
Fast Internet-wide scanning
and its security applications

J. Alex Halderman
University of Michigan

Based on joint work
ZMap: Fast Internet-Wide Scanning and its Security Applications
Zakir Durumeric, Eric Wustrow, and J. Alex Halderman
22nd Usenix Security Symposium (Sec ’13), August 2013

Analysis of the HTTPS Certificate Ecosystem
Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex Halderman
13th Internet Measurement Conference (IMC ’13), October 2013

Elliptic Curve Cryptography in Practice
Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan Moore, Michael Naehrig, and Eric Wustrow
To appear. 18th Intl. Conf. on Financial Cryptography and Data Security (FC ’14), March 2014

Illuminating the Security Issues Surrounding Lights-Out Server Management
Anthony Bonkoski, Russ Bielawski, and J. Alex Halderman
7th Usenix Workshop on Offensive Technologies (WOOT ’13), August 2013

CAge: Taming Certificate Authorities by Inferring Restricted Scopes
James Kasten, Eric Wustrow, and J. Alex Halderman
17th Intl. Conf. on Financial Cryptography and Data Security (FC ’13), April 2013

Mining Your Ps and Qs: Widespread Weak Keys in Network Devices
Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman
21st Usenix Security Symposium (Sec ’12), August 2012

The Internet

Carna botnet Internet Census 2012

Previous research has shown promise of Internet-wide surveys
Internet-Wide Network Studies

Census and Survey of the Visible Internet (2008)

EFF SSL Observatory: A glimpse at the CA ecosystem (2010)

Mining Ps and Qs: Widespread weak keys in network devices (2012)

Carna botnet Internet Census (2012)

Previous research has shown promise of Internet-wide surveys
Internet-Wide Network Studies

Census and Survey of the Visible Internet (2008)

3 months to complete ICMP census (2200 CPU-hours)

EFF SSL Observatory: A glimpse at the CA ecosystem (2010)

3 months on 3 Linux desktop machines (6500 CPU-hours)

Mining Ps and Qs: Widespread weak keys in network devices (2012)

25 hours acoss 25 Amazon EC2 Instances (625 CPU-hours)

Carna botnet Internet Census (2012)

420,000 usurped hosts

What if…?

What if Internet surveys didn’t require heroic effort?

What if we could scan the HTTPS ecosystem every day?

What if we wrote a whole-Internet scanner from scratch?

an open-source tool that can port scan the entire
IPv4 address space from just one machine
in under 45 minutes with 98% coverage

With Zmap, an Internet-wide TCP SYN
scan on port 443 is as easy as:

$ zmap –p 443 –o results.txt
34,132,693 listening hosts
(took 44m12s)

97% of gigabit
Ethernet linespeed

Demo time!
I’ll do:

 $ zmap -T4 -p `printf "%d" 0x30c3`

You can do:

 $ tcpdump src port 12483

If you’re on a public IP address, you should see a SYN
from me by the end of the talk. (Look for 141.212/16.)

masscan
https://zmap.io bit.ly/14GZzcT

Talk Roadmap

ZMap Scanner

1. Architecture of ZMap

2. Characterizing Performance

Applications of High Speed Scanning

1. Globally Observable Weak Keys

2. Uncovering the CA Ecosystem

ZMap Architecture
Existing Network Scanners
Reduce state by scanning in batches
 - Time lost due to blocking
 - Results lost due to timeouts

Track individual hosts and retransmit
 - Most hosts will not respond

Avoid flooding through timing
 - Time lost waiting

Utilize existing OS network stack
 - Not optimized for immense
 number of connections

ZMap
Eliminate local per-connection state
 - Fully asynchronous components
 - No blocking except for network

Shotgun Scanning Approach
 - Always send n probes per host

Scan widely dispersed targets
 - Send as fast as network allows

Probe-optimized Network Stack
 - Bypass inefficiencies by
 generating Ethernet frames

Addressing Probes
Scan hosts according to random permutation.

Iterate over multiplicative group of integers modulo p.

How do we randomly scan addresses without excessive state?

Negligible State 4

6

2 3

1

5
4  5 mod 7 = 6

6  5 mod 7 = 2

2  5 mod 7 = 3

3  5 mod 7 = 1

1  5 mod 7 = 5

5  5 mod 7 = 4

1. Primitive Root

2. Current Location

3. First Address

1

2

4

8

5 10

9

7

3

6

1

7

5

2

3 10

4

6

9

8

Z*
11

Generator: 7

Z*
11

Generator: 2

Validating Responses
How do we validate responses without local per-target state?

Encode secrets into mutable fields of probe packets
 that will have recognizable effect on responses

receiver
MAC address

sender
MAC address length data

V sender
IP address data … IHL receiver

IP address

receiver
port

sender
port

sequence
number data ack.

number …

Ethernet

IP

TCP

Validating Responses
How do we validate responses without local per-target state?

Encode secrets into mutable fields of probe packets
 that will have recognizable effect on responses

receiver
MAC address

sender
MAC address length data

V sender
IP address data … IHL receiver

IP address

receiver
port

sender
port

sequence
number data ack.

number …

Ethernet

IP

TCP

Validating Responses
How do we validate responses without local per-target state?

Encode secrets into mutable fields of probe packets
 that will have recognizable effect on responses

receiver
MAC address

sender
MAC address length data

V sender
IP address data … IHL receiver

IP address

sender
port

sequence
number data … ack.

number
receiver
port

Ethernet

IP

TCP

Packet Transmission and Receipt

1. ZMap framework handles the hard work

2. Probe modules fill in packet details, interpret responses

3. Output modules allow follow-up or further processing

How do we make processing probes easy and fast?

Probe
Generation

Configuration,
Addressing,
 and Timing

Response
Interpretation

Packet Tx
(raw socket)

Packet Rx
(libpcap)

Output
Handler

Talk Roadmap

ZMap Scanner

1. Architecture of ZMap

2. Characterizing Performance

Applications of High Speed Scanning

1. Globally Observable Weak Keys

2. Uncovering the CA Ecosystem

How fast is too fast?
Scan Rate

No meaningful correlation between speed and response rate.

Slower scanning does not reveal additional hosts.

+/- 3%

TCP Port 443

Temporal Variation
Response rates show significant diurnal variation.

Is one probe sufficient?
Coverage

Response Rate

 1 Packet: 97.9%
2 Packets: 98.8%
3 Packets: 99.4%

We expect to see a
plateau in response
rate, regardless of
additional probes.

Treat as
Ground Truth

Zmap vs. Nmap

ZMap can scan more than 1300 times faster than the most
aggressive Nmap default configuration (“insane”)

Surprisingly, ZMap also finds more results than Nmap

Normalized
Coverage

Duration
(mm:ss)

Est. Internet
Wide Scan

Nmap (1 probe) 81.4% 24:12 62.5 days

Nmap (2 probes) 97.8% 45:03 116.3 days

ZMap (1 probe) 98.7% 00:10 1:09:35

ZMap (2 probes) 100.0% 00:11 2:12:35

Averages for scanning 1 million random hosts:

Why does ZMap find more hosts than Nmap?
Probe Response Times

Response Times

250 ms: < 85%
500 ms: 98.2%
1000 ms: 99.0%
8000 ms: 99.9%

500 ms
timeout

250 ms
timeout

Statelessness leads to both higher performance and increased coverage.

Talk Roadmap

ZMap Scanner

1. Architecture of ZMap

2. Characterizing Performance

Applications of High Speed Scanning

1. Globally Observable Weak Keys

2. Uncovering the CA Ecosystem

Enumerating Vulnerable Hosts

HD Moore disclosed vulnerabilities in several common
UPnP frameworks in January 2013.

Under 6 hours to code and run UPnP discovery scan.
Custom probe module, 150 SLOC.

We found that 3.34 M of 15.7 M
devices were vulnerable.

Compromise possible with
a single UDP packet!

Discovering UPnP Vulnerabilities En Masse

Enumerating Unadvertised Tor Bridges
Uncovering Hidden Services

Scanning has potential to uncover unadvertised services

We perform a Tor handshake with public IPv4 addresses
on port 9001 and 443

Identified >86% of live allocated
Tor bridges with a single scan

(Tor has developed obfsproxy that
listens on random ports to
counter this type of attack.)

Detecting Service Disruptions

Areas with >30% decrease
in listening hosts, port 443

October 29–31, 2013

Globally Observable Phenomenon

We considered the cryptographic keys used by HTTPS and SSH

There are many legitimate reason that hosts might share keys…

Uncovering weak cryptographic keys and poor entropy collection

HTTPS SSH

Live Hosts 12.8 million 10.2 million

Distinct RSA Public Keys 5.6 million 3.8 million

Distinct DSA Public Keys 6241 2.8 million

Shared Cryptographic Keys

We find that 5.6% of TLS hosts and 9.6% of SSH hosts share
keys in a vulnerable manner:

 - Default certificates and keys

 - Apparent entropy problems

What other, more serious, problems could be present if devices
aren’t properly collecting entropy?

Why are a large number of hosts sharing cryptographic keys?

Factoring RSA Public Keys

RSA Public Key: n = p  q, p and q are two large random primes

Most efficient known method of compromising
an RSA key is to factor n back to p and q

While n is normally difficult to factor, for

 N1 = p  q1 and N2= p  q2

we can trivially compute

 p = GCD(N1, N2)

What else could go wrong if devices aren’t collecting entropy?

Broken Cryptographic Keys

We find 2,134 distinct primes and compute the RSA
private keys for 64,081 (0.50%) of TLS hosts

Using another approach for DSA, we are able to compute
the private keys for 105,728 (1.03%) of SSH hosts

What was causing these vulnerable keys?

Why are a large number of hosts sharing cryptographic keys?

Most compromised keys are generated by
headless or embedded network devices

Identified devices from > 40 manufacturers

Linux /dev/urandom

Nearly everything uses /dev/urandom

Input Pool

Non-blocking
Pool /dev/urandom Time of boot

Keyboard /Mouse

Disk Access Timing
Only happens if Input Pool
contains more than 192 bits…

Time of boot

Problem 1: Embedded devices
may lack all these sources

Problem 2: /dev/urandom can
take a long time to “warm up”

Why are embedded systems generating broken keys?

Entropy first mixed
into /dev/urandom

OpenSSH seeds
from

/dev/urandom

Boot-Time Entropy
Hole

/dev/urandom may be predictable
for a period after boot.

Typical Ubuntu Server Boot
Why are embedded systems generating broken keys?

Moving Forward

Patches have been committed to the Linux 3.x Kernel

 - Use interrupts until other entropy is available

 - Mix in unique information such as MAC address

Manufacturers have been notified. DHS, ICS-CERT, NSA,
JPCERT, and other agencies are working with affected companies
and helping manufacturers correct vulnerabilities.

Online Key Check Service available at https://factorable.net

What do we do about fixing the Linux kernel and affected devices?

Talk Roadmap

ZMap Scanner

1. Architecture of ZMap

2. Characterizing Performance

Applications of High Speed Scanning

1. Globally Observable Weak Keys

2. Exposing the CA Ecosystem

Certificate Authority Ecosystem

HTTPS is dependent on a supporting PKI composed of
“certificate authorities” that vouch for websites’ identities.

Every certificate authority can sign for any website.

There is no central repository of certificate authorities.

 We don’t know who we trust until we see CAs in the wild…

Certificate Chains

Subject: C=US/…/O=Google Inc/CN=*.google.com
Issuer: C=US/…/CN=Google Internet Authority
Public Key: …
Signature: bf:dd:e8:46:b5:a8:5d:28:04:38:4f:ea:5d:49:ca

Subject: C=US/…/CN=Google Internet Authority
Issuer: C=US/…/OU=Equifax Secure Certificate Authority
Public Key: …
Signature: be:b1:82:19:b9:7c:5d:28:04:e9:1e:5d:39:cd

Subject: C=US/…/OU=Equifax Secure Certificate Authority
Issuer: C=US/…/OU=Equifax Secure Certificate Authority
Public Key: …
Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:38:c9:d1

Mozilla Firefox Browser

I authorize and trust
this certificate; here

is my signature

I authorize and trust
this certificate; here

is my signature

Trust everything
signed by this

 “root” certificate

A Brief Review of Certificates

Certificate Chains

Subject: C=US/…/O=Google Inc/CN=*.google.com
Issuer: C=US/…/CN=Google Internet Authority
Public Key: …
Signature: bf:dd:e8:46:b5:a8:5d:28:04:38:4f:ea:5d:49:ca

Subject: C=US/…/CN=Google Internet Authority
Issuer: C=US/…/OU=Equifax Secure Certificate Authority
Public Key: …
Signature: be:b1:82:19:b9:7c:5d:28:04:e9:1e:5d:39:cd

Subject: C=US/…/OU=Equifax Secure Certificate Authority
Issuer: C=US/…/OU=Equifax Secure Certificate Authority
Public Key: …
Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:38:c9:d1

Mozilla Firefox Browser

I authorize and trust
this certificate; here

is my signature

I authorize and trust
this certificate; here

is my signature

Trust everything
signed by this

 “root” certificate

A Brief Review of Certificates

Uncovering the HTTPS Ecosystem

We completed 110 scans of the HTTPS ecosystem over the last year

 1. Identify certificate authorities

 2. Uncover worrisome practices

How do we regularly collect certificates from Internet?

ZMap
libevent2

OpenSSL

Custom
Processing

We collected 42 million unique certificates of which 6.9 million
were browser trusted from 109 million unique hosts

Identifying Certificate Authorities

Identified 1,800 CA certificates belonging to 683 organizations

 - Including religious institutions, libraries, non-profits,
 financial institutions, governments, and hospitals

 - More than 80% of organizations controlling a CA certificate
 aren’t commercial certificate authorities

More than half of the certificates were provided by the German
National Research and Education Network (DFN)

All major browser roots are selling intermediates to third-party
organizations without any constraints

Who do we trust to correctly sign certificates?

Distribution of Trust
Who actually signs the certificates we use on a daily basis?

90% of Trusted Certificates

 - signed by 5 organizations

 - descendants of 4 roots

 - signed by 40 intermediates

Symantec, GoDaddy, and
Comodo control 75% of the
market through acquisitions

26% of trusted sites are signed by a single intermediate certificate!

Ignoring Foundational Principles

We classically teach concepts such as defense in depth and the
principle of least privilege

We have methods of constraining what CAs can sign for, yet all but
7 of the 1,800 CA certs we found can sign for anything

Lack of constraints allowed a rogue CA certificate in 2012, but

 in another case prevented 1,400 invalid certificates

Almost 5% of certificates include local domains,
 e.g. localhost, mail, exchange

What are authorities doing that puts the ecosystem at risk?

Cryptographic Reality
What are authorities doing that puts the ecosystem at risk?

90% of certificates use a
2048 or 4096-bit RSA key

50% of certificates are
rooted in a 1024-bit key

More than 70% of these
roots will expire after 2016

Growth in HTTPS Adoption
What has changed in the last year of scanning?

 June 2012–May 2013

 10%  HTTPS servers.

 23%  Use on Alexa
 Top-1M sites.

 11%  Browser-trusted
 certificates.

Scans.IO Data Repository
How do we share all this scan data?

ZMap Public Release
ZMap is an actively developed open source project

Downloaded it now from https://zmap.io

Scanning the Internet really is as simple as:

Let’s check on our demo...

$ zmap –p 443 –o results.txt

Ethics of Active Scanning
Considerations
 Impossible to request permission from all owners

 No IP-level equivalent to robots exclusion standard

 Administrators may believe that they are under attacka

Reducing Scan Impact
 Scan in random order to avoid overwhelming networks

 Signal benign nature over HTTP and w/ DNS hostnames

 Honor all requests to be excluded from future scans

Bottom Line: Be a Good Neighbor

User Responses

Responses from 145 users

Blacklisted 91 entities
(3.7 M total addresses)

15 hostile responses

2 cases of retaliatory traffic

Over 200 Internet-wide scans over 1.5 years (>1 trillion probes)

Entity Type Responses

Small Business 41

Home User 38

Corporation 17

Academic Institution 22

Government 15

ISP 2

Unknown 10

Total 145

Future Work

10gigE Network Surveys

TLS Server Name Indication

Scanning Exclusion Standards

IPv6 Scanning Methdology?

Use scanning to do great research!

Conclusion
Living in a unique period
 IPv4 can be quickly, exhaustively scanned
 IPv6 has not yet been widely deployed

Low barriers to entry for Internet-wide surveys
 Now possible to scan the entire IPv4 address space
 from one host in under 45 minutes with 98% coverage

Explored applications of high-speed scanning

My goal is to enable all of you to do more research

masscan
https://zmap.io bit.ly/14GZzcT

Scan Data Repository
https://scans.io

	Slide Number 1
	Based on joint work
	The Internet
	Slide Number 4
	Carna botnet Internet Census 2012
	Internet-Wide Network Studies
	Internet-Wide Network Studies
	Slide Number 8
	What if…?
	Slide Number 10
	Demo time!
	Slide Number 12
	Talk Roadmap
	ZMap Architecture
	Addressing Probes
	Slide Number 16
	Validating Responses
	Validating Responses
	Validating Responses
	Packet Transmission and Receipt
	Talk Roadmap
	Scan Rate
	Slide Number 23
	Coverage
	Zmap vs. Nmap
	Probe Response Times
	Talk Roadmap
	Enumerating Vulnerable Hosts
	Uncovering Hidden Services
	Detecting Service Disruptions
	Globally Observable Phenomenon
	Shared Cryptographic Keys
	Factoring RSA Public Keys
	Broken Cryptographic Keys
	Slide Number 35
	Linux /dev/urandom
	Typical Ubuntu Server Boot
	Moving Forward
	Talk Roadmap
	Certificate Authority Ecosystem
	Certificate Chains
	Certificate Chains
	Uncovering the HTTPS Ecosystem
	Identifying Certificate Authorities
	Distribution of Trust
	Ignoring Foundational Principles
	Cryptographic Reality
	Growth in HTTPS Adoption
	Scans.IO Data Repository
	ZMap Public Release
	Ethics of Active Scanning
	User Responses
	Slide Number 53
	Future Work
	Conclusion
	Slide Number 56

