
Funky file Formats
Ange Albertini

2014/12 - 31C3

Funky
File
Formats

Ange Albertini
reverse engineering &
visual documentations
@angealbertini
ange@corkami.com
http://www.corkami.com

https://twitter.com/angealbertini
https://twitter.com/angealbertini
mailto:ange@corkami.com
mailto:ange@corkami.com
http://www.corkami.com
http://www.corkami.com

So, this talk is about files… what are the usual files’ categories?

It depends if you’re a newbie, a user, a dev, a hacker...

...but in general, valid files aren’t very sexy!

However, the frontier between valid and corrupted is not straight and clear !

Here is a valid file…
f76f5dafdcf0818c457e6ffb50ea61a67196dcd4 *ccc.jpg

(ok, maybe not a standard file)

This is a JPEG picture...

...that’s also a Java file.

AES()
If you encrypt it with AES...

… you get a PNG picture.

If you decrypt it with Triple DES...

3DES()

...you get a PDF document.

AESK ()
If you encrypt the original file with AES again, but with a different key...

2

...you get a Flash Video…
..that … oh well, nevermind, I could go on for hours...

1

3DES

So, as you can see, I’m just a normal guy (who likes to play with binary).

AESK

AESK

JPG

JAR
(ZIP + CLASS)

PDF
FLV

PNG

2

I also like to explain binary ⇒ pics.corkami.com / prints.corkami.com

http://pics.corkami.com
http://prints.corkami.com

Let’s talk about...

Identification
How do you identify a cow?

By its head?

By its body?

By sound?

in practice...

early filetype
identifier

“Magic” signatures, enforced at offset 0

Obvious

PE\0\0 \x7FELF BPG\xFB
\x89PNG\x0D\x0A\x1A\x0A
dex\n035\0 RAR\x1a\7\0 BZ
GIF89a BM RIFF

Egocentric

MZ (DOS header) Mark Zbikowski

PK\3\4 (ZIP) Philip Katz
BPG\xFB Fabrice Bellard

Not obvious, but l33tsp34k ^_^
CAFEBABE Java / universal (old) Mach-O
DOCF11E0 Office
FEEDFACE Mach-O
FEEDFACF Mach-O (64b)

Specific logic

TIFF:

 II Intel (little) endianness

 MM Motorola (big) endianness

Flash:

 FWS ShockWave Flash (Flat)

 CWS (zlib) compressed

 ZWS LZMA compressed

Not obvious
GZip 1F 8B
JPG FF D8

File formats not enforcing signature at offset 0
(ZIP is used in many formats: APK, ODT, DOCX, JAR…)

not enforcing signature at offset 0: ZIP, 7z, RAR, HTML
actually enforcing signature at offset 0: bzip2, GZip

ZIP actually enforces “finishing” near the end of the file.

Hardware-bound formats: code/data at offset 0
‘header’ often (optionally) later in the memory space

● TAR: Tape Archive
● Disk images: ISO, Master Boot Record
● TGA (image)
● (Console) roms

a good magic signature:
● enforced at offset 0
● unique

no magic ⇒ no excuse

Standard tool: checks magic,
chooses path, never returns...

Another common
yet important property

(useful for abuses)

It’s a complete cow (you can see its whole body), with something next:
appending something doesn’t invalidate the start.

Remember:
there’s nothing to parse

after the terminator.

formats not enforced at offset 0
+ tolerating appended data
= polyglots by concatenation

ZIP

HTML

PDF

PE

a JAR(JAR) || BINK polyglot
JAR = ZIP(CLASS)

“host/parasite” polyglots

If a cow keeps a frog in its mouth, it can also speak 2 languages!
(the outer leaves space for an inner)

Ok, I know… here is a more realistic analogy...

...if our cow swallows a microSD, it’s still a valid cow!
Even if it contains foreign data, that is tolerated by the system.

the PDF part is stored in a Java buffer

2 infection chains in one file:

a JavaScript || GIF polyglot (useful for pwning - also in BMP flavor)

Such parasites exist already in the wild
(they just use unallocated space)

PoC||GTFO 0x2: MBR || PDF || ZIP

PoC||GTFO 0x3: JPG || AFSK || AES(PNG) || PDF || ZIP

by Travis Goodspeed

PoC||GTFO 0x4: TrueCrypt || PDF || ZIP

PoC||GTFO 0x5: Flash || ISO || PDF || ZIP

by Alex Inführ

$ unzip -l pocorgtfo06.pdf
Archive: pocorgtfo06.pdf
warning [pocorgtfo06.pdf]: 10672929 extra bytes at...
 (attempting to process anyway)
 Length Date Time Name
--------- ---------- ----- ----
 4095 11/24/2014 23:44 64k.txt
 818941 08/18/2014 23:28 acsac13_zaddach.pdf
 4564 10/05/2014 00:06 burn.txt
 342232 11/24/2014 23:44 davinci.tgz.dvs
 3785 11/24/2014 23:44 davinci.txt
 5111 09/28/2014 21:05 declare.txt
 0 08/23/2014 19:21 ecb2/

PoC||GTFO 0x6: TAR || PDF || ZIP

$ tar -tvf pocorgtfo06.pdf
-rw-r--r-- Manul/Laphroaig 0 2014-10-06 21:33 %PDF-1.5
-rw-r--r-- Manul/Laphroaig 525849 2014-10-06 21:33 1.png
-rw-r--r-- Manul/Laphroaig 273658 2014-10-06 21:33 2.bmp

a Java || JavaScript polyglot (at source level)

unicode //

a Java || JavaScript polyglot (at binary level)

⇒ Java = JavaScript
Yes, your management was right all along ;)

Extreme files bypass filters

Farmer got denied permit to build a horse shelter.
So he builds a giant table & chairs which don’t need a permit.

a mini PDF (Adobe-only, 36 bytes) ⇒ skipped by scanners yet valid !

a 64K sections PE (all executed) ⇒ crashes many softwares, evades scanning

Parsing

This is a how a user sees a cow.

This is how a dev sees a cow…

This is how another dev sees a cow !
(this one: brazilian beef cut - previous: french beef cut)

Same data, different parsers
it would have been too easy ;)

a schizophrenic PDF: 3 different trailers, seen by 3 different readers

commented line

missing trailer keyword

a schizophrenic PDF (screen ⇔ printer)

a (generated) PDF || PE || JAR [JAVA+ZIP] || HTML polyglot...

PDF viewer

PDF slides

...which is also a schizophrenic PDF

$ du -h stringme
141 stringme

$ strings stringme
Segmentation fault (core dumped)

Extra problem: parsers can be present in unexpected places
http://lcamtuf.blogspot.de/2014/10/psa-dont-run-strings-on-untrusted-files.html (CVE-2014-8485)

http://lcamtuf.blogspot.de/2014/10/psa-dont-run-strings-on-untrusted-files.html
http://lcamtuf.blogspot.de/2014/10/psa-dont-run-strings-on-untrusted-files.html

metadata
Who’s the owner?

A hidden cow just looks like another cow...

… so cattle is branded.

But brandings can be faked!
or “patched” into another symbol

⇒ attribution is hard

… and in a pure PoC||GTFO fashion,
@munin forged a branding iron !

an encrypted file is not always “encrypted”
⇒ encrypt(file) is not always “random”

encrypt(file) can be valid

.D.A.T.A.[.1.2.3.4.5.6.7.8.9.A.B

.C.D.E.F.].E.N.D

.T.E.X.T0A.t.h.i.s. .i.s. .a. .t

.e.x.t0A

?

We want to encrypt a DATA file to a TEXT file.
DATA tolerates appended data after it’s END marker

TEXT accepts /* */ comments chunk (think ‘parasite in a host’)

.D.A.T.A.[.1.2.3.4.5.6.7.8.9.A.B

.C.D.E.F.].E.N.D

<random>

if we encrypt, we get random result. we can’t control AES output & input together.

AES works with blocks
File encryption applies AES via a mode of operation

Electronic Code Book:

penguin = bad

choose the IV to control
both first blocks (P1 & C1)

.D.A.T.A.[.1.2.3.4.5.6.7.8.9.A.B

.C.D.E.F.].E.N.D

.T.E.X.T <something we control>
<random rest>

Encrypt with pure AES, then determine IV to control the output block

+IV1

.D.A.T.A.[.1.2.3.4.5.6.7.8.9.A.B

.C.D.E.F.].E.N.D

.T.E.X.T./.*
<ignored random rest>

We can’t control the rest of the garbage… so let’s put a comment start in the first block

+IV2

.D.A.T.A.[.1.2.3.4.5.6.7.8.9.A.B

.C.D.E.F.].E.N.D

.T.E.X.T./.*
<ignored random rest>
.*./0A.t.h.i.s. .i.s. .a. .t
.e.x.t0A

If we close the comment and append the target file’s data in the encrypted file.
then this file is valid and equivalent to our initial target.

.D.A.T.A.[.1.2.3.4.5.6.7.8.9.A.B

.C.D.E.F.].E.N.D
<pre-decrypted ignored random>

.T.E.X.T./.*
<ignored random rest>
.*./0A.t.h.i.s. .i.s. .a. .t
.e.x.t0A

...then we decrypt that file: we get the original source file,
with some random data, that will be ignored since it’s appended data.

+IV2

.D.A.T.A.[.1.2.3.4.5.6.7.8.9.A.B

.C.D.E.F.].E.N.D
<pre-decrypted ignored random>

.T.E.X.T./.*
<ignored random rest>
.*./0A.t.h.i.s. .i.s. .a. .t
.e.x.t0A

Since AES CBC only depends on previous blocks,
this DATA file will indeed encrypt to a TEXT file.

+IV2

AngeCryption PoC layout

00: 4441 5441 5b31 3233 3435 3637 3839 4142 DATA[123456789AB
10: 4344 4546 5d45 4e44 0000 0000 0000 0000 CDEF]END........
20: f6fe 17cf 0802 7449 58de cdf2 f9c4 45ce tIX.....E.
30: 2e8e 6996 5854 824c c09c 1b7d 4898 a29e ..i.XT.L...}H...

openssl enc -aes-128-cbc -nopad
 -K `echo OurEncryptionKey|xxd -p`
 -iv A37A69F13417F5AB3CC4A1546B97FD76

00: 5445 5854 2f2a 0000 0000 0000 0000 0000 TEXT/*..........
10: 3f81 11a9 2540 ded5 096a 83c9 f191 d8bb ?...%@...j......
20: 2a2f 0a74 6869 7320 6973 2061 2074 6578 */.this is a tex
30: 740a 454e 4400 0000 0000 0000 0000 0000 t.END...........

You can even try it at home :)

Chimera
(if you skip identified bodies, you’ll miss other files)

a JPEG || ZIP || PDF Chimera

a chimera defeats sequential parsing with optimization

image data

a Picture of Cat
(BMP ! uncompressed ! OMG)

BMP let us define bit masks for each color:
32 bits: 0000000000000000rrrrrggggggbbbbb (no alpha)

⇒ 16 bits of free space!

let’s play the picture!
no, seriously :)

1. store sound in the lower 16 bits:
sound ignored by BMP
image data too low to be audible

2. store a picture encoded as sound
○ viewable as spectrogram

http://wiki.yobi.be/wiki/BMP_PCM_polyglot

Consider the BMP
as RAW 32b PCM

http://wiki.yobi.be/wiki/BMP_PCM_polyglot
http://wiki.yobi.be/wiki/BMP_PCM_polyglot

an RGB BMP || raw (3-channel spectrogram) polyglot by @doegox

Cerbero
same type of heads, one body

an RGB picture...
RGB picture data = bytes triplets for R, G, B colors

...with an unused palette
palette picture data = each byte is an index in the palette

in theory, it could be used:

How to make a pic-ception
adjust each RGB value to the closest palette index
⇒ store a second picture with the same data….

(original idea by @reversity)

We get another picture of
the same type from the

same data!

BTW, that’s a barcode inception:
a DataMatrix barcode inside a QRCode, both valid

https://www.iseclab.org/people/atrox/qrinception.pdf

https://www.iseclab.org/people/atrox/qrinception.pdf
https://www.iseclab.org/people/atrox/qrinception.pdf

Hash collisions

This is the actual SHA-1 with only 4 of its 5 constants modified
This doesn’t give a collision in the actual SHA-1

2 colliding blocks: mostly random and unpredictable
At most three consecutive bytes without a difference.

Typically, in every dword, only the middle two bytes have no differences.

Abusing JPEG’s multiple unused APPx (FF Ex) markers

Much better! (images chosen at random)

a polyglot collision (multiple use for a single backdoor)

Pwnie award… for the best song! err… what is it pwning exactly ?

Even songs should also have a nice PoC
(never forget to load your PDFs in your favorite NES emulator)

Do you remember this ?

A Super NES & Megadrive rom
(and PDF at the same time)

Conclusion

Ange’s recipes :)

Never forget to:
● open your PDFs in a hex editor
● open your pictures in a sound player
● run your documents in a console emulator
● encrypt/decrypt with any cipher
● double-check what you printed

Security advice:

DON’T *
It’s easy to blame others - new insecure paths appear everyday

Research advice:

DO *
PoC||GTFO ! stop the marketing! cheap blamers ⇔ blatant marketers?

F.F.F. conclusion

● many abuses of the specs
○ specs often are wrong or misleading

● few parsers, even fewer dissectors
● standard tools evolve the wrong way

○ try to repair ‘corrupted’ file outside the specs
○ standard and recovery mode

For technical details, check my previous talks.

ACK

@doegox @pdfkungfoo @veorq @reversity
@travisgoodspeed @sergeybratus qkumba
@internot @gynvael @munin
@solardiz @0xabadidea @ashutoshmehra
lytron @JacobTorrey @thicenl
…and anybody who gave me feedback!

Bonus

after the talk, we tried some PoCs on professional
(very expensive!) forensic softwares:
● polyglot files

○ a single file format found + no warning whatsoever
● schizophrenic files:

○ no warning yet different tabs of the same software showing
different content :D

BIG FAIL - yet we trust them for court cases ?

**
*this is a valid..
**

Albertini

...TAR & Adobe PDF:
PoC or
 ____ _____ _____ ___ _
 / ___|_ _| ___/ _ \ | |
| | _ | | | |_ | | | ||_|
| |_| | | | | _|| |_| | _
 ____| |_| |_| ___/ |_|

%PDF-1.
trailer<</Root<</Pages<<>>>>>>

The initial abstract of this talk:
ASCII-only, PDF/TAR polyglot

Solar Designer made a great keynote - that’s actually a real game to play!
But one have to load and play through the game - not so accessible!

http://openwall.com/presentations/ZeroNights2014-Is-Infosec-A-Game/

http://openwall.com/presentations/ZeroNights2014-Is-Infosec-A-Game/
http://openwall.com/presentations/ZeroNights2014-Is-Infosec-A-Game/

$ unzip -t ZeroNights2014-Is-Infosec-A-Game.pdf
Archive: ZeroNights2014-Is-Infosec-A-Game.pdf
warning [ZeroNights2014-Is-Infosec-A-Game.pdf]: 6381506 extra bytes
 (attempting to process anyway)
 testing: ZN14GAME/ OK
 testing: ZN14GAME/COMMON/ OK
...

a PDF:
● containing the game as ZIP
● hand-written

○ with walkthrough’s screenshots
(in original resolution)

○ a lightweight title
○ while maintaining compatibility

a good way to distribute as a single file!

Quine
prints its own source

a PE quine (in assembler, no linker)

Most quines aren’t very sexy
Using a compiler is cheap :p

Quine Relay
A prints B’s source
B prints A’s source

a PE ⇔ ELF quine relay
(no linker)

a 50-languages quine relay
https://github.com/mame/quine-relay

https://github.com/mame/quine-relay
https://github.com/mame/quine-relay

other AngeCryption PoCs (PDF, PNG, JPG)

A bit of everything

@angealbertini
corkami.com

Damn, that's the second time those alien bastards shot up my ride!

https://twitter.com/angealbertini
https://twitter.com/angealbertini
http://www.corkami.com
http://www.corkami.com

