
Tamagotchi Hacking

 Were Harmed in the Making of this

Presentation

Many Tamagotchis

Even More

Tamagotchis Were

Harmed in the

Making of this

Presentation
Natalie Silvanovich

@natashenka

About Me

• Security Researcher at

BlackBerry

– ;But I doŶ͛t ƌepƌeseŶt theŵͿ

• Studied electrical engineering,

but mostly into software

hacking

• First-time hardware

hacker/reverse engineer

• Tamagotchi enthusiast

What are Tamagotchis?

• The same virtual pet toys you remember from

the 9Ϭ s͛

• Functionality has evolved substantially

– Now they can go to school, have jobs, make

friends, get married and have kids!

• Newer versions have an IR interface

so that they can communicate with

other Tamagotchis

TamaTown Tama-Go

• The ͞Chƌistŵas͟ TaŵagotĐhi fƌoŵ ϮϬϭϬ

• Same functionality for smaller hands

• “uppoƌts detaĐhaďle ͚figuƌes͛ ǁith eǆtƌa
games and stores

Goals

• Dump Tamagotchi code

• AŶsǁeƌ the ͚deepeƌ ƋuestioŶs͛ of TaŵagotĐhi life

• Make my gotchis rich and happy

• Make a Tamagotchi development environment

• Have fun!

Previous Work

Teardown

Hardware Teardown

• Took apart a Tama-Go and Tamagotchi to

determine if code dumping was a possibility

• Looked for helpful interfaces

• Also took apart a figure

Tama-Go Board

EEPROM

Tama-Go Figure

Microcontroller

Identification

Identifying the Microcontroller

• Considering the lack of external hardware,

MCU ǁas likelǇ uŶdeƌ the ͚ďloď͛
• Tried several methods to remove, including

acetone, heat, a razor blade and a chopstick

• Travis Goodspeed kindly offered to decap the

chip with acid

• Eventually, success!

GPLB5X Series LCD Controller

• 8 bit 6502 microprocessor

• 1536 bytes RAM

• 320 or 640 kbyte mask ROM (depending on

model), baked to perfection for each customer

• 512 bytes LCD RAM

• 4 color grayscale LCD controller

• SPI

• Audio DAC

Dumping Mask ROM

• Not sure how to dump mask ROM, but had a

few ideas

– Restore a bad state from EEPROM

– Look for test functionality

– Exploit a vulnerability in figure or IR processing

– Read ROM with a microscope

– Pin manipulation

Test

Program

Test Program?

• GeneralPlus mask ROMs contain a GP test

program that can probably dump code

• Contacted GeneralPlus for a devkit

– Requires an NDA

• Looked around online

– No one seems to have a devkit or know the test

program

Figure

ROM

Figure ROM

• Decoding the figure ROM could be useful in a

few ways

– Making your own Tamagotchi games

– Executing code on the Tamagotchi

– Dumping mask ROM

– Understanding Tamagotchi behaviour

Figure ROM Pads

• The unpopulated PCBs in lite figures appear to

be the same boards used in regular figures

• Makes the mask ROM pad layout visible

Figure ROM Chip

• GeneralPlus makes an SPI ROM with a similar

layout

• Assumed figures use this ROM

Figure ROM Pins

• Based on the GeneralPlus ROM datasheet,

was able to identify the figure pins

1, 4 and 8: Ground/Jumper

2: Serial clock (C)

3: Serial data input (D)

5: Power

6: Chip Select (SB)

7: Serial Data Output (Q)

ROM Dump

• Dumped the ROM using an Arduino as SPI

master

Decoding ROM

• The Tamagotchi has a four-tone display, so

looked for strings of 0x00, 0x55, 0xAA and

0xFF, representing images

• Noticed that these strings were preceded by

values which were reasonable for length and

width

Decoding Images

• Tried decoding these images

• Eventually, it worked!

Images

• The figure contained a lot of images

• Text displays appear to be images

• Animations are series of images

The Rest of the ROM

• The ROM contains a lot of non-image data

• None of this data is GeneralPlus code

– Wrote a dissasembler

• Likely logic information in some sort of

serialized format

Simulating the ROM

• Could not obtain compatible flash

• Attempted to simulate the ROM using an

Arduino, but chip is too slow

• Switched to a Chipkit Uno, this was also too

slow

• Eventually used a STM32F4 Discovery board

Simulating the ROM

• Knew the image format, so could alter images

Game Logic

• The Tama-Go reads less than 50 bytes of non-

image data during all figure functionality

• Game logic is represented by a one byte code

– This logic is executed with images from figure

• Changing this code can cause a jump to non-

game screens

– Stats, food, death, etc. Every screen was available

• Many codes caused freezing

Evolve Demo

Flash Figures

Flash Figures

• MrBlinky ordered a

set of figures to

experiment with

– They contained flash!

– Built a figure

programmer

– The ability to re-flash

figures made testing

much easier

Items

• Items are implemented using a byte code

format

– Instructions include showing images, playing

sounds and changing Tamagotchi stats

– Some unusual behaviour for invalid instructions

– Posted ͚deǀ tools͛ oŶ githuď

Demo

Code Execution

Game Logic

• The Tama-Go reads less than 50 bytes of non-

image data during all figure functionality

• Game logic is represented by a one byte code

– This logic is executed with images from figure

• Changing this code can cause a jump to non-

game screens

– Stats, food, death, etc. Every screen was available

• Many codes caused freezing

6502 Facts

• Memory mapped into a single address space

• No MMU

– Unmapped addresses return 0 (usually)

– Invalid instructions execute undefined behaviour

• Reset is rare

– Great for explotation

First Attempt

• Assuŵed ͚gaŵe Đodes͛ ǁeƌe iŶdeǆes iŶto a
jump table

– Invalid indexes would cause jumps (RTS) to non-

pointer data

• Only controllable RAM is LCD RAM

– 0x1000-0x1200

• Made a NOP sled and hoped

Code 0xCC

• Did not work, but code 0xCC had interesting

behavior

– Buzzed when bit 3 of byte 68 was set and

detected figure detach

– Froze otherwise

• Also noticed that some middle indexes worked

New Theory

• All iŶdeǆes aƌe ǀalid, ďut the staĐk isŶ͛t set up
correctly

• 0xCC plays the noise when button pressed

if sound_enabled:

 play_sound()

 jump to a

else:

 jump to b

LCD RAM

Game code jump

table address

???

New Theory

• But if

– A pointer to the LCD RAM is on the stack

– Stack confusion is occurring

– Theƌe s͛ Ϯ55 possiďilities

• WhǇ isŶ͛t it ǁoƌkiŶg?

Code Execution

• Switched

instruction sets

• Used simpler

shellcode

• Using the correct

instruction set, it

worked on the

fourth index I tried,

0xd4

Dumping ROM

Dumping Memory

• Wrote code to dump

entire memory space of

Tamagotchi

• Output memory over

SPI using port A

(buttons)

• Decoded output with

signal analyzer

Paging

• The ROM is larger than the memory space

• First page is always mapped

• Other pages are mapped one at a time

• Determined 0x3000 is page port

• Dumped all 19 pages

Pages

• Quickly identified pages by inspection

– Pages 0 to 6 are code

– Pages 7 to 9 are blank

– Page 10 contains images and a image pointer table

– Pages 11 to 18 contain image data

– Page 19 contains audio

Images

• Dumped images from image pages

ROM Reversing

ROM Reversing

• Started using IDA

– Learning curve was steep

– No paging support

• Eventually wrote a simulator

based on py65

– Added support for LCD and ports

– Slowly decoded the secrets of

Tamagotchi life

Better Emulator

• Asterick wrote a JavaScript-based emulator

– https://github.com/asterick/tamago

https://github.com/asterick/tamago

Tamagotchi Internals

• After start-up, Tamagotchis cycle through a

single loop, driven by tm1 interrupts

• Always in one of 0x41 states

– Table determines state actions

– CaŶ haǀe suďstates aŶd suďsuďstates aŶd …

– State entry behaves differently

– States are responsible for all behaviour (buttons,

sound) except for physical LCD update and SPI poll

– A LOT of pointer tables

“eĐƌets “o Faƌ …

• What makes a Tamagotchi a boy or a girl?

– Determined from entropy source C4, based on

how many times tm1 has fired since the

Tamagotchi started up

• What toddler a baby grows into is random

– Intentionally evened out

– Some toddlers are higher-maintenance than

others

“eĐƌets “o Faƌ …

• What teen a toddler becomes is based on care

– Two factors

• What adult a teen becomes depends on care

and training

– Toddler care matters

• You can potty train your Tamagotchi

Test mode

• Uncovered a test mode if figure ID is 0xFE

Test Mode

• Allows all stats to be altered

• Allows character and spouse to be selected

• Allows care factors to be viewed and altered

• Two unused care factors

More Secrets

• It doesŶ͛t ŵatteƌ ǁho Ǉouƌ TaŵagotĐhi
marries

– TheǇ͛ƌe just as happǇ

– The kids turn out just the same

• Unless you marry an Olditchi

• Figuƌes doŶ͛t alteƌ TaŵagotĐhi fuŶĐtioŶalitǇ
outside of their functionality

– Special display for 100 figures

Reaction

Test Program

GeneralPlus Test Program

• Analyzed GeneralPlus Test Program

• Hoped it would make dumping other GP

ROMs easier

GeneralPlus Test Program

• Polls port A for a code, runs test and outputs

results on port B

• Two interesting codes, 3 and 0x16

• Code 3 checksums custom address range

– UŶfoƌtuŶatelǇ ĐoŶtaiŶs a ďug so it doesŶ͛t ǁoƌk

Test Program Code Dump

• Code 16 fills RAM up with code from Port B

and jumps to it!

• Can dump code from any GeneralPlus LCD

controller so long as Port A, Port B and TEST

are bonded

Dev Tools

Existing Tools

• Wƌote tǁo ͚deǀ͛ tools iŶ the pƌoĐess of
reversing

– portrait.py puts an image on the Tamagotchi

screen

– iteŵŵake.pǇ ŵakes a ͚ŵusiĐ ǀideo͛ ďased oŶ a
script

• Both have serious limitations

• Wanted to write a tools that allows generic

6502 execution

Reliable Exploitation

Reliable Exploitation

• The vulnerability used to dump the ROM was

30-40% reliable

– Worked better if the Tamagotchi had been running

awhile

• Needed 100% reliability for a useful dev tool

The ROM Dump Vuln (D4)

• The game indices in the figure ROM cause a

state change to 0x27 + the index

• Valid indices are between 0 and 0x41

– No validity check

The ROM Dump Vuln (D4)

• On a state change

– Tamagotchi indexes into a state page table,

switches to the page at the index and jumps to

0x4000

– Code pages have code at 0x4000 that indexes into

a jump table for the page

– Invalid states could cause a jump to a non-code

page, or a jump to an unexpected address

The ROM Dump Vuln (D4)

• State is set to 0x27 + 0xD4 (0xFB)

– Page table returns 0x3c (actually part of LCD table)

• Switching to page 0x3c makes memory at

0x4000 float

– No wonder this exploit is unreliable

Vulnerability Idol

• Finding a more reliable index required a lot of

tracing

• Eventually tried several indexes to find one

that seemed reliable

– 0xCD was a good contender

Index 0xCD

• State is set to 0x27 + 0xCD (0xF4)

– Page table returns 0x4 (also part of LCD table)

• Loads page 4 and indexes jump table at 0xF4

– This location is actually code: INC $11E

– As data, it resolves to location 0x1EEE

– LCD RAM addressing ignores bits 2-7 of byte 3

– Resolves to 0x10EE (in LCD RAM)

• This exploit will always work

Dev Kit

tASMgotchi

• 6502 Assembler for Tamagotchi

• Outputs binary ready to be loaded on figure

• Loads code into RAM, and automatically

handles paging during execution

• Contains convenience functions for common

functionality such as LCD writes and IR

– Largely from Tamagotchi ROM

• Ophis based

Making the Dev Kit

• Lack of datasheet made writing some

functions difficult

– Limited knowledge of port locations

• Determined a lot of functionality from the test

program

• Still a lot of unknowns

– Power management, SPU, watchdog

– Contributions welcome!

Making the Dev Kit

• Egg Shell board

• SPI programmer and

IR for future RCE

• Also a Lilypad USB

Arduino

Tamagotchi Tools

• Portrait maker

• Item maker

• tASMgotchi

• Board specs

https://github.com/natashenka/Egg-Shell

https://github.com/natashenka/Egg-Shell
https://github.com/natashenka/Egg-Shell
https://github.com/natashenka/Egg-Shell

Workshop

Learn to hack Tamagotchis here at 30c3!

Today at 7:30pm in Hall E

Kit is €25 + VAT, and includes a Tamagotchi, figure and a

programming board

Egg Shell Boards

• Boards €11, PCBs €2

• http://natashenka.ca/boards/

http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/

 Demo

Buttons

Conclusion

Conclusions

• Dumped Tamagotchi code

• Learned about Tamagotchi internals

• Learned the secrets of Tamagotchi life

• Made Tamagotchis do new things

• Most importantly, good times were had by

all…

Except for the Tamagotchis

Tamagotchi Friends

Bonus

Slides

A New Tamagotchi!

Tamagotchi Friends

• Similar LCD and form factor

– No IR or figures

– Contains NFC

• Send gifts

• Visit

• Send messages

• Daily limits

Is it Hackable?

• Tamagotchi Friends probably uses the same

MCU as the Tama-Go

– Same form factor and LCD

• If it does, code can be dumped using the

GeneralPlus test program

– Decapping may be required

– Reduced attack surface for code execution

• If not, who knows?

Questions?

natalie@natashenka.ca

@natashenka

More Info

http://natashenka.ca

natalie@natashenka.ca

@natashenka

http://natashenka.ca/

