DP5: PIR for Privacy-preserving Presence

Ian Goldberg George Danezis

joint work with Nikita Borisov

Cryptography, Security, and Privacy Research Lab University of Waterloo

University College London

31C3, 29 December 2014

IT-PIR

IT-PIR

$$D = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 1 & \dots & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & \dots & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & \dots & 0 \\ & & & \vdots & & & \ddots & \vdots \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 1 & \dots & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & \dots & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & \dots & 0 \\ & & & \vdots & & & \ddots & \vdots \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

- If $e_i = [0 \ 0 \ 1 \ 0 \ \dots \ 0]$, then $e_i \cdot D = \text{Block } i$
- $\bullet \mathbf{v}_1 \cdot D + \mathbf{v}_2 \cdot D + \cdots + \mathbf{v}_{\ell} \cdot D = (\mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_{\ell}) \cdot D$

$$D = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 1 & \dots & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & \dots & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & \dots & 0 \\ & & & \vdots & & & \ddots & \vdots \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

- If $e_i = [0 \ 0 \ 1 \ 0 \ \dots \ 0]$, then $e_i \cdot D = \text{Block } i$
- $\mathbf{v}_1 \cdot D + \mathbf{v}_2 \cdot D + \cdots + \mathbf{v}_{\ell} \cdot D = (\mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_{\ell}) \cdot D$

If e_i

$$D = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 1 & \dots & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & \dots & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
Previous work: variable-sized records

Ian Goldberg and George Danezis

- If $e_i = [0 \ 0 \ 1 \ 0 \ \dots \ 0]$, then $e_i \cdot D = \text{Block } i$
- $\bullet \mathbf{v}_1 \cdot D + \mathbf{v}_2 \cdot D + \cdots + \mathbf{v}_{\ell} \cdot D = (\mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_{\ell}) \cdot D$

$$D = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 1 & \dots & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & \dots & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & \dots & 1 \end{bmatrix}$$
• If $\mathbf{e}_i = \begin{bmatrix} 0 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}$, the $\mathbf{e}_i \cdot D = \mathsf{Block}\ i$
• $\mathbf{v}_1 \cdot D + \mathbf{v}_2 \cdot D + \dots + \mathbf{v}_{\ell} \cdot D = (\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_{\ell}) \cdot D$

How to try it out

Percy++ open-source library

git://git-crysp.uwaterloo.ca/percy

http://percy.sourceforge.net/

Online presence

Online presence

The problem

The problem

The problem

CONTROVERSIES

buddy lists.

NSA Collects Online Address Books and Buddy Lists

The agency captures contacts when they're transmitted across global servers, dodging domestic requirements mandating prior authorization for data collection inside the U.S.

g+1 2

Senior intelligence officers and leaked documents from National Security Agency whistleblower Edward Snowden reveal that the NSA is amassing millions of contacts via online address books and instant-messaging

By Courtney Subramanian @cmsub | Oct. 14, 2013 | 3 Comments

The program, under NSA's Special Source Operations branch, collects more than 250 million contacts in its database per year. A single day's data found that the agency accumulated 444,743 email address books from Yahoo. 105.068 from Hotmail. 82.857 from Read Later

Patrick Semansky / AP

This June 6, 213 file photo shows the sign outside the National Security Agency (NSA) campus in Fort Meade. Md.

Share < 11

"We kill people based on metadata"

General Michael Hayden, former Director of NSA

http://www.youtube.com/watch?v=UdQiz0Vavmc

Presence features

Threat model

Presence features

Threat model

- Friend registration
- Presence registration
- Presence status query
- Friend suspension / revocation

Presence features

Threat model

- Global passive adversary
- Dishonest users
- Secure end hosts
- Threshold of honest infrastructure servers
- Can't break strong crypto

Presence features

Threat model

- Privacy of social network
- Privacy, integrity of presence and auxiliary data
- Unlinkability
- Suspension / revocation indistinguishable from offline
- Forward and backward secrecy
- Auditability

- ullet 'Anonymous social graph' isomorphic to real social graph o anonymization attacks.
 - Easy to de-anonymize using side graphs (Remember Netflix!)
- Pile-up the tricks?
 - Do not register B@ can still link all friends to a pseudonym.
 - ullet Use a separate circuit per since single friend? o Millions of circuits.
 - . . .
- DP5 aims: do not require an anonymous channel; do not leak any social graph!

$$PRF_{K_{ab}}(t_i)$$

$$\mathsf{PRF}_{\mathcal{K}_{ab}}(t_{i-1})$$

David Wheeler

David Wheele

Any problem in computer science can be solved with another layer of indirection.

David Wheele

Any problem in computer science can be solved with another layer of indirection.

But that will usually create another problem.

Implementation

DP5 core: C++, Python Bindings

Networking: Cherrypy framework, Twisted (Python)

Missing: Integration into common chat clients

Cost of running a DP5 PIR server

Takeaways

- Metadata in social communication is being targeted
- Private information retrieval (PIR) allows database lookups without revealing the query to the database servers themselves
- DP5 uses PIR to achieve private presence—people learn when their friends are online (and how to contact them securely) without any server ever learning who is friends with whom

Find out more

- Technical report http://cacr.uwaterloo.ca/techreports/2014/ cacr2014-10.pdf
- Git code repository git://git-crysp.uwaterloo.ca/dp5