
Higher-Dimensional (4D+) 
Geometry and Fractals

31c3



What we'll talk about today
31c3, December 29th:
Higher Dimensional (4D+) Geometry 
and Fractals

Speaker: Magnus
magnus@ef.gy
@jyujinX

This talk is split into 3 sections:
1. Perspective Projections (4D+)
2. Iterated Function Systems
3. Fractal Flames

Intermission slides will demo the 
preceding part's content hands on.
Follow along at: https://dee.pe/r



Part 0: What your linear algebra teacher already told you.



● Vector-matrix and matrix-matrix products
● Cross product
● Homogeneous coordinates
● Rotations
● Affine transformations
● Look-at transformation
● Perspective transformation
● Projections

What you learned in LinAlg 101



Cross product

We multiply two 3D vectors to obtain a normal 
to these two vectors.



Homogeneous matrix expansion

To use a linear transformation as part of an 
affine transform we need to expand its matrix.



Perspective transformation



Part I: Perspective Projections in 4D+



● Vector-matrix and matrix-matrix products
● Cross product
● Homogeneous coordinates
● Rotations
● Affine transformations
● Look-at transformation
● Perspective transformation
● Projections

What do we need?



● Vector-matrix and matrix-matrix products
● Cross product
● Homogeneous coordinates
● Rotations
● Affine transformations
● Look-at transformation
● Perspective transformation
● Projections

What do we need?



● Cross product normals
● Look-at transformation
● Perspective transformation
● Projections

What’s different?



Normals

There is no 4D cross product, but we really only 
need normals of three vectors:



Normals

In general, we calculate an n-D normal with n-1 
vectors using the determinant of a matrix:



Look-at transformation



Look-at transformation



Perspective transformation

We can rely on an underlying 3D perspective 
transformation’s correction for far and near 
clipping and aspect ratio correction.

The much simpler matrix is then...



Perspective transformation



Perspective transformation



View Matrix



View Matrix



Projections

We convert to non-homogeneous coordinates 
and divide by the last coordinate.



Projections



Projections

However, this only reduces the dimension by 
one. Therefore, after this step we need 
additional projections until we get to 2D, which 
we can plot on-screen.



Projections

Each dimension thus gets its own "camera" - a 
set of "from" and "to" points, eye angles, 
transformation matrices, etc.

All of these are independent of each other.





Part II: (Affine) Iterated Function Systems



An Iterated Function System is a collection of 
functions on vectors. We're usually interested in 
the set of points that result when applying these 
to points on a plane.
To get any kind of fractal effect, we need at 
least 2 functions. The functions should also be 
contractive.

What is an IFS?



What is an IFS?



What is an affine IFS?

In principle, we can choose any kind of function 
domain for an IFS, so long as they operate on 
vectors.

If we choose affine transformations, we can 
represent the IFS using a set of (d+1)x(d+1) 
matrices.



Discrete Renders

We can plot this by taking a sufficiently 
subdivided primitive and applying all of the 
transformations to the vertices recursively.



Sierpinski Gasket



Sierpinski Gasket



Sierpinski Gasket



Sierpinski Gasket



Sierpinski Gasket



Sierpinski Gasket



Sierpinski Gasket



Does this work in 3D and up?

Well...





The Chaos Game

repeat until satisfied:
1. Take a random point on the plane.
2. iterations++
3. Pick a random function and apply to the 

point.
4. if (iterations > cutoff) plot(point);
5. if (iterations < maxIterations) repeat from 2;



Improvements to the Chaos Game

● Assign weights to the individual functions
● Keep track of the number of hits to produce 

grayscale images
● Assign colours to the individual functions 

and mix them with the current pixel colour



Does this work in 3D and up?



Part III: Fractal Flames



Structurally they are Iterated Function Systems 
with a special type of function composed of a 
finite number of variations.

They also use a special colouring algorithm to 
highlight details in the functions. Rendering is 
done with a slightly modified chaos game.

What are Fractal Flames?



Variations

Instead of plain affine transformations, we start 
with an affine transformation and apply 
variation functions to the result.

(There is a list of 49 canonical variations in the 
Fractal Flame paper.)



Variations



Variation Blending

For even more impressive results, we blend 
several of these variations together.



Post Transforms

For added picture control, we may apply 
another variation as a post-transform.



Final Transform

Another transform may be applied to all output 
vertices for certain picture effects.



By default, the chaos game only results in a binary, black and white image.



To improve this, we count the number of hits on each pixel.



... which looks a lot better if you plot it after applying a logarithm.



To add colour, we mix the function numbers used and apply a colour map.



And your favourite colour vibrancy algorithm never hurt, either.



The original fractal flame algorithm is strictly 
2D. All of the 3D effects seen in, e.g. Electric 
Sheep are illusions.

However...



Does this work in 3D and up?





Questions?
31c3, December 29th:
Higher Dimensional (4D+) Geometry 
and Fractals

Speaker: Magnus
magnus@ef.gy
@jyujinX

C++ sources for demo segments:
https://github.com/ef-gy/topologic
Blog series:
https://ef.gy/linear-algebra

Scott Draves, Erik Reckase,
The Fractal Flames Algorithm: http:
//flam3.com/flame_draves.pdf

Motivationals from Fringe.


