
Weird Machines and
revisiting

“Trusting Trust”
for binary toolchains

Julian Bangert, Rebecca Shapiro,
Sergey Bratus

Dartmouth College

Saturday, December 28, 13

Outline

• Trust chains without bugs: what can go wrong?

• A chain of trust is a chain of parsers/loaders:
how bug-less Babel breaks (badly!)

• Case studies:

• Any input table is a program (recall 29c3)

• ELF signing, Mach-O signing

• ELF kernel loader vs. RTLD/ld.so

Saturday, December 28, 13

LangSec
vs

Chains of Trust

Saturday, December 28, 13

Further Reflections on
Trusting Trust

• Ken Thompson, “Reflections on Trusting
Trust”, 1984
• (almost) 30 years ago
• “You can't trust code that you did not
totally create yourself”

• invisible links in the chain-of-trust
(...“well-installed microcode bugs”...)

Saturday, December 28, 13

Beyond the bugs in
Trusting Trust

• What if there were no bugs in any given
piece of sw/hw link of the trust chain?
• What if the code did exactly what the

author intended, and
• you can trust the author?

• Would we solve “trusting trust”?

Saturday, December 28, 13

Hell No!

Saturday, December 28, 13

Because we are in Babel

Saturday, December 28, 13

Dialects of Input?

Saturday, December 28, 13

I can has ur trust chainz?

Saturday, December 28, 13

Chain of Trust

• Chain: execution environments of increasing
complexity and power (from boot to full OS ABI)

• Goal: no unexpected computation throughout

• Same code/data bytes interpreted (i.e., executed)
by several consecutive environments

• Two kinds of trust in data or code:

• input (code/data) can be checked for effects

• input (code/data) was signed & been
immutable since someone checked it for effects

Saturday, December 28, 13

Trusted bits: hard vs soft

• It’s hard to statically find out what code does

• So we “freeze” (sign, etc.) code

• But we can’t freeze full binary images without
impairing composition

• Libraries, dynamic modules, ASLR,...

• So we add “tables” to drive composition/
mutability mechanisms

Saturday, December 28, 13

Any Table Is a Program

• “Tables” drive computation that locates signed
ABI sections & their signatures

• Tables are bytecode for automata in signature
verifiers/loaders/parsers

Saturday, December 28, 13

“Any input is a program”

• (Meta)data is just a program for code that
interprets it. [Hopefully, analyzable for effects]

• Any sufficiently complex input data is
indistinguishable from byte code driving a VM

• Parser code for any sufficiently complex input
format is indistinguishable from a VM for its
inputs (= “byte code”)

• Input validation is “runtime verification” of
inputs as programs

Saturday, December 28, 13

What can go wrong?

• Input not well-defined/recognized
=> code’s assumptions about “checked”
input will be violated (bug/vuln)

• Input well-formed but so complex
there’s no telling what it does

• Input is seen differently by
different pieces of program/
toolchain

Saturday, December 28, 13

Liberating the soft bits

tables,
”staging”

data

composition,
mutation

Saturday, December 28, 13

“Liberated soft bits”

Saturday, December 28, 13

Relocator
(“dl-machine”)

binfmt_elf

The ELF/ABI case study

Compiler

Linker

Loader

ld.so (RTLD)

#PF

DWARF
exceptions

#DF

Ken Thompson’s planted bug

Saturday, December 28, 13

Relocator
(“dl-machine”)

binfmt_elf

The ELF/ABI case study

Compiler

Linker

Loader

ld.so (RTLD)

#PF

DWARF
exceptions

#DF

Saturday, December 28, 13

Relocator
(“dl-machine”)

binfmt_elf

The ELF/ABI case study

Compiler

Linker

Loader

ld.so (RTLD)

#PF

DWARF
exceptions

#DF

Saturday, December 28, 13

“Weird Machines”

• DWARF exception handling data + .eh_frame
+ Glibc = Turing machine (WOOT 2011)

• Relocation entries + dynamic symbols =
Turing machine on process’ address space

• GDT + IDT + TSS + page tables
+ #PF + #DF = Turing machine in ia32
(WOOT 2013)

• More coming :)

Saturday, December 28, 13

Validation IS verification

• Tables are trusted when “valid” <=>
 drive computation as expected

• Validation of tables is static analysis of
computations they induce on parsers & loaders

• Code that interprets (“executes”) tables must be
simple enough to allow trust via static analysis

Saturday, December 28, 13

The machines of
code signing

Saturday, December 28, 13

Code signing

• Code signing -> primary trust evidence for binaries:
• “trustworthiness from static measurements”

• Developer/distributer digitally signs bytes in binary
• Integrity and attribution

• Easy to implement poorly
• It’s not just an algorithm, it’s a lifestyle

• Key management
• Program in memory =/= program on disk

• It is merely influenced by what is on disk
• Many “machines” involved in verification

• Parsers, interpreters, validators

Saturday, December 28, 13

Code signing machine
composition

Saturday, December 28, 13

On trusting signature
validation

• Are our machines correctly implemented?
• Do we understand what our machines are

capable of?
• Do different machines agree on how to parse/

understand input?
• Do the tables carry correct and complete data?
• Can we trust transformations made after this

static analysis?
• Enforcement?

Saturday, December 28, 13

ELF case study

• Parsers
• Signature and signature metadata

• Interpreters/translators
• Binary -> hashes

• Validators
• Validate certificates, signatures,

hashes

Saturday, December 28, 13

ELF code signing

• Executable signing implementations
• bsign (Marc Singer)
• elfgpg (Bart Trojanowski)
• elfsign (skape)
• SignELF (Joe Fox)
• signelf (Vivek Goyal, proposed to kernel developers)
• elfsign (Solaris)
• ^ incompatible with each other

• Kernel module signing (3.7+, evolved over time)
• DigSig (until 2009)

Saturday, December 28, 13

Are our machines
correctly implemented?

• XML parsers (in the case of Mach-0)
• ASN.1 BER parsing (easy as pie, right?)
• Most written in C/C++ (...)

Saturday, December 28, 13

How powerful are our
machines?

• 29c3 “The Care and Feeding of Weird
Machines in ELF Metadata”

• Metadata-driven root shell backdoor in
ELF and Mach-O

• LOCREATE (skape)
• unpacker written in PE metadata

Saturday, December 28, 13

Dropping a shell via an
executable’s metadata

> 0016720: 7400 5f67 6574 7569 6400 5f73 6967 6e61 t._getuid._signa

> 0016740: 005f 7373 6361 6e66 005f 6578 6563 6c70 ._sscanf._execlp
> 0016750: 0012 1212 125f 7374 7263 6872 005f 7374 _strchr._st

ping backdoor in ELF

ping backdoor in Mach-O

Saturday, December 28, 13

Can these be trusted?
bool is_elf (char* pb, size_t cb)
{
 if (cb < sizeof (HDR_ELF32))
 return false;

 check_byte_sex (pb);

 HDR_ELF32& header = *(HDR_ELF32*) pb;
 if (memcmp (header.rgbID, "\177ELF", 4) != 0
 || header.bitclass < 1
 ...
 || (_v (header.cbEntryProgram)
! && _v (header.cbEntryProgram) != sizeof (PROGRAM_ELF32))
 || _v (header.cbEntrySection) != sizeof (SECTION_ELF32)
 || _v (header.iSectionNames) >= _v (header.cEntrySection))
 return false;
 // *** FIXME: I don't recall why we need more than a header test.

(goes on to check section/program headers)

(from bsign)

Saturday, December 28, 13

Parser differentials
• PKCS 7 crytographic message
• ELF, and its multiple interpretations

• Sections v. segments
• Multiple ways to locate a section

• Is this the signature you are looking for?

_debug("looking for sig section '%s'\n", modsign_note_section);
! for (loop = 1; loop < mvdata->nsects; loop++) {
! ! switch (sechdrs[loop].sh_type) {
! ! case SHT_NOTE:
! ! ! if (strcmp(mvdata->secstrings + sechdrs[loop].sh_name,
! ! ! ! modsign_note_section) == 0)
! ! ! ! mvdata->sig_index = loop;
! ! ! break;
! ! }
! }

(Kernel patch published by David Howells on 02 Dec, 2011)

Saturday, December 28, 13

Data completeness &
correctness

• How much of the file is signed?
! ! /* only look at interesting sections */
! ! if(!sname || s->shdr->sh_type == SHT_NULL) {
! ! ! ! //|| s->shdr->sh_type == SHT_NOBITS) {
! ! ! ES_PRINT("skipping null section\n");
! ! ! continue;
! ! }
! ! /* skip over the .pgptab and .pgpsig sections */

! if(!strcmp(sname, ".pgptab")
! ! ! ! || !strcmp(sname, ".pgpsig")) {
! ! ! ES_PRINT(skipping internal section\n")
! ! ! continue;
! ! }
(from elfgpg)

Saturday, December 28, 13

Data completeness &
correctness

• We cannot sign the signatures, but they
are loaded

! // Include the ELF header, but with the number of sections set minus one,
! // under the assumption that any binary having its checksum
! // calculated will already have a signature header added to it.
! // Yes, I can hear you screaming now. This makes my life easier. :P
! //
! // Note that elfsign, the tool, always creates the signature section before
! // calculating the checksum.
! elfHeader = melf_elfGetRaw(melf);

! numSections = melf_elfGetSectionHeaderCount(melf);
! sectionTableOffset = melf_elfGetSectionHeaderOffset(melf);

! melf_elfSetSectionHeaderCount(melf, numSections - 1);
! melf_elfSetSectionHeaderOffset(melf, 0);

! (from elfsign)

Saturday, December 28, 13

What about
Mach-O code signing?

Saturday, December 28, 13

Saturday, December 28, 13

Mach-O code signing
data

Signature metadata

Internal Requirements
(special bytecode)

Entitlements (XML)

Hashes

Signature
(ASN.1 BER encoded
derived from PKCS 7)

//require Apple's Perl interpreter
host => anchor apple and identifier com.apple.perl
designated => anchor /my/root and identifier com.bar.foo

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.security.app-sandbox</key>
 <true/>
...

c8a47e06c8372dca11ab0bf03f121e1f69638a54

 SignedData ::= SEQUENCE {
 version CMSVersion,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
 signerInfos SignerInfos }

Saturday, December 28, 13

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

“You can't trust code that you
did not totally create yourself”

corollary: You can’t trust code that you did
not totally load yourself

Saturday, December 28, 13

Parser differentials

Saturday, December 28, 13

Chain of trust = chain
of parsers

• Parser differentials break chains of trust

• Two views of the same data => confusion
• Android Master Key, http://saurik.com/id/{17,18,19}

• Package structure seen differently by
signature verifier & installer (Java vs C++)

• Mach-O signed loading

• Linux kernel module signing

• Even Linux ld.so vs. kernel!

Saturday, December 28, 13

http://www.saurik.com/id/18
http://www.saurik.com/id/18

Case study: ELF ABI chain

• How many ELF parsers in ABI toolchain?
• Do they all see the same view of sections/

segments?
• Kernel’s binfmt_elf loader vs userland ld.so

Saturday, December 28, 13

Double the parsing,
double the fun

ELF

PHDRS

PHDRS

Linux kernel
loader

RTLD (ld.so)

Saturday, December 28, 13

Program headers

• PT_LOAD maps bytes to address range

• Implementation: mmap()

• Evad3rs noted that (fixed) mmap replaces
existing mappings

• Order of PT_LOAD is important, but
that’s not in the spec.

• Automaton, not just data

Saturday, December 28, 13

Does this look like a
parser to you?

/*From binfmt_elf.c, Linux 3.4, GPLv2*/
elf_phdata = kmalloc(size, GFP_KERNEL);
kernel_read(bprm->file, loc->elf_ex.e_phoff, (char
*)elf_phdata, size)
for(phdrs...){
/*..., scans for PT_INTERP and PT_LOAD*/
if(phdr->p_type == PT_LOAD)
if (!load_addr_set) {
 load_addr = (elf_ppnt->p_vaddr - elf_ppnt-
>p_offset);
 load_addr_set = 1;
 }
}
NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 /*^^^^^^^^^^^^^^^^^^^^^^^^^FAIL*/

Saturday, December 28, 13

LD.so phdr

Saturday, December 28, 13

The birth of an Elf

1. Kernel reads PHDR table into buffer
2. mmap PT_LOADS
3. Loads PT_INTERP (ld.so)
4. writes (addr of first PT_LOAD)+

hdr.phoff to loader (“AUX vector”)
5. ld.so looks at aux vector and processes

PHDR table

Saturday, December 28, 13

PHDR bug

• Works if program headers in first segment.

• Otherwise, points to some other memory

• We can “finger-paint” memory to our liking,
and ld.so will use different PHDRS

• Hide your PHDRs, the reverse engineers are
coming!

Saturday, December 28, 13

Crafted file

Saturday, December 28, 13

Demo: .so backdoor

• Fun Fact: you can execute .so files (try /
lib/libc.so.6)

• Kernel parser for exec(), different parser
in ld.so for .so

• POC loads a different library (libevil.so)
when loaded by kernel

Saturday, December 28, 13

Rewriting programs in
memory with ld.so?

• We control ld.so’s idea of all relevant
sections: GOT, dyn symbols, ...

• ld.so resolves (what it thinks are) symbols,
writes (what it thinks is) GOT

• Now we can rewrite a loading program via
only crafted .dynamic + library symbols

Saturday, December 28, 13

“Trusting
Trust” in Babel

• Trusting computers is not only about
bugs! Bugs are part of a problem, but not
by far all of it

• Complex data formats >> bugs

• There is no “chain of trust” in Babel!

Saturday, December 28, 13

Solutions for Babel

• Squeeze complexity out of data until it stops
being “code equivalent”

• UEFI? Software package formats?

• Hobble unexpected computation by
blocking implicit flows

• (see our ELFbac TR http://elfbac.org/)

• Use new hardware security primitives to
isolate parsers

Saturday, December 28, 13

Thank you

IEEE SPW 2014 LangSec workshop,
 May 18, 2014

Collocated with IEEE Secuity & Privacy
Symposium 2014

http://spw14.langsec.org/

Saturday, December 28, 13

http://spw14.langsec.org
http://spw14.langsec.org

