
Switches Get Stitches

Eireann Leverett
@blackswanburst

Dec 28 02014

This talk is dedicated to Hackeriet:
Where everyone is a teacher, and everyone is a student.
Aun Aprendo.

Outline

General Introduction

The Switches

Siemens Scalance Family Vulnerabilities

GE Multilin Family Vulnerabilities

Garrettcom Family vulnerabilities

Conclusion

Introduction

This is talk on compromising industrial ethernet switches. We will be focussing
primarily on management plane attacks, with a goal to taking over management
for the device.

This talk is for you if:

I You work at a utility/facility/plant/linear accelerator, and you deploy, provision,
decommision, or test industrial ethernet switches.

I You are comfortable at a linux commandline, and can hack web apps, but want to
do embedded device security.

I You are a developer of embedded �rmware and want to learn more about systems
security.

I You are an ohdae enthusiast who likes to watch the chaos.

I You work for one of the switch manufacturers. Don't be afraid, just come chat...

A quick comment

Most SCADA or ICS presentations go like:

1. Pwn PLC/RTU/HMI (Steal underpants!)

2. ????

3. Pro�t!

Demand more intelligent content.
My esteemed colleague Jason Larsen has a simple challenge to illustrate:
You have complete control over the process in a paint factory.
Now, what do you do to attack the process?
To learn one answer, attend Marmusha's talk: Damn Vulnerable Process

ICS 101

What's the point?

In Industrial Control Systems we're focussed on protecting the control path not the
data. The process is what needs to be protected, not accounts, not data con�dentiality.
So the primary concern you have is integrity of process data. All other vulnerabilities,
must eventually lead to this, or are not relevant to SCADA/ICS security.
That's why I'm attacking switches. That's where the process is.

Where are these switches deployed in a network?

Primarily as �eld device infrastructure. Some examples would be:

1. In a building management or CCTV in various closets.

2. In electrical/water substations for distribution management.

3. In the transport sector in mechancial bridges or trains.

4. On board ships for transporting engine room tra�c.

5. Oil and Gas for transporting sensor network or control signal data.

Protocols 101: You have no integrity

There's precious little authentication in many SCADA protocols. There's even
less cryptographic integrity. This is often because of real time and safety
constraints. However, this also makes it our biggest path to abuse.
It is because these protocols use so little crypto, that attacking the switches is such an
e�ective means to compromise. Once compromised, you can recon�gure them to
ex�ltrate data, or create malicious �rmwares to MITM the process.
Why would we want to create malicious �rmwares instead of route the data out and
back again?

Protocols

I GOOSE

I modbus

I TASE.2

I 101/104

I DNP3

I mrph

I ICCP

I iec-104

I pro�net/pro�bus

I canbus

I C12.22

Introducing...

The switches that got busticated

I Siemens Scalance X Family Version 4.3

I GE Multilin ML Family Version 4.2

I Garrettcom Magnum Family 6K

We'll go gently from web app style vulnerabilities, into light �rmware reversing and
binary analysis.
Let's get to the vulnerabilities shall we?

Siemens X200 Authentication

From the webpage we see that hashing is done clientside with javascript MD5.

Useful command
echo -n "admin:password:C0A800020002F72C" | md5sum

The nonce is "given to us" in the previous HTTP response. The nonce is interesting
and useful cryptographically in that it prevents crypto replay attacks. However, it also
"�xes" a string in our brute force (su�x), as does the user name (pre�x). This means
we can brute force these hashes very easily.
In my tests 8 character passwords fell in seconds, and 15 character took a few minutes.
This is to recover the password from a captured hash from the wire.

Siemens Nonces/Session Analysis

Switch.....please!

I C0A8006500000960

I C0A8006500001A21

I C0A80065000049A6

I C0A8006500005F31

I C0A800650007323F

Q: See any patterns?

Siemens Nonces/Session Analysis

Switch.....please!

I C0A8006500000960

I C0A8006500001A21

I C0A80065000049A6

I C0A8006500005F31

I C0A800650007323F

Q: See any patterns?

Siemens Nonces/Session Analysis

Greetz and peace to @scadasl I'm "that guy who suggested looking at cookies"
;)

Switch.....please!

I C0A80065 ⇒ 192.168.0.97 (this is the CLIENTSIDE address)

I 0007323F ⇒ 471615 in base 10 (Uptime + 1 of course)!

I snmpwalk -Os -c public -v 1 192.168.0.5

I iso.3.6.1.2.1.1.1.0 = STRING: "Siemens, SIMATIC NET, SCALANCE X204-2,

I 6GK5 204-2BB10-2AA3, HW: 4, FW: V4.03"

I iso.3.6.1.2.1.1.2.0 = OID: iso.3.6.1.4.1.4196.1.1.5.2.22

I iso.3.6.1.2.1.1.3.0 = Timeticks: (471614) 1:18:36.14

Siemens Scalance Authentication Bypass

A simple unauthenticated HTTP request (CSRF) will allow you to:

Download

I Log File

I Con�guration (including password hashes)

I Firmware

Upload

I Con�guration (including password hashes)

I Firmware

Auth Bypass

You can download this script from my github.

Siemens Switch Conclusion

These vulns are patched, but maybe you can �nd new ones.
Also, even though a patch exists, patch times in ICS/SCADA
are regularly 12-18 months after the patch is released. You should be able to use these
tools for quite a while!
Also, I hope this encourages web testers that their skills are useful in ICS and SCADA.
There is plenty here for you, and we desperately need your help.
Stop defending banks and websites.
We need your help in the factories and utilities we all depend on!

GE Multilin

Now we move on to a GE ML800, part of the Multilin line.
The vulnerabilities I am about to present a�ect another 7/9 switches in the
family. Of the other two switches, one is unmanaged, and the other uses
di�erent �rmware.

GE o�ers a worldwide 10 year warranty:

Let's see if that includes �xing vulnerabilites, shall we?

Re�ected XSS x 8!

1. https://192.168.0.12/gc/service.php [a parameter]

2. https://192.168.0.12/gc/tree.php [lang parameter]

3. https://192.168.0.12/gc/�ash.php [REST URL parameter 2]

4. https://192.168.0.12/gc/service.php [REST URL parameter 2]

5. https://192.168.0.12/gc/tree.php [REST URL parameter 2]

6. https://192.168.0.12/gc/service.php [name of an arbitrarily supplied URL
parameter]

7. https://192.168.0.12/gc/tree.php [name of an arbitrarily supplied URL parameter]

8. https://192.168.0.12/gc/ [name of an arbitrarily supplied URL parameter]

GE Multilin

You can just make up parameters to hold your XSS!

GET /gc/?3f50c<script>alert('XSS')<%2fscript>c4a3e=1&key=f00 HTTP/1.1

Host: 192.168.0.12

User-Agent: Finely Waxed Moustaches

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

GE Multilin

XSS bores me, let's move on to things worthy of my moustache.

GE ML800 DoS

If you get the initial webpage of the switch you'll see a �le is fetched.
Notice this is pre-authentication.

Pre-authentication con�g.xml fetch

https://192.168.0.12/media/con�g.xml

GE ML800 DoS

Now if what if we also add a parameter:

Pre-authentication con�g.xml fetch

https://192.168.0.12/media/con�g.xml?nocache=9017

Finally, what if that parameter had say....500K digits?

GE ML800 DoS

I have a script that does exactly this, for about 2K requests. The switch reboot
afterwards. It appears the Galnet watchdog causes the reboot. I am still investigating
this further, but without full shell access to the switch...
After the next slide you'll see I changed approach and did some light RE.

Why is a DoS even interesting?

ICS Systems typically have very, very, serious uptime requirements.
So DoS in other environments isn't quite so serious.
In ICS/SCADA a DoS can be safety or process critical.
If you know the timing of the process, you can drop a switch before a critical message.
A simplistic example is rebooting the switch before any heartbeat packet.
A catastrophic example is dropping all H2S detection alerts.

It all began with a pcap...

Starting from some network tra�c from interacting with the GE ML800 web admin
interface. Within this session we have performed a switch �rmware upgrade. This
session is in HTTPS, but the �rmware upgrade happens over FTP or TFTP, so we are
able to see the �rmware �le in clear text.

We use tcptrace to carve out the �les (All hail Ostermann!):

tcptrace -n -e �rmware-upgrade.pcapng

It all began with a pcap...

We note that right away, one stream stands out:

tcptrace stream

33: 192.168.0.97:20 - 192.168.0.12:1025 (bm2bn) 1356> 971< (complete)

Primarily because it is a larger stream, but also those ports are interesting, and �nally
we can see it is a complete stream.

It all began with a pcap...

The �le and binwalk commands don't help much:

�le results

I �le bm2bn_contents.dat

I bm2bn_contents.dat: data

binwalk results

I binwalk bm2bn_contents.dat

I bm2bn_contents.dat: DECIMAL HEX DESCRIPTION

I �����������������������

I

It all began with a pcap...

We run strings on this structure, and we �nd a lot of random rubbish,
but a few pages down we get some clues.

Strings output

I de�ate 1.1.3 Copyright 1995-1998 Jean-loup Gailly

I in�ate 1.1.3 Copyright 1995-1998 Mark Adler

So it's compressed!

It all began with a pcap...

Attempting to de�ate the whole thing fails. So we resort to searching for zlib
streams in the �le with a little help from python. Basically, we iterate over
every byte to see if we can �nd sections of the �le that do not produce zlib
errors. Thus, we �nd some sections of the �le that are legitimate zlib streams.

Output of ZLIB-Finder.py

I python ZLIB-�nder.py

I bm2bn.bin

I (41576, 4098384)

I (1931471, 0)

It all began with a pcap...

Well, let's carve out that compressed section shall we?

Output of dd

I dd if=bm2bn.bin of=compressed.bin skip=41576 bs=1 count=4098384

I 1889896+0 records in

I 1889896+0 records out

I 1889896 bytes (1.9 MB) copied, 2.62979 s, 719 kB/s

It all began with a pcap...

Now we need to concatenate the magic bytes to make gzip think it's a valid �le
and decompress it:

magic byte foo

printf "\x1f\x8b\x08\x00\x00\x00\x00\x00" | cat - compressed.bin

| gzip -dc > decomp.bin

Which does give us some errors which suggest we might have the length of our dd
command wrong. However, we still get some sensible material out of the decompression.
This is a nice image you can load up into your favourite hex editor or reversing tool.

It all began with a pcap...

For example, I love just running this on all kinds of embedded �rmwares:

Command
xxd decomp.bin | grep -A 20 '42 4547 494e 2052 5341 2050 5249 5641' | less

Which gives you nice little details such as:

RESULT!
0036750: 2d42 4547 494e 2052 5341 2050 5249 5641 -BEGIN RSA PRIVA

Hardcoding keys after the millenium?

It all began with a pcap...

Now if we load the �rst private key into wireshark using:

port 443 IP 192.168.0.12 and protocol http

Then we can decrypt the packets that preceded the �rmware upgrade.
Note the passwords in clear text under the SSL.
Lastly, the certi�cate this key was attached to was self-signed!
So it cannot be revoked!
The problem with key management is you have to manage keys.

Was that a self decrypting PCAP?!?

Do you even forward secrecy?

What about that second key?

1. Private RSA key

2. Requires password

3. Didn't feel like bruteforcing it

4. Tried all strings in image

5. Guess I gotta start reversing...(I SUCK AT REVERSING!)

6. Power PC ROM Image

7. eCOS/Redboot

What if I patch my own key in?

1. Generate key the same size with known password

2. Patch it into decompressed zlib blob

3. Compress blob

4. Patch into larger binary

5. Will there be CRCs or �rmware signing?

But wait! There's more!

The OEM for the GE ML800 switch is Garrettcom (now owned by Belden).

So what issues a�ect them?

I XSS x8

I DOS x1

I Hardcoded keys x1

I Weak excuses like "Sorry EOL."

Garrettcom

Some value must go here to ensure RAM integrity!!

Die! Bastard, Die Hard! I gave you life, and now I take it back!

Conclusions

Where can we go with these attacks, and what about the underpants gnome?

Towards control of the process

I Altering the switch con�guration to ex�ltrate process data.

I DoS attacks, to disrupt the process.

I Basically any MITM attack at this point can disrupt, alter, or drop process tra�c.1

I In short, compromising a switch gives a better overall view of the process.

1Within real time system constraints

The system security of ICS can be broken with...

I Drunk Session IDs

I Brute forcing MD5+NONCE

I CSRF �rmware upload

I Re�ected XSS x 8!

I Pre-auth DoS

I Hardcoded Key Extraction x 2 x 2!!!

I SSL without forward secrecy

I Self Signed Certi�cates that cannot be revoked

I Cleartext passwords under SSL

I "Enable SSH with a password"

I 3/4 of a year or more to �x and EOL excuses

In the next episode of Switches Get Stitches...

I Will there be arbitrary �rmware?

I Will there be new switches and vendors?

I Will new heroes take to the stage?

Thank you for listening moustache fans!!!

Parting thought...

More tax money is spent on surveillance, than on defending common utilities.

	General Introduction
	The Switches
	Siemens Scalance Family Vulnerabilities
	GE Multilin Family Vulnerabilities
	Garrettcom Family vulnerabilities
	Conclusion

