which only
67 used the cipher suites listed above.

Application Layer—Tor.
After the TLS handshake, a Tor client is supposed to send

a VERSIONS cell [5, §4], in which it declares what versions of
the Tor protocol it supports. After that there is further
interaction before the establishment of a Tor circuit.

By inspecting the log files of a private Tor bridge, we
found that probers send only the VERSIONS cell, and none of
the other cells that would normally follow in order to estab-
lish a full Tor connection. After receiving a VERSIONS cell,
our bridge, following the protocol specification, replied with
a NETINFO cell, after which the probers abruptly closed the

2We extracted only the cipher suites and did not capture or
store identifying information such as IP addresses.
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Figure 11: The TCP TSval value of SYN segments received by active probers.

connection. The probers’ VERSIONS cell declares support for
Tor protocol versions 1 and 2, which were superseded in
Oct. 2011 [18], and are now only supported for backward
compatibility (the current protocol version is 4). The fact
that probers use such an old protocol version, suggests, to
us, that the Tor probes were developed in 2011 or earlier,
and not materially updated since. We briefly modified a
Tor bridge to ignore connections that offered only versions 1
and 2 and found that such a bridge does not get blocked
despite being probed. (This is unfortunately not a univer-
sally deployable defense against probing because there are
still some old clients that support only old protocol versions,
and ignoring their handshakes would cut them out of the
network.)

Application Layer—obfs2.
The active probers’ implementation of obfs2 conforms with

the protocol specification: A 16-byte seed, an encrypted
“magic” number, a padding length of 0–8,192 bytes, and
random padding. The amount of random padding matches
the declared padding length, except in a small number of
cases when the TCP stream ended prematurely because of
missing segments. The probers do not send anything in the
encrypted payload layer inside the obfs2 obfuscation layer,
even when communicating with an actual obfs2 server. In
genuine use of Tor with obfs2, there is TLS within the obfs2
layer, but within the active probers’ obfs2 there is no pay-
load at all—the prober simply terminates the TCP connec-
tion. It seems that the mere existence of an obfs2 server is
sufficient evidence for the censor.

Obfs2 clients should use fresh randomness for every con-
nection. We were therefore surprised to find a few instances
of duplicate obfs2 bytestreams. If two obfs2 streams have
identical payloads, they must have had identical session keys
and identical random padding. Out of 8,479 obfs2 probes re-
ceived in the Log experiment, 56 (0.7%) were part of a pair
having identical payloads. We did not find any payload that
occurred more than twice. In every case, the paired probes
came from different IP addresses, and arrived at nearly the
same time, never more than five seconds apart. The prob-
ability that two independent obfs2 streams are identical is
negligible; therefore the probers must share some state be-
hind the scenes—at least a weak random number generator
if not actually complete process state.

This apparent “state leakage” shows up in another way.
Occasionally, an IP address that sent one half of a pair

of identical obfs2 probes also sent, nearly simultaneously,
a probe of some other type. Here is a sample from the Log
experiment on port 80. Two different IP addresses sent the
same obfs2 payload in the same second. One second later,
one of the two additionally sent a TLS probe:
2014-08-29 15:44:01 60.216.143.31 obfs2 eef890766636...

2014-08-29 15:44:01 14.135.253.56 obfs2 eef890766636...

2014-08-29 15:44:02 14.135.253.56 tls 160301

Curiously, the active probers do more work to detect obfs2
than they strictly have to. Although the protocol does not
require it, existing server implementations send their seed,
magic number, and padding immediately upon receiving a
TCP connection, without waiting the client’s half of the
handshake. A more stealthier active prober would open a
TCP connection and simply listen. It would be able to de-
tect current obfs2 servers without being so conspicuous.

Application Layer—obfs3.
In contrast to obfs2, the active probers’ implementation of

obfs3 differs from the specification in an interesting way that
does not affect protocol semantics. The specification calls for
each side to send 0–8,194 bytes of random padding, but in
two chunks, each with a length that is a uniform random
number between 0 and 4,097. Instead, the active probers
send their padding all at once, in a single chunk of length
between 0 and 8,194. It is therefore possible to fingerprint
active probers in 50% of cases: if the first padding chunk is
longer than 4,097 bytes, then the client is an active prober.

As with obfs2, we observe some duplicated probe pay-
loads. Out of 4,493 obfs3 probes received, 82 (1.8%) share
their exact payload with another. The elements of a pair
arrive within a few seconds of one another. As with obfs2,
there is no payload within the obfuscation layer.

Application Layer—SoftEther.
The SoftEther probe—an HTTPS POST request with a

particular request body—matches one formerly sent by the
genuine SoftEther VPN client. However, since July 2014,
the genuine client has included a Host header containing the
IP address of the VPN server. The active probers do not set
this header, making them distinguishable.

There is another way to identify SoftEther probes. Al-
though the SoftEther VPN protocol lacks documentation,
in our experiments with version 4.15 we found that the
client software always sends a GET request before sending
its POST. The purpose of the GET request is to determine



whether the server is SoftEther VPN and not some other
HTTPS server. Because the active probers do not send the
preceding GET request, we can distinguish them from legit-
imate clients.

The TLS fingerprint of the SoftEther probes differs strik-
ingly from that of the actual SoftEther VPN client software,
which has more and newer ciphersuites, and various exten-
sions.

Application Layer—AppSpot.
The special Host header of the AppSpot probe type is a

dead giveaway to its purpose of discovering servers capable
of fronting access to Google App Engine. All the probes we
saw carry a fairly distinctive and specific User-Agent string,
which is probably spoofed, as the rest of the header is in-
consistent with its purported version of Chromium. The
declared version of the browser was originally released in
Apr. 2014, and superseded just two weeks later by a new
update. We found a small number of real web requests using
this User-Agent, but the great majority were active probers.
The first AppSpot probes arrived in Sep. 2014.

Among other header inconsistencies, the probes set the
header Accept-Encoding: identity, which forces the server to
send the response body uncompressed. We used this char-
acteristic to weed out the small number of non-prober re-
quests that happened to use the same User-Agent string—
these requests, using a real Chromium browser, would have
set Accept-Encoding: gzip, and the server would have com-
pressed its response. We can therefore identify active probes
in our server logs because the number of transferred bytes
is greater than it should be.

The TLS signature of AppSpot probes entirely differs from
that of the claimed version of Chromium. The probes almost
certainly reflect use of a custom program that merely imi-
tates a web browser.

5.6 Characteristics of the Probing System
We designed our Counterprobe experiment (Section 4.4)

to illuminate multiple features of both the active probing
sensors and its probing network. We find clear evidence
that the sensor responsible for triggering probes operates in
a single-sided fashion, meaning that it only considers uni-
directional flows. Our experiments showed that an unac-
knowledged series of a SYN segment, followed by an ACK,
and finally data (i.e., Tor’s TLS client hello) suffices to trig-
ger a probe. The following subsections discuss additional
findings.

The sensor does not process stateless segments.
Some DPI sensors are stateless, i.e., they process TCP

segments in isolation, without considering the TCP connec-
tion state. To learn if the active probing sensor is stateless,
we set out to attract a probe in two ways: once after es-
tablishing a three-way handshake and once—on a different
port—without prior handshake. The stateful data triggered
a probe and the stateless did not. This matches our under-
standing of the behavior of the Great Firewall. However, it
differs from the Great Cannon [17] that has been used to
inject malicious JavaScript into web pages, which acts on
naked packets.

The sensor does not seem to robustly reassemble TCP.
Next, we tried to establish if the sensor is reassembling

TCP streams. In the first step, we sent the triggering data
in a single TCP segment after establishing a TCP connec-
tion, which, as expected, attracted an active probe. In the
next step, we split the triggering data across packets in
20 byte increments—again after establishing a TCP connec-
tion. The fragmented data did not trigger an active probe,
which differs from the GFW [13].

This behavior was already observed by Winter and Lind-
skog [32, §5.2] in 2012. There are, however, reports stat-
ing that the active probing sensor used to reassemble TCP
streams at some point [31].

Traceroute to the sensors.
We sent response-triggering packet trains with the TTL

encoded in the port selection, and also performed a similar
traceroute to locate the Great Firewall, from both a Unicom
server and a CERNET server. Unicom’s sensor appears to
operate on the same link as the GFW, but the CERNET
sensor appears one hop closer to our server.

Together, these three tests suggest that the active prober’s
sensor is distinct from both the RST-injecting portion of the
Great Firewall and the sensor in the Great Cannon.

Inferring the physical infrastructure.
Section 5.5 suggests that there is clearly a substantial

amount of centralization, as probes from a diverse range
of IP addresses share both TCP timestamps and initial se-
quence number patterns. But what is the nature of the IP
addresses from which the probes originate? We envision
three possibilities:

1. A network of distributed proxies that simply forwards
raw packets, and is centrally controlled by the active
probing system.

2. A few centralized packet injection devices that extract
the probed server’s reply via passive monitoring.

3. A few centralized man-in-the-middle devices that se-
lectively intercept traffic, temporarily hijacking end-
system IP addresses, in a manner similar to the Great
Cannon.

Our solution to distinguish these three possibilities was to
deploy a system that responds to incoming probes with a
series of TTL-limited packets, effectively acting as a tracer-
oute. Our responses included:

• SYN-ACK packets, encoding the hop in the sequence
number.

• UDP packets, encoding the hop in the IP ID field.

• UDP packets to the probe’s source.

• SYN-ACK (with the hop encoded in both the port and
sequence number) and UDP packets to the topologi-
cally next IP address.

• SYN-ACK and UDP packets to the topologically next
subnet.

We triggered probes by sending requests from our server in
China, and our responses were sent blindly, only capturing
packet traces for a post-processing analysis.



The resulting traceroutes argue against the possibility of
packet injection: a packet injecting system is unable to sup-
press the legitimate reply, and we would expect to see ICMP
time exceeded packets corresponding to the answered ACKs.
The only exception would be if the injector’s author main-
tained a careful topology, ensuring that the injector never
replied to an observed packet with too low a TTL to reach
the real destination. Given that other Chinese systems, in-
cluding the detectors in the Great Cannon and the Great
Firewall’s RST injector, do not perform such an analysis,
we find it unlikely to believe that this system used packet
injection.

For the same reason the traceroutes argue against a Great
Cannon-type interceptor: the UDP and TCP traceroutes are
consistent for both for the target IP address and the next IP
address in sequence. In particular, note that the SYN-ACK
is never answered early. To be consistent with the next IP
address’s topology, again the probing devices would need a
deep understanding of the actual network.

For both cases, such a deep understanding of the net-
work’s topology would not significantly increase the system’s
stealth: It’s already clear that the probes come from thou-
sands of different IP addresses, and probing itself is not,
by its nature, stealthy. Thus we believe, but cannot prove
conclusively, that the system conducts its probes through a
large, distributed proxy network.

6. CONCLUSION
Our work paints a detailed picture of active probing, the

Great Firewall’s newest weapon in the arms race of Inter-
net censorship. Our results show that the system operates
in real time, but regularly suspends for a short amount of
time. It is capable of detecting the servers of at least five
circumvention protocols and is upgraded regularly. We show
that the system makes use of a vast amount of IP addresses,
provide evidence that all these IP addresses are centrally
controlled, and determine the location of the Great Fire-
wall’s sensors.

Future work could develop more circumvention strategies
that can defeat active probing. Fortunately, users behind
the GFW already have a number of working circumvention
tools at their disposal, and other designs are in development.
A family of techniques known variously as decoy routing [12],
end-to-middle proxying [34, 9], and domain fronting [8] colo-
cate the circumvention system’s entry point with important
network infrastructure, so that it cannot be easily blocked
even if its address is known.

The obfuscation protocols ScrambleSuit [33] and its suc-
cessor obfs4 [27] tread a different path by requiring clients
to prove knowledge of a shared secret before responding.
This technique is essentially port knocking at the applica-
tion layer. Other proposals would add scanning resistance
at the TCP layer [23] or the Tor protocol layer [11].

Our datasets, code, and auxiliary information are avail-
able online at https://nymity.ch/active-probing/.
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