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Outline

• Trust chains without bugs: what can go wrong?

• A chain of trust is a chain of parsers/loaders: 
how bug-less Babel breaks (badly!)

• Case studies:

• Any input table is a program (recall 29c3)

• ELF signing, Mach-O signing

• ELF kernel loader vs. RTLD/ld.so
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LangSec 
vs 

Chains of Trust
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Further Reflections on 
Trusting Trust

• Ken Thompson, “Reflections on Trusting 
Trust”, 1984
• (almost) 30 years ago 
• “You can't trust code that you did not 
totally create yourself”

• invisible links in the chain-of-trust 
(...“well-installed microcode bugs”...)
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Beyond the bugs in 
Trusting Trust

• What if there were no bugs in any given 
piece of sw/hw link of the trust chain?
• What if the code did exactly what the 

author intended, and 
• you can trust the author? 

• Would we solve “trusting trust”?
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Hell No!
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Because we are in Babel
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Dialects of Input?
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I can has ur trust chainz?
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Chain of Trust

• Chain:  execution environments of increasing 
complexity and power (from boot to full OS ABI)

• Goal: no unexpected computation throughout

• Same code/data bytes interpreted (i.e., executed) 
by several consecutive environments

• Two kinds of trust in data or code: 

• input (code/data) can be checked for effects 

• input (code/data) was signed & been 
immutable since someone checked it for effects
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Trusted bits: hard vs soft

• It’s hard to statically find out what code does 

• So we “freeze” (sign, etc.) code

• But we can’t freeze full binary images without 
impairing composition

• Libraries, dynamic modules, ASLR,...

• So we add “tables” to drive composition/
mutability mechanisms
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Any Table Is a Program

• “Tables” drive computation that locates signed 
ABI sections & their signatures

• Tables are bytecode for automata in signature 
verifiers/loaders/parsers 
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“Any input is a program”

• (Meta)data is just a program for code that 
interprets it. [Hopefully, analyzable for effects]

• Any sufficiently complex input data is 
indistinguishable from byte code driving a VM

• Parser code for any sufficiently complex input 
format is indistinguishable from a VM for its 
inputs (= “byte code”)

• Input validation is “runtime verification” of 
inputs as programs 
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What can go wrong?

• Input not well-defined/recognized 
=> code’s assumptions about “checked” 
input will be violated (bug/vuln)

• Input well-formed but so complex 
there’s no telling what it does

• Input is seen differently by 
different pieces of program/
toolchain
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Liberating the soft bits

tables,
”staging” 

data

composition,
mutation
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“Liberated soft bits”
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Relocator 
(“dl-machine”)

binfmt_elf

The ELF/ABI case study

Compiler

Linker

Loader

ld.so (RTLD)

#PF

DWARF
exceptions

#DF

Ken Thompson’s planted bug
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“Weird Machines”

• DWARF exception handling data + .eh_frame 
+ Glibc = Turing machine  (WOOT 2011)

• Relocation entries + dynamic symbols = 
Turing machine on process’ address space

• GDT + IDT + TSS + page tables  
+ #PF + #DF = Turing machine in ia32 
(WOOT 2013)

• More coming :) 
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Validation IS verification

• Tables are trusted when “valid” <=> 
          drive computation as expected

• Validation of tables is static analysis of 
computations they induce on parsers & loaders

• Code that interprets (“executes”) tables must be 
simple enough to allow trust via static analysis
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The machines of 
code signing
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Code signing

• Code signing -> primary trust evidence for binaries:
• “trustworthiness from static measurements”

• Developer/distributer digitally signs bytes in binary
• Integrity and attribution

• Easy to implement poorly
• It’s not just an algorithm, it’s a lifestyle

• Key management 
• Program in memory =/= program on disk

• It is merely influenced by what is on disk
• Many “machines” involved in verification

• Parsers, interpreters, validators
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Code signing machine 
composition
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On trusting signature 
validation

• Are our machines correctly implemented?
• Do we understand what our machines are 

capable of?
• Do different machines agree on how to parse/

understand input?
• Do the tables carry correct and complete data?
• Can we trust transformations made after this 

static analysis?
• Enforcement? 
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ELF case study

• Parsers
• Signature and signature metadata

• Interpreters/translators
• Binary -> hashes

• Validators
• Validate certificates, signatures, 

hashes
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ELF code signing

• Executable signing implementations
• bsign (Marc Singer)
• elfgpg (Bart Trojanowski)
• elfsign (skape)
• SignELF (Joe Fox)
• signelf (Vivek Goyal, proposed to kernel developers)
• elfsign (Solaris)
• ^ incompatible with each other

• Kernel module signing (3.7+, evolved over time)
• DigSig (until 2009)
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Are our machines 
correctly implemented?

• XML parsers (in the case of Mach-0)
• ASN.1 BER parsing (easy as pie, right?)
• Most written in C/C++ ( ... )
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How powerful are our 
machines?

• 29c3 “The Care and Feeding of Weird 
Machines in ELF Metadata”

• Metadata-driven root shell backdoor in 
ELF and Mach-O

• LOCREATE (skape)
• unpacker written in PE metadata
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Dropping a shell via an 
executable’s metadata

> 0016720: 7400 5f67 6574 7569 6400 5f73 6967 6e61  t._getuid._signa
---
> 0016740: 005f 7373 6361 6e66 005f 6578 6563 6c70  ._sscanf._execlp
> 0016750: 0012 1212 125f 7374 7263 6872 005f 7374  ....._strchr._st

ping backdoor in ELF

ping backdoor in Mach-O
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Can these be trusted?
bool is_elf (char* pb, size_t cb)
{
  if (cb < sizeof (HDR_ELF32))
    return false;

  check_byte_sex (pb);

  HDR_ELF32& header = *(HDR_ELF32*) pb;
  if (memcmp (header.rgbID, "\177ELF", 4) != 0
      || header.bitclass < 1
     ...
      || (   _v (header.cbEntryProgram)
!   && _v (header.cbEntryProgram) != sizeof (PROGRAM_ELF32))
      || _v (header.cbEntrySection) != sizeof (SECTION_ELF32)
      || _v (header.iSectionNames) >= _v (header.cEntrySection))
    return false;
 // *** FIXME: I don't recall why we need more than a header test.
 
(goes on to check section/program headers)

(from bsign)
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Parser differentials
• PKCS 7 crytographic message 
• ELF, and its multiple interpretations 

• Sections v. segments
• Multiple ways to locate a section

• Is this the signature you are looking for?

_debug("looking for sig section '%s'\n", modsign_note_section);
! for (loop = 1; loop < mvdata->nsects; loop++) {
! ! switch (sechdrs[loop].sh_type) {
! ! case SHT_NOTE:
! ! ! if (strcmp(mvdata->secstrings + sechdrs[loop].sh_name,
! ! ! !    modsign_note_section) == 0)
! ! ! ! mvdata->sig_index = loop;
! ! ! break;
! ! }
! }

(Kernel patch published by David Howells on 02 Dec, 2011)
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Data completeness & 
correctness

• How much of the file is signed?
! ! /* only look at interesting sections */
! ! if( !sname || s->shdr->sh_type == SHT_NULL ) {
! ! ! ! //|| s->shdr->sh_type == SHT_NOBITS ) {
! ! ! ES_PRINT("skipping null section\n");
! ! ! continue;
! ! }
! ! /* skip over the .pgptab and .pgpsig sections */

! if( !strcmp( sname, ".pgptab" )
! ! ! ! || !strcmp( sname, ".pgpsig" ) ) {
! ! ! ES_PRINT(skipping internal section\n")
! ! ! continue;
! ! }
(from elfgpg)
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Data completeness & 
correctness

• We cannot sign the signatures, but they 
are loaded

! // Include the ELF header, but with the number of sections set minus one,
! // under the assumption that any binary having its checksum
! // calculated will already have a signature header added to it.
! // Yes, I can hear you screaming now.  This makes my life easier. :P
! //
! // Note that elfsign, the tool, always creates the signature section before
! // calculating the checksum.
! elfHeader = melf_elfGetRaw(melf);

! numSections        = melf_elfGetSectionHeaderCount(melf);
! sectionTableOffset = melf_elfGetSectionHeaderOffset(melf);

! melf_elfSetSectionHeaderCount(melf, numSections - 1);
! melf_elfSetSectionHeaderOffset(melf, 0);

! (from elfsign)
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What about 
Mach-O code signing?
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Mach-O code signing 
data

Signature metadata

Internal Requirements
(special bytecode)

Entitlements (XML)

Hashes

Signature
(ASN.1 BER encoded 
derived from PKCS 7)

//require Apple's Perl interpreter
host => anchor apple and identifier com.apple.perl 
designated => anchor /my/root and identifier com.bar.foo

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
  "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
    <key>com.apple.security.app-sandbox</key>
    <true/>
...

c8a47e06c8372dca11ab0bf03f121e1f69638a54

   SignedData ::= SEQUENCE {
     version CMSVersion,
     digestAlgorithms DigestAlgorithmIdentifiers,
     encapContentInfo EncapsulatedContentInfo,
     certificates [0] IMPLICIT CertificateSet OPTIONAL,
     crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
     signerInfos SignerInfos }
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“You can't trust code that you 
did not totally create yourself”

corollary: You can’t trust code that you did 
not totally load yourself
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Parser differentials
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Chain of trust = chain 
of parsers

• Parser differentials break chains of trust

• Two views of the same data => confusion
• Android Master Key,  http://saurik.com/id/{17,18,19}

• Package structure seen differently by 
signature verifier & installer (Java vs C++)

• Mach-O signed loading

• Linux kernel module signing

• Even Linux  ld.so  vs.  kernel!
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Case study: ELF ABI chain

• How many ELF parsers in ABI toolchain?
• Do they all see the same view of sections/

segments?
• Kernel’s  binfmt_elf  loader vs userland  ld.so
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Double the parsing, 
double the fun

ELF

PHDRS

PHDRS

Linux kernel
loader

RTLD (ld.so)
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Program headers

• PT_LOAD maps bytes to address range

• Implementation: mmap() 

• Evad3rs noted that (fixed) mmap replaces 
existing mappings

• Order of PT_LOAD is important, but 
that’s not in the spec.

• Automaton,  not just data
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Does this look like a 
parser to you?

/*From binfmt_elf.c, Linux 3.4, GPLv2*/
elf_phdata = kmalloc(size, GFP_KERNEL);
kernel_read(bprm->file, loc->elf_ex.e_phoff, (char 
*)elf_phdata, size)
for(phdrs...){
/*..., scans for PT_INTERP and PT_LOAD*/
if(phdr->p_type == PT_LOAD)
if (!load_addr_set) {
   load_addr = (elf_ppnt->p_vaddr - elf_ppnt-
>p_offset);
   load_addr_set = 1;
 }
}
NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 
                   /*^^^^^^^^^^^^^^^^^^^^^^^^^FAIL*/
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LD.so phdr
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The birth of an Elf

1. Kernel reads PHDR table into buffer
2. mmap PT_LOADS
3. Loads PT_INTERP (ld.so)
4. writes (addr of first PT_LOAD)+ 

hdr.phoff to loader (“AUX vector”)
5. ld.so looks at aux vector and processes 

PHDR table 
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PHDR bug

• Works if program headers in first segment.

• Otherwise, points to some other memory

• We can “finger-paint” memory to our liking, 
and ld.so will use different PHDRS

• Hide your PHDRs, the reverse engineers are 
coming!
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Crafted file
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Demo: .so backdoor

• Fun Fact: you can execute .so files (try /
lib/libc.so.6)

• Kernel parser for exec(), different parser 
in ld.so for .so 

• POC loads a different library (libevil.so) 
when loaded by kernel
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Rewriting programs in 
memory with ld.so?

• We control ld.so’s idea of all relevant 
sections: GOT, dyn symbols, ...

• ld.so resolves (what it thinks are) symbols, 
writes (what it thinks is) GOT

• Now we can rewrite a loading program via 
only crafted .dynamic + library symbols
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“Trusting 
Trust” in Babel

• Trusting computers is not only about 
bugs! Bugs are part of a problem, but not 
by far all of it

• Complex data formats  >>  bugs 

• There is no “chain of trust” in Babel!
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Solutions for Babel

• Squeeze complexity out of data until it stops 
being “code equivalent” 

• UEFI? Software package formats?

• Hobble unexpected computation by 
blocking implicit flows 

• (see our ELFbac TR http://elfbac.org/)

• Use new hardware security primitives to 
isolate parsers
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Thank you

IEEE SPW 2014 LangSec workshop, 
                      May 18, 2014

Collocated with IEEE Secuity & Privacy 
Symposium 2014

http://spw14.langsec.org/
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