

Marina Krotofil & Co

31C3, 27.12.2014

Industrial Control Systems

Cyber-Physical Systems

Cyber-physical systems are IT systems "embedded" in an application in the physical world

Attack goals:

- Get the physical system in a state desired by the attacker
- Make the physical system perform actions desired by the attacker

Wish list of ICS security practitioner

... more public disclosures about "catastrophic" ICS accidents happening in real world...

Laziness is a stimulus to progress

Chemical plants

Source: simentari.com

Tennessee Eastman (TE) chemical process

Vinyl Acetate Monomer (VAM) process

ALC: NO

1000

Process in C-code

Execution in Matlab/Simulink, still licensed...

- Universities free for students
- Research institutions, industry
- Other appropriate sources

U Where to find

- Currently on GitHub
- (Hopefully) Readme will be handy

TE: http://github.com/satejnik/DVCP-TE **VAM:** http://github.com/satejnik/DVCP-VAM

The team and cheerleaders

Éireann Leverett

Mona Lange

Prof. Dieter Gollmann

Prof. Alvaro Cardenas

Ola Balakireva

The programmer

Alexander Isakov

The chemical engineer

Pavel Gurikov

SCADA hacking

Typical understanding of SCADA hacking

Phase 1:	Gain access	
Phase 2:	?	
Phase 3:	Pwned	

Typical understanding of SCADA hacking

Typical understanding of SCADA hacking

	Phase 1:	Gain acco	ess	
	Phase 2: ?		>	
6 6	Phase 3:	Pwned		
			*	*

Debunking SCADA hacking myths

Obtaining access != Obtaining control

Debunking SCADA hacking myths

Breaking into system != breaking the system

http://commons.wikimedia.org

Stripping column

SCADA hacker

Is not who.....

- Has hacked into "something"
- Did "something"
- Achieved "something"

She...

- Has a defined attack objective
- Is limited by real world constraints
 - Management
 - Time, money
 - Experience.....

Attack objective

Your evil motivation

Equipment damage	Production damage	Compliance violation
 Equipment overstress Violation of safety limits 	 Product quality and product rate Operating costs Maintenance efforts 	 Safety Pollution Contractual agreements

Paracetamol

Ρι	urity	Price, EUR/kg	
98	3%	78	
99	9%	392	
10	00%	640.000	
	Source: http://v Date: 26.12.201	www.sigmaaldrich. L4	

Process-related vulnerabilities

Tennessee Eastman process

Breakage attack

Polymerization threat (clogged pipes)

Compliance violation

Open the valve

Strange stuff in emissions

Stages of SCADA attack

How is this place built and controlled?

What can I change and how can I conceal?

Damage

What evil things can I do?

Cleanup

Access

Discovery

Control

What will they think happened?

Process discovery

What and how the process is producing

How it is controlled

How it is build and wired

11/1/2011 02:10 PM

Nitro Malware Targeted Chem; European Companies Symantec finds Trojan launched induce targeting

targeted campaigns aimed at private companies to steal design documents, formulas, manufacturing processes and research materials.

What will they think happened?

Scenario: catalyst deactivation

Max economic damage?

W. D. Provine, P. L. Mills, and J. J. Lerou. Discovering the role of Au and KOAc in the catalysis of vinyl acetate synthesis. In Proceedings of the 11th International Congress of Catalysis, volume 101, pages 191-200, 1996

Hot spots above 200C -> permanent deactivation

Lower activity at T > 180C

Change in the reactants inflow ratio

- More of side reactions (not main reaction)
 - Ethylene combustion
 - CO is a catalyst poison

Reactor with cooling tubes

Discovery

- Directly adjust actuators
- Deceive controller about current state of the process
 - Present false process measurements

How long: Time constants

Requires local reconnaissance

Jacques Smuts "Process Control for Practitioners"

Example: attack on data flow

During the attack the hacker herself is process engineer, control engineer and process operator

Controllability

IT domain

Process control

IT domain

Process control

HOLY TRINITY

CIA

Information security

Process control security

Finding controls

26 actuators \circ 43 measurements

Process observation

Process observation challenges

If the required measurements are not in place

- Build process model to derive measurements
- Deduce process state from related measurements
 - E. g. reduced temperature of reactor exit
- Convert a sensor in place to measure what is needed
 - Work in progress of Mr. Jason Larsen

If the required sensor is not measurement capable

- Enable capabilities
 - E. g. supersampling for shock wave detection

Process dynamic is highly non-linear

• WTF (?)

UNCERTAINTY!

- Behavior of process is known to the extent of its modelling
 - So the controllers! They cannot control the process beyond their control model
- The instruments are calibrated to measure the process within its expected operating envelope
 - Attacker will likely to push process outside of its boundaries

Process dynamic is highly non-linear

• WTF (?)

$$(\varepsilon \sum_{k=1}^{7} C_{i,k} C p_{i,k} + \rho_b C p_b) \frac{\partial T_i}{\partial t} = -\frac{\partial (v_i \sum_{k=1}^{7} (C_{i,k} C p_{i,k}) T_i)}{\partial z} - \phi_i \rho_b (r_{1,i} E_1 + r_{2,i} E_2) - Q_i^{RCT}$$

Behavior of process is known to the extent of its modelling

- So the controllers! They cannot control the process beyond their control model
- The instruments are calibrated to measure the process within its expected operating envelope
 - Attacker will likely to push process outside of its boundaries

Manipulation of process

Ralph Langner: "The pro's don't bother with vulnerabilities; they use features to compromise the ICS"

Industrial switches

Switches Get Stitches

Eireann Leverett Øblackswanburst

Dec 28 02014

If timing DoS attacks correctly the attacker can control process at will

Stale Data attack

M. Krotofil, A. Cardenas, B. Manning, J. Larsen. CPS: Driving Cyber-Physical Systems to Unsafe Operating Conditions by Timing DoS Attacks on Sensor Signals. In Proceedings of the 30th Annual Computer Security Applications Conference (ACSAC'14)

Timing of the DoS attack

1.25

Impact of 8h DoS attacks on reactor pressure sensor at random time

Not yet Not yet Not yet Not yet Not yet EAT ME NOW Too late. - Avocados

For advanced SCADA hackers

Physical environment is a communication media

- Components can influence each other even if their control loops do not communicate electronically
- "Unseen state" of the other component may have "hidden impact"

- If a chemical is transferred out of a vessel before it finishes reacting, its behavior may be <u>unexpected</u> – unexpected physics
 - Gaseous ammonia reacts differently than liquid ammonia

Greetings to Sergey Bratus and his "weird machines"

M. Krotofil, J. Larsen. Are you Threatening my Hazards? In Proceedings of the 9th International Workshop on Security (IWSEC'14)

Attack concealment

"Record-and-play-back"

- Used in Stuxnet
- Storage requirements
- Derive process model
 - Requires knowledge, CPU cycles and storage

Crafted sensor signals

- Reconstruction of sensor data features
- Detection of spoofed signals by the mean of plausibility checks

- Based on Runs Test from statistics
- Treats sensors noise as a pseudo-random sequence

Sensor dynamic behavior

- Line segment approximation for extracting process dynamic
- Spoof: place line segments around signal mean

Find X differences

- Few hundreds of bytes of combined data and code
- Accurate for most types of sensor signals
- Scale free; few tuning parameters

The future

Security specialists define required security protections

- Signatures for authentication and integrity protection
- Encryption for confidentiality
- Mathematicians do their magic and come up with strong cryptographic primitives and algorithms
- It is no different with secure controls
 - Specify the problem and a desired outcome
 - Let control guys do what they do best

marina.krotofil@encs.eu alexander.isakov@studentpartners.de pavel.gurikov@tuhh.de jason.larsen@ioactive.com

TE: http://github.com/satejnik/DVCP-TE **VAM:** http://github.com/satejnik/DVCP-VAM