
 

Reproducible Builds:
Moving Beyond Single Points of Failure 

for Software Distribution

Seth Schoen
Electronic Frontier Foundation

Mike Perry
The Tor Project



 

Who are we?

• Mike Perry 
– Tor developer; Tor Browser lead

• Seth Schoen
– Senior Staff Technologist @ EFF

• Hans-Christoph Steiner 
–  Guardian Project; Debian Developer

• Lunar
– Tor developer; Debian Developer

• Bitcoin crew (devrandom, BlueMatt, LukeJr)



 

“I want to believe”

• FOSS ethos: Users should have the source code 
to their programs

– For both individual freedom and software security

• But: The only proof that binary packages 
correspond to the source code is that someone 
said so

– Without build system info, verification is almost 
impossible (and sometimes even with it)

• This is inadequate for fostering trust in our 
software's functionality and security



 

“But I'm the developer!”

• “I know what's in the binary because I compiled 
it myself!”

• “I'm an upstanding, careful, and responsible 
individual!”

• “Why should I have to worry about hypothetical 
risks about the contents of my binaries?”



 

Unpleasant thoughts

• We think of software development as a fundamentally 
benign activity. “I'm not that interesting.”

• But attackers target a project's users through its 
developers
– See Dullien “Offensive work and addiction” (2014)

• Known successful attacks against infrastructure used 
by Linux (2003), FreeBSD (2013)



 

Severity

We will try to convince you that this compromise is:
– extremely hard to detect

– extremely possible

– extremely harmful, if done maliciously



 

Single Points of Failure

Imagine the most secure computer in the 
world...



 

Single Points of Failure

Can that computer still remain secure if:
– It is networked?

– It is mobile or is physically accessible by others?

– It regularly has arbitrary USB devices connected?

– It must run Windows (in a VM)?

– It regularly runs unauthenticated HTML+JS?

– Several nation-states want access to it?



 

Single Points of Failure

What if:
– Compromising that one computer gave access to:

● Hundreds of millions of other computers?
● Every bank account in the world?
● Every Windows computer in the world?
● Every Linux server in the world?

– Compromising that computer was worth:
● $100k USD? (Market price of remote 0day)
● $100M USD? (Censorship budget of Iran/yr)
● $4B USD? (Bitcoin market cap)



 

Bitcoin's motivation

• Malicious modifications to Bitcoin binaries could 
result in irrevocable theft of large amounts of money

• Individual developers could be blamed for such 
modifications

• Users might not believe that a developer's machine 
was hacked

• Reproducible builds protect developers



 

How small can a backdoor be?

OpenSSH 3.0.2 (CVE-2002-0083) – exploitable security 
bug (privilege escalation: user can get root) 

 {

 Channel *c;

 

- if (id < 0 || id > channels_alloc) {

+ if (id < 0 || id >= channels_alloc) {

 log("channel_lookup: %d: bad id", id);

 return NULL;

 }



 

Result of fixing the bug (asm)

cmpl $0x0,0x8(%ebp)

js 16

mov 0x4,%eax

cmp %eax,0x8(%ebp)

jle 30

mov 0x8(%ebp),%eax

mov %eax,0x4(%esp)

movl $0x4c,(%esp)

call 25

cmpl $0x0,0x8(%ebp)

js 16

mov 0x4,%eax

cmp %eax,0x8(%ebp)

jl 30

mov 0x8(%ebp),%eax

mov %eax,0x4(%esp)

movl $0x4c,(%esp)

call 25



 

Result of fixing the bug (asm)

cmpl $0x0,0x8(%ebp)

js 16

mov 0x4,%eax

cmp %eax,0x8(%ebp)

jle 30

mov 0x8(%ebp),%eax

mov %eax,0x4(%esp)

movl $0x4c,(%esp)

call 25

cmpl $0x0,0x8(%ebp)

js 16

mov 0x4,%eax

cmp %eax,0x8(%ebp)

jl 30

mov 0x8(%ebp),%eax

mov %eax,0x4(%esp)

movl $0x4c,(%esp)

call 25



 

Resulting difference in the binary

What's the difference between if (a > b) and if (a >= b) 
in x86 assembly? 

• assembly: JLE → JL

• opcode: 0x7E → 0x7C

• binary: 01111110 → 01111100

  A single bit!
Other corresponding opcode pairs also differ by just a single bit (JGE=0x7D, JG=0x7F)



 

Result of fixing the bug (hex)

55 89 e5 83 ec 
28 83 7d 08 00 
78 0a a1 04 00 
00 00 39 45 08 
7e 1a 8b 45 08 
89 44 24 04 c7 
04 24 4c 00 00 
00 e8 fc ff ff 
ff b8 00 00 00 
00 eb 35

Overall file size:

55 89 e5 83 ec 
28 83 7d 08 00 
78 0a a1 04 00 
00 00 39 45 08 
7c 1a 8b 45 08 
89 44 24 04 c7 
04 24 4c 00 00 
00 e8 fc ff ff 
ff b8 00 00 00 
00 eb 35

Approx. 500 kB



 

Result of fixing the bug (hex)

55 89 e5 83 ec 
28 83 7d 08 00 
78 0a a1 04 00 
00 00 39 45 08 
7e 1a 8b 45 08 
89 44 24 04 c7 
04 24 4c 00 00 
00 e8 fc ff ff 
ff b8 00 00 00 
00 eb 35

Overall file size:

55 89 e5 83 ec 
28 83 7d 08 00 
78 0a a1 04 00 
00 00 39 45 08 
7c 1a 8b 45 08 
89 44 24 04 c7 
04 24 4c 00 00 
00 e8 fc ff ff 
ff b8 00 00 00 
00 eb 35

Approx. 500 kB



 

Infected build platform

• I created a Linux kernel module that alters attempts by 
the compiler (only the compiler) to read C source 
code

• Source files as seen by the compiler get malicious code 
inserted before first line

• For all other programs (cat, Emacs, sha1sum), source is 
totally unmodified

• No files on disk are modified, including the kernel, 
compiler, and source files



 

Solution: Reproducible Builds

• Anyone in the world should be able to compile a 
program's source code and get a byte-for-byte 
identical binary

• Confirming integrity of binaries

• Infrastructure should be created to independently 
check popular binaries
– Also provides external monitoring to find out if something 

bad happens to build infrastructure



 

Common obstacles

• Different compilers or optimizations

• Different header files

• Different library versions

• Build-environment metadata

• Container formats with filesystem data

• Timestamps

• Signatures/key management

• Test-driven optimizations (aka PGO)



 

Reproducible builds today

• Only a handful of projects currently practice this

• More are coming!



 

Tor Browser overview

• Firefox ESR-based “branch”

• Third party tracking and fingerprinting patches

• Tor client and Tor configuration Firefox addon

• Pluggable Transports for traffic obfuscation

• NoScript, HTTPS-Everywhere addons



 

Tor Browser build system

• Uses Gitian (from Bitcoin)

• Full package set signed by multiple builders
– Incremental updates too!

• Supports anonymous independent verification

• Does not require dedicated build hardware

• Does not require non-free (as in beer) software
– MacOS and Windows are cross-compiled from Linux
– Linux tools are free as in freedom



 

Major toolchain components

• Windows:
– MinGW-W64 (by commit hash)
– wine+py2exe
– nsis

• Mac:
– Toolchain4 and Crosstools-ng forks by Ray Donnelly
– mkisofs and libdmg-hfsplus (patched)

• Linux:
– GCC 4.9.1, binutils 2.24



 

Gitian overview

• Developed by Bitcoin community

• Wraps Ubuntu virt tools (Qemu-KVM and LXC)

• Compilation stages are YAML "descriptors" that:
– Specify an Ubuntu release and arch
– Specify a package list
– Specify a list of git repos
– Specify additional "input" files
– Provide in-line bash script that creates "output" files
– Can be chained (with some glue code)



 

Issues Gitian solves

• Normalizes build environment
– Hostname, username, build paths, tool versions, 

kernel/uname, time (faketime)

• Does not require dedicated build hardware
– Encourages community involvement in verification

• Authenticates git-based inputs
• Integrates with 'faketime' for spoofing timestamps



 

Gitian limitations

• Ubuntu Only: Cross compilation is required

• Needs non-git input authentication helpers

• Needs dependency and descriptor management glue

• Partial compilation state is tricky
– Base VM images are COW, and COW portion is destroyed
– faketime causes issues with dependency freshness checks
– Descriptor stages can be saved, but this gets error-prone

• Time consuming

• Kind of janky
– qemu-kvm process management issues
– Supports only one qemu-kvm or LXC slave at a time



 

Remaining reproducibility issues

• Filesystem and archive reordering
– os.walk()/os.listdir()/readdir(), zip, tar 
– LC_ALL and locale sorting order

• Unitialized memory in toolchain/archivers
– binutils for mingw-w64, libdmg-hfsplus
– Binutils linker: BuildID (32bit overflow for SHA1?) 

• Timezone and umask

• Deliberately generated entropy (FIPS-140, sigs)

• Authenticode and Gatekeeper signatures

• LXC mode still often leaks:
– Kernel/uname, CPU (libgmp), hostname, memory???



 

Dependency authentication

• Protect builders from discovery+targeted input 
attack
– Use Tor by default for fetching dependencies
– Authenticate all dependencies before use/compilation

• Wrapper scripts for input fetching
– Verify signatures where possible
– Many things have weak/no signatures

• OpenSSL, GCC, faketime, OSX SDK, Go+python packages
• For these, use SHA256 based on multi-perspective download



 

This process is not always scary

● Firefox and Tor Browser are massive and scary
● Most software is not that complicated
● Libraries tend to be simple
● Android apps are mostly pure Java
● Debian packaging provides a meta-process



 

It's much easier on Android

● Android APKs do not need exact hash matches
– Java JAR signatures are used

– Only the contents are signed

– File timestamps are not signed

– The signed manifest is filename and hash

– The manifest file order is separate from file order 
in the APK itself, so sort order is less important



 

FDroid reproducible process



 

Future work

• Remove strict Ubuntu dependency for Gitian
– Ideally Debian and Ubuntu could be used to produce the 

same result

• Trusting trust?
– Diverse Double Compilation for entire build environment
– Leverage cross compilation from multiple architectures, 

distributions

• Multi-sig updates? Consensus updates?
– Tor Consensus can list update info
– Bitcoin blockchain
– Certificate Transparency log



 

More info

● Reproducibility section of Tor Browser design document:
https://www.torproject.org/projects/torbrowser/design/#BuildSecurity

● F-Droid verification process:
https://f-droid.org/wiki/page/Verification_Server

● Debian Reproducible working group: 
https://wiki.debian.org/ReproducibleBuilds

● Countering Trusting Trust:
https://www.schneier.com/blog/archives/2006/01/countering_trus.html
https://lwn.net/Articles/555902/

https://www.torproject.org/projects/torbrowser/design/#BuildSecurity
https://f-droid.org/wiki/page/Verification_Server
https://wiki.debian.org/ReproducibleBuilds
https://www.schneier.com/blog/archives/2006/01/countering_trus.html
https://lwn.net/Articles/555902/


 

Thanks

Seth Schoen <schoen@eff.org> 

FD9A 6AA2 8193 A9F0 3D4B  F4AD C11B 36DC 9C7D D150

Mike Perry <mikeperry@torproject.org> 

C963 C21D 6356 4E2B 10BB  335B 2984 6B3C 6836 86CC

Hans-Christoph Steiner <hans@guardianproject.info>

5E61 C878 0F86 295C E17D  8677 9F0F E587 374B BE81

Lunar <lunar@debian.org>

mailto:hans@guardianproject.info
mailto:lunar@debian.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

