
Pavol Rusnak
stick@satoshilabs.com

TREZOR
The Hardware Bitcoin Wallet

Chaos Communication Congress
30c3, Hamburg

Problem: private keys security/safety
● end user computer security

● compromised computers

● untrusted computers

● rigged clients

● data (wallet) loss

● disasters, hard-drive failures

● naive reinstalls

● failing to do proper backups

Solution

HARDWARE
WALLETS!

Hardware Wallet Ideas

KISS

● USB gadget (HID)

● OLED display

● ok/cancel buttons

● no batteries

● no radio

What's inside?
● ARM Cortex-M3 microcontroller

● STM32F205

● 120 MHz

● 512 KiB Flash

● 128 KiB RAM

● HW RNG *

● 128x64 0.96“ OLED display

Raspberry Pi
● same OLED display

● USB HID to Serial

● prototyping platform

● Python

● rapid development

● follows the same logic

Modus Operandi (1)

● generate initial entropy

● allow its easy backup

● use this entropy to derive master private key and master public key

„generators“

● send master public key to computer

Modus Operandi (2)

● computer prepares transaction and sends to TREZOR

● (gaps with keys indices instead of signatures)

● TREZOR uses master private key to generate needed private keys from

indices

● TREZOR sends signed transaction back to computer

● which will broadcast it to the network

● private keys never leave the device!

Generate Entropy

● use HW RNG to generate entropy A (e.g. 256 bits)

● request entropy B from computer (e.g. 256 bits)

● use both entropies to generate final entropy while proving that

external entropy was used - e.g. E = SHA256(A || B)

● more complex schemas suggested by Timo Hanke & Ilja Gerhardt

Mnemonic code (for backups)
● convert entropy to string of words aka „mnemonic sentence“

"immense uphold skin recall avoid cricket brush pill next home require friend"

● use entropy directly to generate master private key

Mnemonic code BIP-0039
● convert entropy to string of words aka „mnemonic sentence“

"immense uphold skin recall avoid cricket brush pill next home require friend"

● use entropy directly to generate master private key

● use PBKDF2 to generate master private key

● PRF = HMAC-SHA512

● Password = mnemonic sentence

● Salt = „mnemonic“ || user's secret

● c = 4096 ; dkLen = 512 bits

Hierarchical Deterministic Wallets

Hierarchical Deterministic Wallets

● BIP-0032 by Pieter Wuille ; CKD uses HMAC-SHA512

● abstract concept, lots of possibilities

● master node – accounts – chains – addresses

● master node – cointype – accounts - addresses

● master node – HQ – local branches – accounts – addresses

● master node – cryptocoins / SSH / FDE / challenge response / etc.

● wallet token => identity token !

ECDSA Signatures

● ECDSA requires random nonce during signing (256-bit for Bitcoin)

● using same nonce twice for signing different messages using the same

particular key => leak

● 27c3 fail0verflow: Console Hacking – PS3 hack

● August 2013: Android Java RNG vulnerability in SecureRandom

● 59+ BTC stolen

Deterministic ECDSA Signatures

● August 2013: RFC 6979 (Java, Go, python-ecdsa since 0.9)

● HMAC_DRBG seeded with private key and message

● great news!

● avoids problem described in the previous slide

● enables unit testing of signatures

● proof that TREZOR does not leak master private key in nonce

Integration

● existing desktop clients

● Multibit, Electrum, Armory

● mobile clients

● webwallets via native browser plugin

Thank you !

info@bitcointrezor.com

www.bitcointrezor.com

github.com/trezor

	Slide 1
	Slide 2
	Next Steps
	Slide 4
	Hardware Wallet Idea
	How to HW wallet
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

