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The Internet 





Carna botnet Internet Census 2012 



Previous research has shown promise of Internet-wide surveys 
Internet-Wide Network Studies 

  

Census and Survey of the Visible Internet (2008) 

  
 

EFF SSL Observatory: A glimpse at the CA ecosystem (2010) 

  
 

Mining Ps and Qs: Widespread weak keys in network devices (2012) 

  
 

Carna botnet Internet Census (2012) 

 



Previous research has shown promise of Internet-wide surveys 
Internet-Wide Network Studies 

  

Census and Survey of the Visible Internet (2008) 

3 months to complete ICMP census (2200 CPU-hours) 
 

EFF SSL Observatory: A glimpse at the CA ecosystem (2010) 

3 months on 3 Linux desktop machines (6500 CPU-hours) 
 

Mining Ps and Qs: Widespread weak keys in network devices (2012) 

25 hours acoss 25 Amazon EC2 Instances (625 CPU-hours) 
 

Carna botnet Internet Census (2012) 

420,000 usurped hosts 

 





What if…? 

What if Internet surveys didn’t require heroic effort? 

 

What if we could scan the HTTPS ecosystem every day? 

 

What if we wrote a whole-Internet scanner from scratch? 



an open-source tool that can port scan the entire 
IPv4 address space from just one machine  
in under 45 minutes with 98% coverage 

 
 

With Zmap, an Internet-wide TCP SYN 
scan on port 443 is as easy as: 

$ zmap –p 443 –o results.txt 
34,132,693 listening hosts 
(took 44m12s) 
 

97% of gigabit 
Ethernet linespeed 



Demo time! 
I’ll do: 

  $ zmap -T4 -p `printf "%d" 0x30c3` 

 

You can do: 

  $ tcpdump src port 12483 

 

If you’re on a public IP address, you should see a SYN 
from me by the end of the talk.  (Look for 141.212/16.) 



masscan 
https://zmap.io bit.ly/14GZzcT 



Talk Roadmap 

ZMap Scanner 

1. Architecture of ZMap 

2. Characterizing Performance 
 

Applications of High Speed Scanning 

1. Globally Observable Weak Keys  

2. Uncovering the CA Ecosystem 



ZMap Architecture 
Existing Network Scanners  
Reduce state by scanning in batches 
    -  Time lost due to blocking 
    -  Results lost due to timeouts 

Track individual hosts and retransmit 
    -  Most hosts will not respond 

Avoid flooding through timing 
    -  Time lost waiting 

Utilize existing OS network stack 
    -  Not optimized for immense 
       number of connections 

ZMap 
Eliminate local per-connection state 
    -  Fully asynchronous components 
    -  No blocking except for network 

Shotgun Scanning Approach 
    -  Always send n probes per host 

Scan widely dispersed targets 
    -  Send as fast as network allows 

Probe-optimized Network Stack 
    -  Bypass inefficiencies by 
           generating Ethernet frames  



Addressing Probes 
Scan hosts according to random permutation. 

Iterate over multiplicative group of integers modulo p. 

How do we randomly scan addresses without excessive state? 

Negligible State 4 
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Validating Responses 
How do we validate responses without local per-target state? 

Encode secrets into mutable fields of probe packets  
  that will have recognizable effect on responses 

receiver 
MAC address 

sender 
MAC address length data 

V sender 
IP address data … IHL receiver 

IP address 

receiver 
port 

sender 
port 

sequence 
number data ack. 

number … 

Ethernet 

IP 

TCP 
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Validating Responses 
How do we validate responses without local per-target state? 

Encode secrets into mutable fields of probe packets 
  that will have recognizable effect on responses 

receiver 
MAC address 

sender 
MAC address length data 

V sender 
IP address data … IHL receiver 

IP address 

sender 
port 

sequence 
number data … ack. 

number 
receiver 
port 

Ethernet 
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Packet Transmission and Receipt 

1.  ZMap framework handles the hard work 

2.  Probe modules fill in packet details, interpret responses 

3.  Output modules allow follow-up or further processing 

How do we make processing probes easy and fast? 

Probe  
Generation 

Configuration, 
Addressing, 
 and Timing 

Response  
Interpretation 

Packet Tx 
(raw socket) 

Packet Rx 
(libpcap) 

Output 
Handler 
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How fast is too fast? 
Scan Rate 

No meaningful correlation between speed and response rate. 

Slower scanning does not reveal additional hosts. 



+/- 3% 

TCP Port 443 

Temporal Variation 
Response rates show significant diurnal variation. 



Is one probe sufficient? 
Coverage 

Response Rate 

 1 Packet: 97.9% 
2 Packets: 98.8% 
3 Packets: 99.4% 

We expect to see a 
plateau in response 
rate, regardless of 
additional probes. 

Treat as  
Ground Truth 



Zmap vs. Nmap 

ZMap can scan more than 1300 times faster than the most 
aggressive Nmap default configuration (“insane”) 
  

Surprisingly, ZMap also finds more results than Nmap 

Normalized 
Coverage 

Duration 
(mm:ss) 

Est. Internet 
Wide Scan 

Nmap  (1 probe) 81.4% 24:12 62.5 days 

Nmap  (2 probes) 97.8% 45:03 116.3 days 

ZMap  (1 probe) 98.7% 00:10 1:09:35 

ZMap  (2 probes) 100.0% 00:11 2:12:35 

Averages for scanning 1 million random hosts: 



Why does ZMap find more hosts than Nmap?  
Probe Response Times 

Response Times 

250 ms: < 85% 
500 ms: 98.2% 
1000 ms: 99.0% 
8000 ms: 99.9% 

500 ms 
timeout 

250 ms 
timeout 

Statelessness leads to both higher performance and increased coverage. 
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Enumerating Vulnerable Hosts 

HD Moore disclosed vulnerabilities in several common 
UPnP frameworks in January 2013. 
 

Under 6 hours to code and run UPnP discovery scan. 
Custom probe module, 150 SLOC. 
 

We found that 3.34 M of 15.7 M  
devices were vulnerable. 
 

Compromise possible with 
a single UDP packet! 

Discovering UPnP Vulnerabilities En Masse 



Enumerating Unadvertised Tor Bridges 
Uncovering Hidden Services 

Scanning has potential to uncover unadvertised services 
 

We perform a Tor handshake with public IPv4 addresses 
on port 9001 and 443 
 

Identified >86% of live allocated  
Tor bridges with a single scan 
 

(Tor has developed obfsproxy that 
listens on random ports to 
counter this type of attack.) 



Detecting Service Disruptions 

Areas with >30% decrease 
in listening hosts, port 443 

October 29–31, 2013 



Globally Observable Phenomenon 

We considered the cryptographic keys used by HTTPS and SSH 

 

 

 

 

 
 

There are many legitimate reason that hosts might share keys… 

 

Uncovering weak cryptographic keys and poor entropy collection 

HTTPS SSH 

Live Hosts 12.8 million 10.2 million 

Distinct RSA Public Keys 5.6 million 3.8 million 

Distinct DSA Public Keys 6241 2.8 million 



Shared Cryptographic Keys 

We find that 5.6% of TLS hosts and 9.6% of SSH hosts share 
keys in a vulnerable manner: 

 -  Default certificates and keys 

 -  Apparent entropy problems 
 

What other, more serious, problems could be present if devices 
aren’t properly collecting entropy? 

Why are a large number of hosts sharing cryptographic keys? 



Factoring RSA Public Keys 

RSA Public Key: n = p  q, p and q are two large random primes 
 

Most efficient known method of compromising  
an RSA key is to factor n back to p and q 
 

While n is normally difficult to factor, for 

      N1 = p  q1 and N2= p  q2  

we can trivially compute 

      p = GCD(N1, N2) 

What else could go wrong if devices aren’t collecting entropy? 



Broken Cryptographic Keys 

We find 2,134 distinct primes and compute the RSA  
private keys for 64,081 (0.50%) of TLS hosts 
 

Using another approach for DSA, we are able to compute 
the private keys for 105,728 (1.03%) of SSH hosts 

 

What was causing these vulnerable keys? 

 
 

Why are a large number of hosts sharing cryptographic keys? 



Most compromised keys are generated by  
headless or embedded network devices 

 

Identified devices from > 40 manufacturers 



Linux /dev/urandom 

Nearly everything uses /dev/urandom 

Input Pool 

Non-blocking 
Pool /dev/urandom Time of boot 

Keyboard /Mouse 

Disk Access Timing 
Only happens if Input Pool  
contains more than 192 bits… 

Time of boot 

Problem 1: Embedded devices 
may lack all these sources 

Problem 2: /dev/urandom can 
take a long time to “warm up” 

Why are embedded systems generating broken keys?  



Entropy first mixed 
into /dev/urandom 

OpenSSH seeds 
from 

/dev/urandom 

Boot-Time Entropy 
Hole 

 

/dev/urandom may be predictable  
for a period after boot. 

Typical Ubuntu Server Boot 
Why are embedded systems generating broken keys?  



Moving Forward 

Patches have been committed to the Linux 3.x Kernel 
 

 -  Use interrupts until other entropy is available 

 -  Mix in unique information such as MAC address 
 

Manufacturers have been notified. DHS, ICS-CERT, NSA, 
JPCERT, and other agencies are working with affected companies 
and helping manufacturers correct vulnerabilities. 
 

Online Key Check Service available at https://factorable.net 

What do we do about fixing the Linux kernel and affected devices? 
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Certificate Authority Ecosystem 
 

HTTPS is dependent on a supporting PKI composed of 
“certificate authorities” that vouch for websites’ identities. 
 

Every certificate authority can sign for any website. 
 

There is no central repository of certificate authorities. 

    We don’t know who we trust until we see CAs in the wild… 

 



Certificate Chains 

Subject: C=US/…/O=Google Inc/CN=*.google.com 
Issuer: C=US/…/CN=Google Internet Authority 
Public Key: … 
Signature: bf:dd:e8:46:b5:a8:5d:28:04:38:4f:ea:5d:49:ca 

Subject: C=US/…/CN=Google Internet Authority 
Issuer: C=US/…/OU=Equifax Secure Certificate Authority 
Public Key: …  
Signature: be:b1:82:19:b9:7c:5d:28:04:e9:1e:5d:39:cd  

Subject: C=US/…/OU=Equifax Secure Certificate Authority 
Issuer: C=US/…/OU=Equifax Secure Certificate Authority 
Public Key: … 
Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:38:c9:d1 

Mozilla Firefox Browser 

I authorize and trust 
this certificate; here 

is my signature 

I authorize and trust 
this certificate; here 

is my signature 

Trust everything 
signed by this 

 “root” certificate 

A Brief Review of Certificates 
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Uncovering the HTTPS Ecosystem 

We completed 110 scans of the HTTPS ecosystem over the last year 
 
 1. Identify certificate authorities 
 

 2. Uncover worrisome practices 
 

How do we regularly collect certificates from Internet? 

ZMap 
libevent2 

OpenSSL 

Custom 
Processing 

We collected 42 million unique certificates of which 6.9 million 
were browser trusted from 109 million unique hosts 



Identifying Certificate Authorities 

Identified 1,800 CA certificates belonging to 683 organizations 
 

     -  Including religious institutions, libraries, non-profits, 
        financial institutions, governments, and hospitals 
 

     -  More than 80% of organizations controlling a CA certificate 
        aren’t commercial certificate authorities 
 

More than half of the certificates were provided by the German 
National Research and Education Network (DFN) 
 

All major browser roots are selling intermediates to third-party 
organizations without any constraints 

Who do we trust to correctly sign certificates? 



Distribution of Trust 
Who actually signs the certificates we use on a daily basis? 

90% of Trusted Certificates 

  - signed by 5 organizations 

  - descendants of 4 roots 

  - signed by 40 intermediates 
 

Symantec, GoDaddy, and 
Comodo control 75% of the 
market through acquisitions 

 

26% of trusted sites are signed by a single intermediate certificate! 



Ignoring Foundational Principles 

We classically teach concepts such as defense in depth and the 
principle of least privilege 

 

We have methods of constraining what CAs can sign for, yet all but 
7 of the 1,800 CA certs we found can sign for anything 

 

Lack of constraints allowed a rogue CA certificate in 2012, but 

      in another case prevented 1,400 invalid certificates 
 

Almost 5% of certificates include local domains,  
 e.g. localhost, mail, exchange 

 

What are authorities doing that puts the ecosystem at risk? 



Cryptographic Reality 
What are authorities doing that puts the ecosystem at risk? 

90% of certificates use a 
2048 or 4096-bit RSA key 
 
50% of certificates are 
rooted in a 1024-bit key 
 
More than 70% of these 
roots will expire after 2016 
 



Growth in HTTPS Adoption 
What has changed in the last year of scanning? 

  June 2012–May 2013 
  

  10%  HTTPS servers. 
 

  23%  Use on Alexa  
 Top-1M sites. 
 

  11%  Browser-trusted 
 certificates. 



Scans.IO Data Repository 
How do we share all this scan data? 



ZMap Public Release 
ZMap is an actively developed open source project 
 

Downloaded it now from https://zmap.io 
 

Scanning the Internet really is as simple as: 

 
 

 

 

Let’s check on our demo... 

$ zmap –p 443 –o results.txt 



Ethics of Active Scanning 
Considerations 
    Impossible to request permission from all owners 

 

    No IP-level equivalent to robots exclusion standard 
 

    Administrators may believe that they are under attacka 
 

Reducing Scan Impact 
    Scan in random order to avoid overwhelming networks 

 

    Signal benign nature over HTTP and w/ DNS hostnames 
 

    Honor all requests to be excluded from future scans 
 

Bottom Line: Be a Good Neighbor 



User Responses 

Responses from 145 users 
 

Blacklisted 91 entities 
(3.7 M total addresses) 

 

15 hostile responses 
 

2 cases of retaliatory traffic 
 

Over 200 Internet-wide scans over 1.5 years (>1 trillion probes) 

Entity Type Responses 

Small Business 41 

Home User 38 

Corporation 17 

Academic Institution 22 

Government 15 

ISP 2 

Unknown 10 

Total 145 





Future Work 
 

10gigE Network Surveys 

TLS Server Name Indication 

Scanning Exclusion Standards 

IPv6 Scanning Methdology? 

 

Use scanning to do great research! 



Conclusion 
Living in a unique period 
   IPv4 can be quickly, exhaustively scanned 
   IPv6 has not yet been widely deployed 

 

Low barriers to entry for Internet-wide surveys 
     Now possible to scan the entire IPv4 address space 
     from one host in under 45 minutes with 98% coverage 
  

Explored applications of high-speed scanning 
 

My goal is to enable all of you to do more research 



masscan 
https://zmap.io bit.ly/14GZzcT 

Scan Data Repository 
https://scans.io 
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