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Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.
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Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)
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Approximate costs of these algorithms
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QS: 2100, 2150.

NFS: 280, 2112.
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Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
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;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
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625
;
�527

625

�
.

(x1; y1) + (0; 1) =



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25
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.

3
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3

5
;

4

5

�
=

�
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;
�44

125
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.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) =



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25
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.

3
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3

5
;

4

5
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�
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;
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.

4

�
3

5
;

4

5

�
=

�
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;
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.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
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;
�44
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�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
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�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields
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Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.
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;

4

5

�
=

�
24

25
;

7

25

�
.
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�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).
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.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.



Clock addition without sin, cos:
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x
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//
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P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula
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;
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(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).
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Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.
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Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.
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3=4)

= (�1=2;�
p
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Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>
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(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):
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... if (x*x+y*y) % 7 == 1:
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...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)
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Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
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3=4; 1=2) = “2:00”.
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(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).
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Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)
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Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)
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Clocks over finite fields
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Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3
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Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3
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.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False

>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False

>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int
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Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.
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Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!
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You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to



Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to



Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to



Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to



Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.
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in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.



Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.



Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.



You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.



You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.



You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.



You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!



Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!



Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!

Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.
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Sage scripts to verify criteria for

ECDLP security and ECC security:

safecurves.cr.yp.to

Analysis of manipulability of various

curve-generation methods:

safecurves.cr.yp.to/bada55.html

Many computer-verified addition formulas:

hyperelliptic.org/EFD/

Python scripts for this talk:

ecchacks.cr.yp.to


