
White-box cryptography

Dmitry Khovratovich

University of Luxembourg

29 December 2013



This is a survey talk, partially inspired by the ongoing research
on white-box cryptographic designs at the University of

Luxembourg (together with Alex Biryukov).

https://www.cryptolux.org

https://www.cryptolux.org


White-box cryptography

White-box cryptography, what is it?

• Obfuscation?
• Public-key cryptography?
• No one knows exactly?

All versions are partly true.



White-box cryptography

White-box cryptography, what is it?
• Obfuscation?

• Public-key cryptography?
• No one knows exactly?

All versions are partly true.



White-box cryptography

White-box cryptography, what is it?
• Obfuscation?
• Public-key cryptography?

• No one knows exactly?
All versions are partly true.



White-box cryptography

White-box cryptography, what is it?
• Obfuscation?
• Public-key cryptography?
• No one knows exactly?

All versions are partly true.



White-box cryptography

White-box cryptography, what is it?
• Obfuscation?
• Public-key cryptography?
• No one knows exactly?

All versions are partly true.



Overview



1 Man at the end
Standard model of adversary
Man at the end
Details of protection schemes
Key hiding problem

2 White-Box cryptography
White-box implementation
Lookup table method
White-boxing AES
Cryptanalysis
Market
Weak and strong white-box implementations

3 New approaches
WBC from scratch
Weak white-box candidate
Non-invertibility problem
White-box cryptography from polynomials



We consider protection of large amounts of data:
databases, digital media, scientific experiments, etc..

Performance is important



We consider protection of large amounts of data:
databases, digital media, scientific experiments, etc..

Performance is important



State of the art

Performance and security are typically addressed with symmetric
cryptography, where secret components are shared by parties.

Confidentiality/privacy:
• Symmetric ciphers: AES-128/192/256 (key size in bits).
• Modes of operation to process large data: CTR (counter),
CBC (chaining).

Integrity/authenticity:
• Hash functions: SHA-1, SHA-256, SHA-3 (Keccak) and
Message Authentication Codes (HMAC).

• Authenticated encryption: OCB, GCM.

All these designs withstood years of cryptanalysis, and their security
is often backed up with security proofs and arguments.



State of the art

Performance and security are typically addressed with symmetric
cryptography, where secret components are shared by parties.

Confidentiality/privacy:
• Symmetric ciphers: AES-128/192/256 (key size in bits).
• Modes of operation to process large data: CTR (counter),
CBC (chaining).

Integrity/authenticity:
• Hash functions: SHA-1, SHA-256, SHA-3 (Keccak) and
Message Authentication Codes (HMAC).

• Authenticated encryption: OCB, GCM.

All these designs withstood years of cryptanalysis, and their security
is often backed up with security proofs and arguments.



Symmetric vs. public-key cryptography

Performance has some cost:
• RSA is believed to be secure, because it is related to the
hardness of factoring;

• AES is believed to be secure, just because no one has broken it
(and many tried).



Standard model of adversary



Model

Standard cryptographic model (dates back to Kerchoffs):
• Algorithm is open and available for public scrutiny;
• Key is secret (hidden in hardware, remote computer, etc.).

Sometimes the latter assumption does not hold.



Man at the end: unorthodox model for cryptographic
algorithms



Man at the end

An attacker downloads a DRM-protected song from a server to an
authorized music player:

• Connection can be eavesdropped;
• The player code is accessible;
• Dynamic execution allows to view the entire cryptographic
transformation.

• Keys are difficult to hide.



Man at the end

More applications:
• Distribution of digital cinema to theaters;
• Playing encrypted HD movies in authorized players (AACS for
HD DVD).

• Direct streaming of protected media (DTCP).

Quite many protocols have been attacked. How?



Details



Protected content

How digital cinema is protected:

Encrypted with AES

Media

AES key
Encrypted with RSA

RSA private key

Player

Streaming

RSA decryption
(slow) AES decryption

(fast)Media

Encrypted with AES

Media

Encrypted with AES

Media

AES key
Encrypted with RSA

RSA public key
AES key

Server

• Movie is encrypted with AES (since it is fast);
• AES key is encrypted with the RSA key of the device;
• To reduce the server workload the AES key may repeat.



Protected content

Where it can be attacked:

Encrypted with AES

Media

AES key
Encrypted with RSA

RSA private key

Device memory

Streaming

RSA decryption

AES decryption
Read key from memory

Read RSA key

Read AES key
during decryption

during decryption

CSS (1999), AACS (2007), HDCP (2010) have been broken along
these lines.



Key or entire code

Quite often, it is possible to extract the entire code and use it for
decryption (code lifting).

However, it is better to obtain keys directly:
• Easy to distribute;
• Easy to update;
• Not traceable;
• Sometimes the decoding procedure can not be isolated.

Staying apart from code lifting, how can we hide these keys?



Key or entire code

Quite often, it is possible to extract the entire code and use it for
decryption (code lifting).

However, it is better to obtain keys directly:
• Easy to distribute;
• Easy to update;
• Not traceable;
• Sometimes the decoding procedure can not be isolated.

Staying apart from code lifting, how can we hide these keys?



Hiding keys in hardware

Hardware (various tamper-proof dongles, TPM):
• Significantly increases the attack cost;
• Also more expensive, less flexible, and vulnerable to
side-channel attacks (timing and power analysis).



Hiding keys in software

Obfuscation – concealing program’s logic, purpose, or behaviour.

Issues with obfuscation:
• Does not target keys specifically.
• Existing techniques are vulnerable to static and dynamic
analysis.

• Theoretical results are ambiguous: generic obfuscators do not
exist [Barak et al. 2001], but simple functions (e.g., point
functions) can be obfuscated.

• No theoretical method that just waits for optimization.



More on obfuscation

Let us elaborate more on obfuscation:
• If we can not make provably unbreakable, we can try to make
it seemingly unbreakable (cf. the security of AES).

• The “obfuscation path” was initially offered for the public-key
cryptography, but eventually the mathematically hard problems
have been chosen.

• So how could we obfuscate keys?
• What sort of security would we want to get?



More on obfuscation

Let us elaborate more on obfuscation:
• If we can not make provably unbreakable, we can try to make
it seemingly unbreakable (cf. the security of AES).

• The “obfuscation path” was initially offered for the public-key
cryptography, but eventually the mathematically hard problems
have been chosen.

• So how could we obfuscate keys?
• What sort of security would we want to get?



White-box cryptography



White-box implementation

WBC centers around white-box implementation:
1. Pure software implementation of a cipher (encryption or

decryption routine) with embedded key;
2. Implementation is assumed available to an adversary;
3. Adversary gets little to no advantage over a black-box

implementation, where only inputs and outputs are observed.

Similar to public-key cryptography (RSA). Why not using it?
• RSA-2048 encryption speed — 1000 CPU cycles per byte.
• AES-128 encryption speed — 0.7 CPU cycles per byte.

Impractical for large amount of data. So one more requirement:
4. Performance loss should be minimal.



White-box implementation

WBC centers around white-box implementation:
1. Pure software implementation of a cipher (encryption or

decryption routine) with embedded key;
2. Implementation is assumed available to an adversary;
3. Adversary gets little to no advantage over a black-box

implementation, where only inputs and outputs are observed.

Similar to public-key cryptography (RSA). Why not using it?

• RSA-2048 encryption speed — 1000 CPU cycles per byte.
• AES-128 encryption speed — 0.7 CPU cycles per byte.

Impractical for large amount of data. So one more requirement:
4. Performance loss should be minimal.



White-box implementation

WBC centers around white-box implementation:
1. Pure software implementation of a cipher (encryption or

decryption routine) with embedded key;
2. Implementation is assumed available to an adversary;
3. Adversary gets little to no advantage over a black-box

implementation, where only inputs and outputs are observed.

Similar to public-key cryptography (RSA). Why not using it?
• RSA-2048 encryption speed — 1000 CPU cycles per byte.
• AES-128 encryption speed — 0.7 CPU cycles per byte.

Impractical for large amount of data. So one more requirement:
4. Performance loss should be minimal.



White-box implementation

WBC centers around white-box implementation:
1. Pure software implementation of a cipher (encryption or

decryption routine) with embedded key;
2. Implementation is assumed available to an adversary;
3. Adversary gets little to no advantage over a black-box

implementation, where only inputs and outputs are observed.

Similar to public-key cryptography (RSA). Why not using it?
• RSA-2048 encryption speed — 1000 CPU cycles per byte.
• AES-128 encryption speed — 0.7 CPU cycles per byte.

Impractical for large amount of data. So one more requirement:
4. Performance loss should be minimal.



Apparently, our tools are limited...



Attempts

Naive way to hide a key: put everything in a large lookup table.

plaintext
P

C
ciphertext

K
key

E ≈
P1

P2

· · ·

C1

C2

· · ·

plaintext ciphertext

However, conventional ciphers work with 128-bit blocks. A single
table is clearly infeasible (≈ 2128 size).

Smaller key-dependent tables?
• Implements any function in given domain;
• Memory-consuming (4 GB for 32-bit tables);
• Easily invertible.



Attempts

Naive way to hide a key: put everything in a large lookup table.

plaintext
P

C
ciphertext

K
key

E ≈
P1

P2

· · ·

C1

C2

· · ·

plaintext ciphertext

However, conventional ciphers work with 128-bit blocks. A single
table is clearly infeasible (≈ 2128 size).

Smaller key-dependent tables?
• Implements any function in given domain;
• Memory-consuming (4 GB for 32-bit tables);
• Easily invertible.



White-box implementation of AES



First proposal

Chow, Eisen, Johnson, and van Oorschot, “White-Box
Cryptography and an AES Implementation” (2002).

• Obfuscate AES implementation with embedded keys;
• Publish algorithm as a sequence of smaller table lookups.

Goal: make the key recovery difficult.

plaintext

ciphertext

key



AES

AES-128 (designed in 1997, adopted in 2001): 10-round cipher
with 16-byte state.

One round of AES:

• Four 32-bit blocks:
• AddRoundKey (simple XOR);
• SubBytes (bytewise

nonlinear);
• MixColumns (linear).

• ShiftRows (byte permutation).

S S S S

MixColumn

K
subkey

injection

nonlinear

linear

S32 S32 S32 S32K
1 round



White-boxing AES round

Simplistic view of white-box encoding:

S S S S

MixColumn

K

linear

S32 S32 S32 S32K

Q secret

P linear
secret

I1
I2

I232

· · ·

O1

O2

O232

· · ·

lookup table
key-dependent

Table 1 Table 2 Table 3 Table 4

S S S S

MixColumn

K

Original

• Add secret, random, mutually compensative transformations P
and Q;

• Replace every 32-bit block with a lookup table;
• Store everything in memory.

Actual proposal used smaller and weaker tables.



White-boxing AES round

Simplistic view of white-box encoding:

S S S S

MixColumn

K

linear

S32 S32 S32 S32K

Q secret

P linear
secret

I1
I2

I232

· · ·

O1

O2

O232

· · ·

lookup table
key-dependent

Table 1 Table 2 Table 3 Table 4

S S S S

MixColumn

K

Original

• Add secret, random, mutually compensative transformations P
and Q;

• Replace every 32-bit block with a lookup table;
• Store everything in memory.

Actual proposal used smaller and weaker tables.



Cryptanalysis



Attack

Differential cryptanalysis applies to all proposed implementations.

S S S S

MixColumn

K

Q

P I1
I2

I232

· · ·

O1

O2

O232

· · ·

I

O



Attack

Differential cryptanalysis applies to all proposed implementations.

Consider multiple inputs I1, I2, . . . , Ik and the evolution of
differences between them: Ia ⊕ Ib.

S S S S

MixColumn

K

Q

P I1
I2

I232

· · ·

O1

O2

O232

· · ·

I

O

• Suppose P(Ia ⊕ Ib) is non-zero in only one S-box;
• Such input pairs form a linear space;
• The output differences form a matrix of low rank.



Attack

Consider multiple inputs I1, I2, . . . , Ik and the evolution of
differences between them: Ia ⊕ Ib.

S S S S

MixColumn

K

Q

P I1
I2

I232

· · ·

O1

O2

O232

· · ·

I

O

We retrieve P and Q up to linear equivalence, and then just guess
the key bytewise.

With other optimizations, the entire key can be extracted from
tables in 230 simple operations (seconds on a PC).



Attack

S S S S

MixColumn

K

Q

P I1
I2

I232

· · ·

O1

O2

O232

· · ·

I

O

Here we have only one nonlinear layer. Even 3 nonlinear layers are
not enough [Biryukov-Shamir’01].



Reasons for failure

Why table-based approach fails for AES? Recall the structure:

S S S S

MixColumn

K
subkey

injection

nonlinear

linear

S32 S32 S32 S32K
1 round

• Small tables contain too little key material;
• Hiding entire key would require enormously large tables.



Other proposals

White-box implementation of AES
(2002):
• Attack on the first variant
[Billet’04];

• Improved variants [Bringer’06,
Karroumi’11];

• Attacks on improved variants
[DeMulder’10,’12,’13].

White-box implementation of DES
(2002):
• Attacks on “naked variant”
(fault attack [Jacob’02],
statistical attack [Link’05]);

• Improved variant;
• Attacks on improved variant
[Goubin’07,Wyseur’07].

All attacks have practical complexity.



So is everything broken?

Principally, yes



So is everything broken?

Principally, yes



Proprietary solutions

Still, many proprietary solutions available at the market:
• SafeNet Sentinel;
• Irdeto Cloakware Security Kernel;
• Arxan TransformIT;
• whiteCryption MCFACT;
• Microsemi’s Whiteboxcrypto.

They probably combine academic proposals with ad-hoc
obfuscation techniques.

No public attacks.



Proprietary solutions

Still, many proprietary solutions available at the market:
• SafeNet Sentinel;
• Irdeto Cloakware Security Kernel;
• Arxan TransformIT;
• whiteCryption MCFACT;
• Microsemi’s Whiteboxcrypto.

They probably combine academic proposals with ad-hoc
obfuscation techniques.

No public attacks.



We have talked about key recovery only. What about other
security goals?



Definitions

What security should we expect from a white-box implementation?

Weak WBC

Key-recovery security: an adversary
can not extract the key from the
code.
• Chronologically first definition;
• Apparently easier to achieve;

• Irrelevant when the code can be
extracted and isolated easily
(code lifting).

• Still makes sense if code lifting
is difficult (e.g., the software is
watermarked and traceable).

Strong WBC

Plaintext-recovery security: an
adversary can not invert the cipher,
i.e. decrypt given the encryption
routine.
• More sound definition;
• Applies also in the case of code
lifting;

• Almost identical to public-key
cryptography (may replace it).

• All existing proposals do not
comply.



Definitions

What security should we expect from a white-box implementation?

Weak WBC

Key-recovery security: an adversary
can not extract the key from the
code.
• Chronologically first definition;
• Apparently easier to achieve;
• Irrelevant when the code can be
extracted and isolated easily
(code lifting).

• Still makes sense if code lifting
is difficult (e.g., the software is
watermarked and traceable).

Strong WBC

Plaintext-recovery security: an
adversary can not invert the cipher,
i.e. decrypt given the encryption
routine.
• More sound definition;
• Applies also in the case of code
lifting;

• Almost identical to public-key
cryptography (may replace it).

• All existing proposals do not
comply.



Definitions

What security should we expect from a white-box implementation?

Weak WBC

Key-recovery security: an adversary
can not extract the key from the
code.
• Chronologically first definition;
• Apparently easier to achieve;
• Irrelevant when the code can be
extracted and isolated easily
(code lifting).

• Still makes sense if code lifting
is difficult (e.g., the software is
watermarked and traceable).

Strong WBC

Plaintext-recovery security: an
adversary can not invert the cipher,
i.e. decrypt given the encryption
routine.
• More sound definition;
• Applies also in the case of code
lifting;

• Almost identical to public-key
cryptography (may replace it).

• All existing proposals do not
comply.



New approaches to WBC



White-box implementation from scratch

Problems with existing ciphers:
• Not designed with white-box implementations in mind;
• Even key-recovery security is difficult to achieve.

What if we make a white-box suitable cipher from scratch?



Let’s start with key-recovery security (weak WBC).



Weak white-box proposal

It is apparently easy to hide a key in a small table.

32 ∗ t-bit block cipher with 128-bit
key:
• 20 rounds;
• Round: subkey injection +
32-bit S-box (taken from AES)+
linear transformation;

• Each key byte is used 5 times.
• Make a lookup table for all 232

inputs and given key.
• Mix the tables linearly if
wideblock-cipher is needed.

Security margin larger than in AES...

but trivially invertible.

S32

Lin

S32

Lin

S32

Lin

S32

Lin

S32

Lin

S32

Lin

128-bit key 20 rounds



Weak white-box proposal

It is apparently easy to hide a key in a small table.

32 ∗ t-bit block cipher with 128-bit
key:
• 20 rounds;
• Round: subkey injection +
32-bit S-box (taken from AES)+
linear transformation;

• Each key byte is used 5 times.
• Make a lookup table for all 232

inputs and given key.
• Mix the tables linearly if
wideblock-cipher is needed.

Security margin larger than in AES...

but trivially invertible.

S32

Lin

S32

Lin

S32

Lin

S32

Lin

S32

Lin

S32

Lin

128-bit key 20 rounds



Non-invertibitility problem

How to make the construction non-invertible without a key?

Lookup table problems:
• Lookup tables allow inputs up to 32 bits only;
• Any network of lookup tables are usually trivially invertible
(search in the table);

• We do not know how to do otherwise (open problem!).



Non-invertibility from functions

Can we use functions (one-way permutations) that are difficult to
invert?

• If it is easy to invert with a key, we face a trapdoor
permutation.

• Known candidates such as RSA

x → x3 (mod N)

are believed secure for N of thousand bits long only.
• Still open problem for smaller N and reasonable performance.



Non-invertibility from functions

Can we use functions (one-way permutations) that are difficult to
invert?
• If it is easy to invert with a key, we face a trapdoor
permutation.

• Known candidates such as RSA

x → x3 (mod N)

are believed secure for N of thousand bits long only.
• Still open problem for smaller N and reasonable performance.



Non-invertibility from functions

Can we use functions (one-way permutations) that are difficult to
invert?
• If it is easy to invert with a key, we face a trapdoor
permutation.

• Known candidates such as RSA

x → x3 (mod N)

are believed secure for N of thousand bits long only.
• Still open problem for smaller N and reasonable performance.



Lookup tables and polynomials

How about other algebraic constructions?

We know that inverting a random degree-2 vector-polynomial is
hard

(x1, x2, . . . , xn)→ (x1x2 + x3x7 + · · ·+ x8xn + xn−3, . . .).

The problem is that we can not make it random enough to hide a
trapdoor there.



Multivariate cryptography

Public-key cryptography with polynomials:

b = T ◦ a ◦ S , (1)

where S and T are key-dependent and secret, and a is a public
invertible polynomial of degree 2.
• Degree-2 polynomials of 128 boolean variables are compact
enough (less than 1 MByte), and there is no generic inversion
algorithm.

• However, virtually all variants of this scheme have been broken
because of properties of a: only a few families of invertible
polynomials are available (even without trapdoors).



Multivariate cryptography

Public-key cryptography with polynomials:

b = T ◦ a ◦ S , (1)

where S and T are key-dependent and secret, and a is a public
invertible polynomial of degree 2.
• Degree-2 polynomials of 128 boolean variables are compact
enough (less than 1 MByte), and there is no generic inversion
algorithm.

• However, virtually all variants of this scheme have been broken
because of properties of a: only a few families of invertible
polynomials are available (even without trapdoors).



Future directions

Some work in progress:

b = U ◦ a2 ◦ T ◦ a1 ◦ S

• Two nonlinear layers;
• Nonlinear transformations are
expanding and more random-looking;

• Noise (a3) added to defeat generic
decomposition algorithms.

S

T

U

a3

a1

a2

random
deg-4 polynomials



Summary



Summary

• White-box cryptography aims to obfuscate encryption or
decryption routines with embedded keys to make the key
extraction or inversion impossible;

• It is quite similar to public-key cryptography and generic
obfuscation;

• All academic proposals are weak;
• Many proprietary solutions available with unknown basis and
security level;

• Good solutions may not exist.



Questions?


	Man at the end
	Standard model of adversary
	Man at the end
	Details of protection schemes
	Key hiding problem

	White-Box cryptography
	White-box implementation
	Lookup table method
	White-boxing AES
	Cryptanalysis
	Market
	Weak and strong white-box implementations

	New approaches
	WBC from scratch
	Weak white-box candidate
	Non-invertibility problem
	White-box cryptography from polynomials


