Glitching For n00bs

A Journey to Coax Out Chips' Inner Secrets

Introduction

Background
Platforms

Example
Q&A

Introduction

About Me
IT Monkey (Consultant) by day

Hardware Hacker by night
Interests

Designing & reversing embedded systems
IC security & failure analysis
Arcade platforms

Automotive stuff
Contact

Email: exide31337@yahoo.com

Background

What is Glitching?

Glitch is a transient which can induce
alteration in device operation

Electrical glitching for purposes of this |
talk N 1

Clock glitching
Voltage glitching
Other glitching variants \ y

Laser
vas
Thermal AVESIVE

Radioactive
Etc.

Types of Attacks

A form of non-invasive attack on a device
Doesn’t alter device package

Doesn’t permanently alter operation {
Repeatable

Surreptitious (no signs of tamper)
Usually cheap Y

Don‘t need expensive lab
Don’t need specialized microscopes Invasive

Any background details can be helpful

To help narrow scope & strategy

\

Types of Attacks

Non-invasive examples

Fault injection
Clock glitching

Voltage glitching 4 '
Thermal ~

Radioactive

Side channels
Power analysis \ J

Timing attacks

Software

Code vulnerabilities
Brute-forcing a secret
Backdoors (undocumented instructions, debug interfaces)

Types of Attacks ’

Semi-invasive attack

Device package altered
Decapsulation/milling to gain access

Doesn’t permanently alter operation

Usually repeatable
Unless you leave the laser on too long ©

More expensive
Lasers, microscopes, chemicals, mill
May be beyond a single person’s budget

Provides background details
To help narrow scope & strategy

-

Types of Attacks

Semi-invasive examples
Glitching
Laser
Flash
Thermal
Laser scanning
Unpowered vs. powered device
Imaging
Frontside vs. backside
Visible vs. infrared
Optical vs. electron/ion beam
Floorplan of structures & features

ROM, RAM, Flash, EEPROM, fuses, etc.

. J

Invasive

Invasive attack

Device package altered
Decapsulation/milling & die alteration

Can render device non-functional t 1

If careful, chip can still run

Some techniques are one-time
vs. FIB workstation can create & undo edits

Can be costly
Decapping & readouts reasonable
Circuit edits prohibitive

Provides complete background details
Helps non- and semi-invasive attacks

Types of Attacks ’
/

Invasive

Types of Attacks

Invasive examples
Decapsulation & delayering
Memory (i.e., ROM) readout

Need to get to bottom metal layer

Circuit edits

Etching

Deposition

Wire bonding

Purposely destroy traces or transistors
Microprobing

Listen to busses

Inject signals on busses

Invasive

‘ -
vy
N -

Glitch Generation

Methods for glitch pulse generation
Clock divider

PLL

Poly-PWM

Polyphase

Etc.

Glitch Generation

Clock divider

Use D flip-flops to divide-by-2 as needed

Feed MUX w/ nominal clock & faster glitch clock
24 MHz 12 MHz

System CLK

48 MHz
Clock, orVCC

Gating

48 MHz

Glitch Select

Glitch Generation

Clock divider

1x Freq. Clock

2x Freq. Clock

Glitch Clock

Glitch Select Line

-Glitch Pulses

Glitch Generation

PLL
Multipliers/dividers to generate arbitrary clocks
Fed from upstream clock (i.e., system clock)

Provides more clock choices

System CLK 24 MHz
48 MHz 16 MHz
12 MHz
4 MHz Clock, orVCC

Gating

48 MHz Glitch Select Lines

Glitch Generation

Poly-PWM

Use multiple (i.e., 3) PWM blocks to generate clock signals w/
successively longer duty cycles

When XOR'd together, duty cycles allow creation of arbitrary start
offset and pulse duration

System CLK 12 MHz, 50% DC
12 MHz
12 MHz, 70% DC Clock, orVCC
Gating
12 MHz, 85% DC Glitch Select

Glitch Pulse

Glitch Generation

Poly-PWM —

Frequency is the same: : "
Phase is fixed SR
Duty Cycle 50%

Duty Cycle 60%

Duty Cycle 70%

Glitch Clock’ l l: ‘ ‘ ‘ ‘ \

GIich P.ul-se Glitch Pulse

Glitch Generation

Polyphase

Generate multiple (i.e., 3) waveforms, each one phase shifted from the
previous waveform

Frequency of waveforms is the same
Duty cycle is fixed

System CLK 12 MHz, 0° Shift
12 MHz

12 MHz, 45° Shift Clock, orVCC
Gating

12 MHz, 90° Shift Glitch Pulse Glitch Select

Glitch Generation

Offset
Duration

Polyphase

Similar to Poly-PWM, but Ieadlng and trailing edges will combine to
form twice the glitch pulses : : : :

0° Phase Shift l—]
45° Phase Shift J— _‘
. —I

90° Phase Shift

Glitch Clock HJT J—\ J—L_LFJ

Twice # of Glitch Pulses

PLL Dynamic Phase Shift

Implementing PLL Dynamic Phase Shifting in the Quartus Il Software

The dynamic phase-shifting feature allows the output phases of individual PLL
outputs to be dynamically adjusted relative to each other and to the reference clock
without having to load the scan chain of the PLL. The phase is shifted by 1/8th of the
period of the voltage-controlled oscillator (VCO) at a time. The output clocks are
active during this dynamic phase-shift process.

To perform one dynamic phase-shift, follow these steps:

1.
2;

Set PHASEUPDOWN and PHASECOUNTERSELECT as required.

Assert PHASESTEP for at least two SCANCLK cycles. Each PHASESTEP pulse allows one

phase shift.

Deassert PHASESTEP after PHASEDONE goes low.

Wait for PHASEDONE to go high.

Repeat steps 1 through 4 as many times as required to perform multiple phase-

shifts.

PLL Dynamic Phase Shift

Figure 6. Timing Diagram for Dynamic Phase Shift

seave | [L] U U UUUUOUUHDUUUUL L L

PHASESTEP

PHASEUPDOWN

PHASECOUNTERSELECT - X X P X X
PHASEDONE | |

PHASEDONE goes low
synchronous with SCANCLK

Phase Shift State Machine

Intermediate
Programming
Operations

Program

Clock Glitching

Momentary burst in frequency
Greater than F,__, of device
Timing-critical
Value of Program Counter
Offset of glitch within cycle

Duration of glitch
Register/Flip-flop latches invalid data

Signals still propagating through combinatorial logic

Destination flip-flop suddenly clocked ahead of
schedule

Clock Glitching

Instructions duplicated or mutated
Duplication - CMP+JGE becomes a CMP+CMP
Mutation - turn a JSR into an ADD
Like patching a software binary
Instruction is NOT skipped

Program Counter doesn’t just jump ahead 2 locations
Sometimes affects config/security fuses

Fail to set
Setincorrectly

Clock Glitching

Setup & hold-time of flip-flop out of spec

_ _ Combinatorial Logic _ _
Sequential Logic Sequential Logic

Signal

Clock Event Before
Propagation Complete

Signal _
Distance

Voltage Glitching

Momentary reduction in supply voltage
Drop supply to/below transistor switching
threshold (V)
Increases propagation delay

Decrease in V.., which decreases drive strength

Lower drive strength causes slower rise times & more
delay

Timing-critical
Value of Program Counter
Offset of glitch within cycle
Duration of glitch

Voltage Glitching

Alter values at memory sense-amplifiers
during read operation

i.e., Flash, EEPROM, RAM, etc.

Corrupt data latched onto address or data bus
Security fuse logic can latch corrupt values

Due to operation at/below V-, switching threshold

Misconceptions

NOT throwing random voltage sags/surges at
IC and “seeing what sticks”
Respect Absolute MaxVCC & VCC,4 ratings
Otherwise, latch-up can occur

Some 74-series can handle insane swings (+/- 12V)
Not common, and always w/ current-limited condition
NOT randomly jarring clock frequency to wild
extents

NOT skipping instructions
Duplicating/mutating them

Misconceptions

Timing-critical
Target a cycle at specific point in program
Start/offset of glitch pulse within cycle

Duration of pulse
Unless chip stuck in a loop, random glitching
usually counterproductive

Instruction search space smallerin loop

Popping out of loop more likely

Outcomes

Make CPU replace impeding instruction(s)
Truncate cryptographic operation [key
Linear code extraction

Dump out address space of device, byte-by-byte

Need I/O channel to exfiltrate data
Bypass bootloader-enforced check(s)

Stop MMU, page tables, etc. from initializing
Prevent lockout counters from rolling
Erase security fuses [lock bits

But keep Flash/EEPROM intact

Just read-out device w/ parallel/serial programmer

Targets of Interest

GENERAL-PURPOSE SECURITY-ENHANCED
CPUs SIM cards
Microcontrollers Smart meters
Memories Military devices
DSPs Banking / "Chip & PIN”

cards
Pay TV

Transit/metro passes
Automotive sector
Keyless entry
Immobilizer
V2V & Va2l

Countermeasures

CPUs which halt/trap on invalid instruction

Mutated instruction may still be valid
Erase volatile memory on startup / reset

Minimize # of copies of important secrets/primitives

Wipe between iterations of routine (if possible)
Clocking

Run off internal oscillator

Use asynchronous logic

Use aperiodic [random clock period generator

Obscurity ©
i.e., 48-bit VLIW DSP core w/ poor documentation

Countermeasures

Supply voltage
Glitch / brownout detection
Low-pass filter

Reset [halt / wipe device
Many general-purpose devices have little or no

designed-in protections
AVR, PIC, MSP, etc. have memory protections
Modern smartcards have extensive protections

Glitch detectors
Random / aperiodic internal clock w/ dummy cycles

Dual lockstep cores sanity-checking one another

Platforms

Arrow LPRP + Breadboard

a

2l

/_

|

W //l/ WIL

W éz/ Wl

Arrow LPRP

} | A

20 x 2 |/O Ribbon Cable

:-.-.'.-Mi_chh s §
PSRAM :

Solderless Breadboard

St T o gk ' g D s . e T W - -
< =< T - e -
— - L e p———— :
: — _— — - - e e &gy = g J
o Nt ST =

- T s o - - -'—'-"‘.-

20 x 2 1/O Ribbon Cable 3 L " LT o '

w ABCGDES

Soldered Breadboard

Arduino

L o8

Pt ‘\.'

L
-
v
m
O3
Vs

Ml

5
O
2
°
[

0
W

0

—
C
m
8

, ouf

Photo-Etched PCB

Photo-Etched PCB

Al
U
al
O
)
o o
¥
e
LLl

Photo-

Photo-Etched PCB

O 0o

Ji VY LA b

Photo-Etched PCB

“Professional” PCB

'} 182: Digital RST o
 283: Analog RST §

5678
5: ON To Program b

6: ON 170 Pullup :"‘

N

: CLK/2 180
s CLK
: CLK 180

2014-02-20
Vi

“Professional” PCB

Cheap & Dirty Logic Analyzer

Altera SignalTap Il

Can select almost any internal signal, net, bus, &
external I/O pins

Can increase sample depth by using more LEs

Plenty of trigger options
Simple — low, high, edge, etc
Advanced - chained events, segmented capture, etc

Export data as plaintext, image, other formats
Equivalent to Xilinx ChipScope

Cheap & Dirty Logic Analyzer

Instance Status LEs: 933 Memory: 126976 Small: 00 Medium: 64/66
auto_sig... Mot running 983 cells 126976 bits 0 blacks 16 blocks
trigger: 2014/05/30 05:45:25 #1 Lock mode: | =" Allow all changes v

Hode Data Enable | Trigger Enable Trigger Conditions
Type | Alias Name 31 31 1[v|Basic v |2 [v]|Basic v
= =-ce %1 with
" C 4 ccl7] b 2
CC cclB] T %
@ cels) = =
g ccfd] B 55
< ccl3] e 2
< ce[2] = 2
<o ccl1] g %
e refn v v == ==
Bl pata | [setup
Hierarchy Display: X [] pata Log:

= ¥ nios2_quartus2_project
- statem_dyn_phasetinst1
2 dut_pllinst9

= auto_signaltap_0
=1 B signal_set: 2012/12/26 01:55:54 #0
= b trigger: 2012/12/26 01:55:54 #1

Large: 00

0 blocks

Hardware: Disabled

Device:

SOF Manager: = I

Signal Configuration:

Clock: |dut_pll:inst9|c3
Data
Auto

Sample depth: 4K | RAM type:

[] seamented: |2 2 K sample seaments
Storage qualifier:

Type: £E Continuous
Input port: |auto_stp_external_storage_qualifier

Record data discontinuities

i log: 2012/12/26 01:55:54 #2 - 9 cycles @ 48MHz between glitch request and Ve actually dropping

=1 B signal_set: 2014/05/27 06:03:12 #0
= b trigger: 2014/05/27 06:03:12 #1

0 log: 2014/05/27 06:03:12 #2 - dut_pll phase shift programming via state machine
0 log: 2014/05/27 06:48:52 #0 - as above, made PhaseStep wait High one more cycle

Cheap & Dirty Logic Analyzer

Instance Status LEs: 983 Memory: 126976 Small: /0 Medium: 6466 Large: 00 —
auto_sig... Mot running 933 cells 126976 bits 0 blocks 16 blocks 0 blocks
Device: MNone Detected
SOF Manager: _:_‘ |m

(]

log: 2014/05/27 06:458:52 #0 - as above, Phas f *|3
Type |Alias Hame ||5 Value 7],'10| '|3 , '}3 , '|4 , ';"-' , ? \ % , ‘} , '|5 , ? , 1P , 1|2 , 1|4 , 1,5 , 1|3 , 2,0 , 22| ~
L C 4 ...n_phase:inst1|phasestep -1 ' [I
L C 4 ... hase:inst1 |phaseupdown 0 | i l_ﬁ
& ...m_dyn_phase:inst1 reset 0 E
T +- ... 9phasecounterselect 1h ' 1h
L C dut_pltinst9phasedone 1 i L
o dut_pllinst9phasestep 1 E | |
& dut_pliinst9|phaseupdown 0 | : I_ﬁ
< dut_pltinst9|scanclk (XN | e s s e e e
v
< >
‘E] Data @ Setup
Hierarchy Display: X | [] patalog: X
= < niosZ_quartusZ_project = auto_signaltap_0
- statem_dyn_phase:inst1 =1 B signal_set: 2012/12/26 01:55:54 #0
- dut_pllinst9 = b trigger: 2012/12/26 01:55:54 #1

i log: 2012/12/26 01:55:54 #2 - 9 cycles @ 48MHz between glitch request and Yec actually dropping
= signal_set: 2014/05/27 06:03:12 #0
= [trigger: 2014/05/27 06:03:12 #1
¥ log: 2014/05/27 06:03:12 #2 - dut_pll phase shift programming via state machine
log: 2014/05/27 06:48:52 #0 - as above, made PhaseStep wait High one more cycle

Victim IC

Secure microcontroller
Not sure what architecture

Pairs with partner device

Accepts data, encrypts/decrypts it with key(s),
returns data to partner

Starting from blackbox

Not sure what datasheet(s) to look for
Even if device known, datasheet(s) may not be public

Start probing device pads
Initial sweep w/ multimeter

Revisit interesting pads w/ oscilloscope
One pad appears to speak slow-ish serial
protocol

Capture & transcribe beginning of waveform from
scope

One pad, thus half-duplex conversation

Rig up sniffer board to MITM the
victim-to-partner conversation

Level shifting

Buffering
Use SignalTap to digitize
conversation

Export waveforms as plaintext

Parse into binary data
ISO 7816 APDU header matched!

Sniffer Board

Add 16550 UART to FPGA
Allows for HW framing of TX & RX data w/ victim

Saves wasted time getting bit-bang timing perfect

Use unrelated Altera JTAG UART to talk w/
soft-CPU

Only one cable needed to talk to FPGA & victim
Have PC speak ISO 7816 w/ victim

Example

ISO 7816 header has length field

Propose theory that victim compares length to max it'll
allow as buffer input

When storing command to RAM

If length is too long, issue error
Issue too-long ISO 7816 commands to victim

Too long, but make checksum valid

Observe error response
Get ready to glitch!

r Punch!

Sucke

cothsoaghioedheind

apnyjdwy

ne-Two Punch

O

apnyjdwy

Start glitching!
In this case, clock glitching
Glitch during suspected victim command handler

Try different pulse offsets & durations
Milestone reached when victim responds to too-
long command correctly

Length check bypassed
Make best quess at victim architecture

Motorola 6805-based
Intel 8o51-based
Etc.

Pad more and more bogus data at end of
command

Until victim crashes or does something weird
Stack smashed (return address overwritten)
Might be hard to notice if watchdog present
Distance to stack pointer now known
Using guess at victim architecture

Write minimal code that tries to write to low-
addressed special registers

PORTX, PINx, DDRX, etc.
Keep trying candidate return addresses

Example

Victim Memory Layout
Stack Pointer
Normal Payload Stack

Top of Stack

Low High
Addresses Addresses
D
I

\

Payload Overwrites Return Address

— >
Milestone reached when victim output pin(s)

change
Code execution confirmed
Architecture guess confirmed
Probably Von Neumann or Modified Harvard

Write code that loads dummy ASCII byte to
desired register /f memory, then sweeps
jumps into address space

Could be unwieldy if large address space
Milestone reached when ASCII byte pops out
victim'’s serial pin

Victim serial TX routine address found

Make a code loop
Load data at current address location into register
Jump to serial TX routine address

Increment address location pointer

Be prepared to empty the FPGA UART's RX
FIFO quickly & reqularly

Because the entire code &
data space will be dumped
out in an endless loop!

a.k.a. Linear Code
Extraction

Epilogue
Try to figure out memory map
Analyze dump for mirroring of address space

Try poking values at different addresses
See if address is mutable or not

Back in familiar territory
Disassemble
Search for secrets
Discover code vulnerabilities

Conclusions

Electrical glitching can be a viable attack
vector against a variety of 1Cs

Except some modern purpose-built security ICs
Cheap to perform
Don't need a big laboratory
Non-destructive in nature

Another tool in the reverser's arsenal

Can provide results where other approaches fail

Thank you!

