Lasers in Space - more than just pew pew!

Anja Kohfeldt California

Ground Station

December 27, 2013 30C3, Hamburg

who am I

- scientist at Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik in Berlin
- working in QUANTUS-Project
- building semiconductor based laser modules for MAIUS-Mission (sounding rocket, scheduled Nov. 2014)

motivation

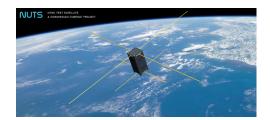
introduction

•0000

lasers are cool. alot DIY projects in previous years

- laser cutter
- laser projectors
- pimped laser pointers etc.

picture sources: reprap, eeweb.com, vilos.com


motivation (2)

introduction

00000

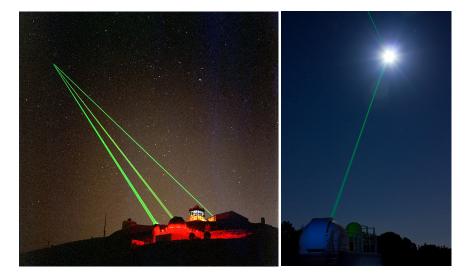
space becomes affordable.

- increase of private activity in space sector
- student & university programs
- ightharpoonup μ -Satellites available (e.g. cubeSats as piggyback payload of commercial satellites)



personal motivation

introduction


00000

not every laser in space is an orbital death weapon!

nice, but not my topice: lasers into space

introduction

o 000●0

applications of lasers in space

Outline

lasers 101

main properties and functionality types and application

what is "space"?

definitions and fields of interest requirements and implementation of space hardware

applications of lasers in space

metrology communication

Outline

lasers 101

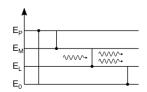
main properties and functionality types and application

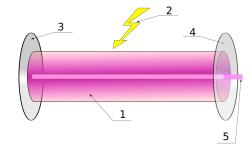
lasers 101 (1)

introduction

LASER: "light amplification by stimulated emission of radiation" A device that emits

- ▶ monochromatic (1) &
- coherent (2)


photons.



required components for laser beam (5):

- ▶ active medium (1)
- pump (2)
- ► resonator (3) & (4)

different types of lasers vary mostly in gain medium:

- solid state lasers (e.g. Nd:YAG, Ti:Sa)
- semiconductor lasers (e.g. InGaN, AlGaAs)
- ▶ gas lasers (e.g. HeNe, CO₂)
- dye laser (e.g. rhodamine 6G)

different lasers types vary in

- Performance characteristics: wavelength, output power, line width
- physical package: size, weight, complexity (e.g pump mechanism, cooling...)
- → application requirements defines laser types

common applications:

- measurements: distance measuring, spectrometers, gravimeters
- optical data transmission
- multimedia: display technology, laser pointer
- focused energy: laser cutting, welding, writing, printing

not only on earth at home, industry, medicine, but also in space

Outline

what is "space"?

definitions and fields of interest requirements and implementation of space hardware

definition of space

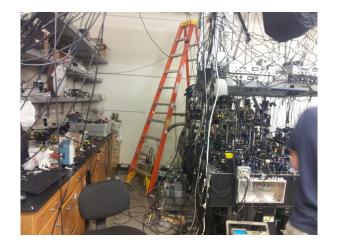
- Definition of Fédération Aéronautique Internationale (FAI): Kármán-Line at 100 km MASL
- Definition of US NACA in 1950: 50 mi (approx. 80 km)

ways into space:

satellites

- space station
- orbiter
- sounding rockets

- Observation (e.g of distant galaxies, earth meteorology)
- Communication (telecommunication)
- Science (e.g. experiments in μ -gravity)
- ► Navigation (e.g. GPS)
- Military or "defence"



restrictions in space

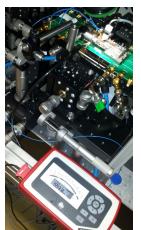
High launch costs and limited resources and special environment in space result in strict specifications concerning:

- ▶ size & weight
- power consumption budget
- mechanical robustness
- radiation resistance
- autonomy
- live time

laser experiment setup on earth

integration

- choose appropriate technology
- choose space qualified components
- take care of out gassing materials
- miniaturize every component
- no movable parts where possible
- create clean integration environment
- test & characterize
- document everything



our lab

introduction

0

example: MAIUS MOPA

- semiconductor based Master Oscillator Power Amplifier module
- AIN bench with footage of 80 x 25 mm, electrical interface included, weight: 15 g
- ▶ no movable parts
- wavelength 780.24 nm, tuning range 1.4 nm
- ▶ output power > 1.2 W, efficiency of > 22%

standards and testing procedures for space hardware

to ensure uniform level of quality and reliability suitable to application and environment. e.g. MIL-STD-883 (test method standard microcircuits) defines

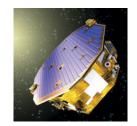
- purpose of a test
- apparatus, test conditions,
- test procedures and failure criteria

test methods

- environmental tests (e.g. pressure, temperature cycling and shock)
- mechanical tests (e.g. acceleration, vibration, shear strength)
- electrical tests (load conditions, ESD sensitivity)

Outline

applications of lasers in space metrology


communication

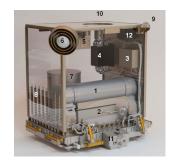
optical measurement (1)

interferometry

- Light detection and ranging (LIDAR)
- evaluate interference of reflected beam
- e.g. to measure distances as in docking operations with ISS, mapping surfaces, analysing atmosphere
- e.g. to measure gravitational waves as in Laser Interferometer Space Antenna (LISA) (now: proof-of-concept mission, LISA Pathfinder (LPF), scheduled in 2015)

optical measurement (2)

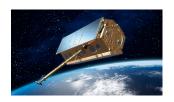
spectroscopy

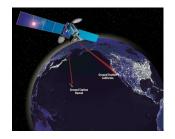

- stimulation of electrons to higher energy level
- evaluate absorption of beam or emission of relaxing photons
- e.g. Laser-induced breakdown spectroscopy (LIBS) and tunable laser spectrometer (TLS) on Curiosity (launched in 2011)

optical measurement (3)

optical references: atomic clocks

- timekeeping element: electronic transition frequency in the optical region of the EM spectrum of atoms
- primary standards for international time distribution services, to control the wave frequency data transmission, GPS, etc.
- new generation in space: Atomic Clock Ensemble in Space (ACES) (ISS, orig. scheduled end 2013)


free space optical communication (1)


facts

- modulation via phase shift keying (PSK) or binary on off keying (OOK) of data on optical carrier (laser beam)
- compared to RF-transmission:
 - longer distances,
 - less power,
 - higher transmission rate
- still: dependent on atmosphere and weather

free space optical communication (2)

- ► Laser Communication Terminal (LCT)
 - first tested in satellite ARTEMIS
 - downlink 50 Mbps in 2001
 - ▶ inter-satellite 50 Mbps in 2001
 - inter-satellite 5.5 Gbps (TerraSAR-X and NFIRE in 2008)
- ► Lunar Laser Communications
 Demonstration mission (LLCD) on the
 Lunar Atmosphere and Dust
 Environment Explorer (LADEE)
 (launched 2013-09-07): downlink
 622 Mbps

summary

- lasers are cool
- lasers have a lot of applications, even in space
- reaching space is challenging
- ... but not impossible!

space for all

- http://www.amsat.org/ amateur radio satellite organizations worldwide
- http://www.rexusbexus.net/ sounding rocket and balloon experiments for students
- http://cubesat.org/1 l satellites project
- http://www.googlelunarxprize.org/ lunar rover competition
- http://www.hobbyspace.com/ webguide to space hobbies and activities

thank you!

