
Building an RF
Scanner Array

(with COTS parts)

Andrew R. Reiter
Researcher, Veracode

First Off
�  There is entirely too much to cover in one session:

�  Some universities dedicate entire courses to some of
the topics covered

�  Do not worry if you feel confused
�  be patient -- read more after the talk AND!

�  Join the radiopunks mailing list (see end of slides)

Increase in RF Traffic

�  Reorganization of the Frequency
allocation table

�  Cost reduction in RF capable
devices

�  Non-FCC (other) licensed devices

 that can TX.

Challenges for Us

�  What is being transmitted Over-the-Air (OTA)?

�  Should what’s in the air, be in the air?

It is our Duty

�  To first better understand:
�  of channel frequency occupancy

�  probability distributions related to channel usage
�  & the expected protocols in different frequency

ranges

…All so we can be aware of existence of signal…
THEN we work toward understanding signal

Governments are listening, so should WE.

Feel it is my Duty

�  To talk about my current array & previous attempts:
�  Failure, success, and goals…

�  So others can build their own…

�  In order to increase knowledge of OTA use

�  Hopefully you will get motivated to:
�  build an array and

�  participate in a world wide RF sense network!

Innocent Motivation: I live in the Woods…

…and found this on a hike near my house...

made me wonder what else I couldn’t see!

…Drove me to build a scanning array

RF Scanning Array
�  A group of RF RXing devices with the purpose of

discovering signals in the RF spectrum.
�  Just power analysis to reveal noise floor and spikes

�  Separate is:
�  demodulation of IQ data to protocols (or up to

application layer data)
�  identification of protocols

�  Recognition of signal existence is the 1st step!

Basic Array Components

�  Software controllable RF receiving capable device(s)
�  Has ADC producing IQ data

�  Antenna(s)

�  Cabling/Adapters for AntennaßàRF RXer(s)

�  Computer able to
�  control the RF devices and

�  handle IQ data

Component Choice Problem

�  Frequency ranges of the RXing device

�  Antennas work best for specific ranges

�  Multiple RXing devices/antenna vs many antenna

�  Storing data? Prepare for lots of it or lose history

�  VMs not an option for this: I/O hell.

Yes, there’s a lot to consider

�  Start small…. with a frequency range that can
easily build/buy hardware for
�  Target VHF (30-300M) & lower ends of the UHF

(300M-3G) range:
�  Easier to find cheaper parts

�  Lots of fun stuff to “see” in this range:
�  POCSAG, ADS-B, etc

�  …Then expand your desired range support.

RF Receiving Hardware
So you know the basis of what I used.

RF Rxers I Used

�  Variety of Realtek RTL2832u-based [6] USB sticks

�  Tuner chips used ranged from Elonics 4k to Rafael
Micro R280D.
�  Depending on the tuner, get different support…

�  At best, looking at 50MHz-2.2GHz with some gaps

�  Theory support 3.2M/s, but is well-known that will
have data loss … use 2.4M/s

Some examples

PAL Type Tend to Break

•  This is due to weight of cabling..

•  Though quite easy to solder back in place…

Cables & Adapters
�  Coax (rg6 is fine)

�  Worry about socket quality!

�  Adapters:
�  F-type à PAL
�  SMA à MCX

�  PL-259 UHF plugs

All can be painful to get when you have all the other
hardware… buy a bunch at once so you have extra…
Ordering from eBay usually means ordering from China
and 3weeks.

Antennas
�  Depends on your:

�  Needs

�  Location
�  What you know about your surrounding area

�  Many different types for:
�  Very specific freq ranges vs wide-range

�  (high-gain) directional vs omnidirectional

I have used mostly discone omnidirectional but am
slowly adding directional to my array

Discone antenna*

*http://www.zcg.com.au/Images/base/b51h-discone-antenna.jpg
**http://www.comprodcom.com/data/images/Antenne_de_base/480-70.jpg
***http://en.wikipedia.org/wiki/File:LPDA-Antenna.jpg

Yagi antenna**

Log-periodic***

Antennas
�  Build your own with household items!

�  Some pine wood

�  Screws
�  Coat hangars (stripped of plastic)

And you’re basically there…

For an example on a HDTV OTA build:

http://www.youtube.com/watch?v=7j80C9d1o9Y
(thanks to the folks at CBC Ottawa for this!)

Antennas & Mounting
�  Mounting height is crucial [4]:

�  Trees/buildings can block signal!
�  Refraction is testy, so be aware of your surroundings
�  Try to mount on a roof or up in a tree (above other trees)
�  There are rules of thumb [5] on height & distance to TXer

�  PVC is:
�  cheap / can mount most antennas, AND
�  raises the height of your antenna

�  Ground them: protect you and your equipment

�  Label them: protect your sanity

PVC Mount for Omni

Antennas on PVC on shelf
on big hill but with trees :-/

Labeling is important!

Grounding & Labeling

Antennas & Multiplexing
�  Not always easy/possible to mount all à use multiplexor

�  Multiplexor blocks split a source signal to N output signals

�  higher the frequency, higher the cost

�  Know this trade-off:

�  Non-amplified m-plexors result in dB loss, but

�  ampflied m-plexors are noisy … choose your battle.

�  I opt to go with amplified.

Multiplexor Labeling

How else would I know what goes where? It’s a mess of cables!

Finally end at Slave Nodes

Don’t Buy Tetra-USB Cable

•  China eBay specials!

•  These are a fail

•  Using 1 with 4 RTLs caused numerous

crashes to occur in libusb and libc

•  Excuse? I wanted Octo-SDR!

•  Don’t do this! Save your money!

Software Side

Obligatory Note: it is possible that some other code will do similar work
to mine, but when I was starting my work, there was none. For example,
GQRX could conceivably support more than one device now, etc ….

Use Distributed Approach
�  Lot’s going on for one system…

�  Positives:
�  Spread out

�  the USB I/O load (the RF capture)
�  CPU intensive FFT
�  Data storage

�  Negatives:
�  Networking costs (cable / hardware)
�  Machine costs (power / hardware)
�  Possible complexity increase

Distributed Designs Tried

1.  Master-Slave with pyrtlsdr [2] driving the USB
dongles.

2.  Master-Slave with each dongle associated with a
rtl_tcp process and GNURadio [3] doing workflow

3.  Master-Slave with each dongle associated to a C
developed code heavily based on the Osmocom
librtlsdr and rtl_* utilities.

In Each Design
�  Slave nodes are

�  only machines with RTL-SDRs in them
�  RX RF data and either:

�  Send IQ data to master, or

�  FFT and send power data to master

�  Master node is
�  primary interaction point for the array
�  intended to control the actions of the RTL slaves.
�  holder of all RX’d data: IQ or Power values
�  intended aid in display of resultant data

�  GUI, or
�  Scripts to generate reports

High Level Differences

�  How data is captured:
�  PyRTLSDR vs. rtl_tcp vs. librtlsdr+other

�  Where IQ data is analyzed:
�  All on master vs. hybridized master-slave

�  Functionality:
�  Single purpose scan-only vs. multi-purpose

The first 2 designs listed
are discussed less as I
settled on the 3rd after
implementation of all

1. Master with
PyRTLSDR nodes

•  Each slave process is given some block
of the spectrum from 50-900MHz:
•  Then each is broken to 2M chunks

•  Slaves capture IQ data and push to the
Master

•  Master attempts real time analysis on
data to find spiking frequencies:
•  => FFT per capture per slave on one machine

•  Then add the network IO & disk IO

The problem with multiple channels hitting
one machine raw is the ability to keep up!

Master

S1 S2

antennas

2. Master with rtl_tcp nodes
�  Each slave runs rtl_tcp for each dongle

�  Pipes the IQ data over the network

�  Removes Python bindings layer

�  Master runs python script, generated by GNURadio
Companion [3], that uses
�  OsmoSDR source for each rtl_tcp instance.
�  FFT blocks à frequency domain

�  Custom written GR sink block:
�  aggregates the FFT’d data

�  performs logging / basic analysis

rtl_tcp method

�  It will try to crush your network and your single
machine trying to process multiple nodes.

�  Periodic crashes from deep within GNU Radio
�  Unsuccessful at debugging this

�  Bonus points: get to use all the great blocks that
come with GNU Radio!
�  So some flexibility in design

3. Master with custom nodes

DB master

S1

S2

S3 Topology of most successful system developed
(of the 4). Simple ethernet connectivity.

antennas

4 dongles / slave

Design Goal

�  Push all FFT work to slaves to reduce network load

�  Increase functionality without taking away from the
power analysis:
�  Add raw IQ file capturing
�  Add real time streaming of IQ data via rtl_tcp

�  Take advantage of
�  librtlsdr and rtl_* tools
�  GNU Radio framework features

Slave Nodes
�  Each slave runs instance of megarrmon (mega-

array-monitor) for each dongle.

�  Slave’s primary goal is to:
1.  Capture RF data from RTL-SDR
2.  Transform data to frequency domain (FFT)

3.  Insert power values into the database

�  The master can command the slave nodes to:
�  Do raw IQ capture to a file & upload to NFS share, &
�  Start rtl_tcp on given port.

Slave Nodes (as seen earlier)

Database Node
�  The database is there for:

�  Node information:
�  Device index
�  antenna capability
�  latitude/longitude
�  Status

�  Frequency block distribution
�  Conduit for command dissemination

�  Stop/start scan
�  Stop/start stream

�  Store power data

�  node/block dist config’d via script ahead of time

Master Node

�  The master is intended to:
�  Control the array via commands into DB:

�  start/stop/exit all or individual nodes

�  Direct node(s) to:
�  do raw captures to file

�  turn into a rtl_tcp streaming node

�  All of the above is done via a GUI

�  Act as NFS server for storage of raw capture files
�  GUI sources data from the database node

Master GUI

�  Power over spectrum graph
�  frequency vs. power (dB)

�  Dynamically configured view range
�  benefit: see active parts of spectrum

�  Power over time graph
�  Choose a frequency

�  “recent time” vs. power (dB)
�  benefit: see the pattern of power for a frequency

�  Both graphs refresh with new data…

Master GUI
�  Power Thresh Breakers ~~ Strong Signal Analysis

�  Set some dB value above the noise floor &

�  Set last N minutes to search through
�  And generates the list of frequencies breaking that

dB barrier

�  Launch GNURadio scripts for streaming nodes
�  Currently not much supported except WB FM demod

�  Point-n-Click raw IQ capture to file

Master UI

Can you see the 3 different antenna blocks in graph? :-/

My Working Array
�  Currently have a 3 slave node (+1 master +1 DB)

system
�  Scanning 50MHz to 900MHz

�  4 RTL-SDRs per node = (12) 2MHz channels
�  3 omnidirectional UHF/VHF antenna

�  3 4-way amplified multiplexors

�  I have had it running for >7 days at a time with no
memory leaks/crashes; & ran many other times for
just few days

Node Hardware / Software
�  Master

�  64 bit with 8GB RAM

�  Big disk for DB

�  Slaves
�  Mix of 32 bit and 64 bit machines
�  Not more than 2GB RAM in each

�  All running Linux

�  Idea is to use machines just laying about!

My Working Array (cont)

�  50-900MHz block is split into 3 chunks & assigned
to a slave host

�  Each sub-block is broken into more blocks &
assigned to each actual RX device on the slave

�  Then breaks those chunks down into the 2M
bandwidth samples sizes

Freq Breakdown
50MHz

900MHz

Slave 1

Slave 2

Slave 2

900MHz

616MHz

333MHz

50MHz Rtl 0

Rtl 1

Rtl 2

Rtl 3

Rtl 0

Rtl 1

Rtl 2

Rtl 3

Rtl 0

Rtl 1

Rtl 2

Rtl 3

50-120

121-190

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example: choose freq & stream

I removed video due to slide size & PDF conversion.
I can upload or refilm one this week (for better
quality/smaller size) OR build your array ;-)

Example: change dB thresh, select
freq, & stream

I removed video due to slide size & PDF conversion.
I can upload or refilm one this week (for better
quality/smaller size) OR build your array ;-)

Minimal Result Data
�  Often performance results depend on what the

array is doing:
�  Only scanning?

�  Is a node, that usually scans, doing raw IQ captures?

�  The system is doing approximately:
�  1 power sample per frequency / 3 seconds
�  1GB increase in DB size per hour

�  These are wimpy stats … not concrete.

Next for this Array
�  SW:

�  GUI works fine but is a WIP … waiting to release when
finish one or three last items.

�  Automated alerting vs manual methods (just link a few
methods together)
�  PLEASE CONTACT ME IF WANT CODE NOW!!!

�  HW:
�  Adding support for 900MHz - 2.2GHz:

�  2 log-periodic & building corner reflectors for them:
�  Need cabling

�  Would result in (12) 2M channels in 50-900 and (6) 2M in
900-2200. Not exactly balanced, but ok.

POST TALK NOTE: Planning to do more work on
both FFT windows (overlay on boundaries) & more
work on detection (some methods I have not been
aware of). Thanks for chats on this with: @avian2

Log Periodic (LOGI)

Of course there is work to be done on
the planar nature of the reflectors

Need to mount on boom

Tough to see but the log-periodic is in my hand

Next Bigger Project
�  World Wide Sense Network:

�  Create multiple RF arrays around the world

�  Connect them to perform cross location RF sense
analysis

�  Goal:
�  Keep tabs on the occupancy distributions around the

globe

�  I INVITE YOU ALL TO HELP WITH THIS!

�  PLEASE email me at arr@watson.org if interested!

Thank you’s
�  Dimitri Stolnikov, Steve Markgraf, Hoernchen, and

Kyle Keen for releasing librtlsdr and rtl_* tool code.
�  Much of my slave code is based on their work.

�  Chris Eng of Veracode for supporting this project

�  cvoid for discussion (sadly he had to withdraw talk!)

�  t12 and aempirei for fruitful early discussion

�  You for listening and hopefully acting on this.
�  Mailing list radiopunks-join@lists.cw-complex.com

References
1.  RTL-SDR Osmocom, http://sdr.osmocom.org/trac/wiki/rtl-sdr

2.  Pyrtlsdr, https://github.com/roger-/pyrtlsdr

3.  GNU Radio, http://www.gnuradio.com

4.  Choosing a mounting site, http://www.hdtvprimer.com/antennas/siting.html

5.  Antennas & Propagation,
http://www.ccs.neu.edu/home/rraj/Courses/6710/S10/Lectures/
AntennasPropagation.pdf

6.  RTL2832u DVB-T COFDM,
http://www.realtek.com.tw/products/productsView.aspx?
Langid=1&PFid=35&Level=4&Conn=3&ProdID=257

