nerds in the news
why journalism?
data-driven journalism
Estimates of Expenditure
for Fiscal Year 2013/14
(Including Line Itemwise and Sourcewise)

Government of Nepal
Ministry of Finance
2014

Website: www.stod.gov.np
Email: Budget@nep.gov.np
Widerstand gegen Volkszählung: So hart trifft der Zensus die deutschen Gemeinden

Von Björn Schwentker

Sonderbare Methodik, plötzlicher Einwohnerschwund, die Angst vor finanziellen Einbußen: Der Zensus 2011 löst massiven Protest aus, mehr als 800 deutsche Kommunen haben Widerspruch gegen die Volkszählung eingelegt. SPIEGEL ONLINE zeigt erstmals die Abweichungen der Einwohnerzahlen für alle 11.339 deutsche Gemeinden.

Klicken Sie auf die Karte, dann sehen Sie die Gewinner und Verlierer des Zensus ▷

DER BMW X1 MIT xDRIVE.

Mehr zu BMW
INSOLVENZSTATISTIK

METHODISCHE HINWEISE

TABELLEN

Die untenstehenden Tabellen enthalten die Messungen zur zur Statistik Insolvenzstatistik. Sie unterscheiden sich in ihrer geographischen Granularität sowie den enthaltenen Attributen.

Kreise und kreisfreie Städte

Tabelle 52411kj001

Stand: 13.08.2013

<table>
<thead>
<tr>
<th>erw012</th>
<th>Beschäftigte (Messwert)</th>
</tr>
</thead>
<tbody>
<tr>
<td>isv006</td>
<td>Insolvenzverfahren (Unternehmen) (Messwert)</td>
</tr>
<tr>
<td>isvm1</td>
<td>Beschäftigte (Unternehmen) (Messwert)</td>
</tr>
</tbody>
</table>
tools literacy
Bundestagswahl 2013

<table>
<thead>
<tr>
<th>Partei</th>
<th>Ergebnis</th>
<th>Wähleranteil</th>
<th>Kandidaten</th>
<th>Sitze</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDU/CSU</td>
<td>311</td>
<td>41.5% +7.7%</td>
<td>236 Kreise</td>
<td>+72</td>
</tr>
<tr>
<td>SPD</td>
<td>192</td>
<td>25.7% +2.7%</td>
<td>58 Kreise</td>
<td>-6</td>
</tr>
<tr>
<td>FDP</td>
<td>0</td>
<td>4.8% -9.8%</td>
<td>0 Kreise</td>
<td>-93</td>
</tr>
<tr>
<td>DIE LINKE</td>
<td>64</td>
<td>8.6% -3.3%</td>
<td>4 Kreise</td>
<td>-12</td>
</tr>
<tr>
<td>GRÜNE</td>
<td>63</td>
<td>8.4% -2.3%</td>
<td>1 Kreise</td>
<td>-5</td>
</tr>
<tr>
<td>PIRATEN</td>
<td>0</td>
<td>2.2% +0.2%</td>
<td>0 Kreise</td>
<td>0</td>
</tr>
<tr>
<td>AfD</td>
<td>0</td>
<td>4.7% +4.7%</td>
<td>0 Kreise</td>
<td>0</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>630</td>
<td>41.5% +7.7%</td>
<td>236 Kreise</td>
<td>+72</td>
</tr>
</tbody>
</table>

Unterverteilung nach Bundesland

Brandenburg

<table>
<thead>
<tr>
<th>Zweitstimmenteile</th>
<th>Direktmandate</th>
<th>Sitze</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Berlin

<table>
<thead>
<tr>
<th>Zweitstimmenteile</th>
<th>Direktmandate</th>
<th>Sitze</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Bremen

<table>
<thead>
<tr>
<th>Zweitstimmenteile</th>
<th>Direktmandate</th>
<th>Sitze</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Baden-Württemberg

<table>
<thead>
<tr>
<th>Zweitstimmenteile</th>
<th>Direktmandate</th>
<th>Sitze</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
What maps are made of

Maps generally consist of geographic data (we'll call this geodata for short) and a system for visually representing that data.

Part 1: Geodata

Latitude and Longitude

Most geodata you encounter is based on latitude/longitude coordinates on Earth's surface (mapping Mars is beyond the scope of this primer).

Latitude ranges from -90 (the South Pole) to 90 (the North Pole), with 0 being the equator.

Longitude ranges from -180 (halfway around the world going west from the prime meridian) to 180 (halfway around the world going east from the prime meridian), with 0 being the prime meridian. Yes, that means -180 and 180 are the same.

If you are an old-timey sea captain, you may find or write latitude and longitude in degrees + minutes + seconds, like:

37°46'42"N, 122°23'22"W

Computers are not old-timey sea captains, so it's easier to give them decimals: