Low-Cost Chip Microprobing

Philipp Maier <dexter@srlabs.de>
Karsten Nohl <nohl@srlabs.de>

A few smart cards chips cover numerous security domains

Security chip applications

Payment cards, electronic ID cards, access badges

Trusted platform modules (TPM)

Device and accessory identification

SIM cards, NFC secure elements

Content protection

Chip hacking motivation

- Recent trend –
 Functionality that users traditionally circumvented or exposed in their devices moves into hardware:
 - Usage restrictions
 - DRM, "Dongeling"
 - "Secret" protocols
- Devices are increasingly controlled by their manufacturer, not their owner
- We need more wide-spread hardware analysis knowledge and cheaper tools to combat this trend

Reverse-engineering hardware functions requires specific tools

Disassamler, decompiler

Oscilloscope, logic analyzer

Microscope, micropositioner (this talk's focus)

This talk introduces the methodology and tools of earlier (and hopefully future) works

Reverse-engineer chip functionality Read out memories

Introductory

Advanced

Microprobing background

- Probing with simple tools
- Advanced probing techniques

Basic CPU principle: Current instruction decides which instruction gets loaded next

Probing and glitching with only two needles allows full memory read-out

Attacker goal: Make the CPU go to all places in memory independent of security checks and other flow characteristics. This attack is called **Linear Code Extraction**.

Microprobing background

Advanced probing techniques

Basic probing setup

Step 1: Decapsulate chip

Option A – Mechanically pry open package

Option B – Chemically etch into package

Step 2: Expose wires (1/2)

Option A – **Scratching**

- A micropositioner in combination with hard needles can break the silicon oxide (aka glass) above metal tracks
- Works best for highest ("top") metal layer on non-planarized chips

Step 2: Expose wires (2/2)

Option B – Lasering

- A laser shot through the microscope destroys chip structures to:
 - Expose wires for probing -or-
 - Cut wires to alter chip logic;
 i.e. permanently reset lock bit
- Optimal for planarized chips and for working on top metal
- Takes practice to not destroy chips through shorting wires or inducing overvoltage
- Higher cost alternative when compared to scratching but more reliable after practice

Step 3: Find exploitable wires

- Most interesting chip structures:
 - Security bits (fuses)
 - Data buses
- Discover them:
 - Reverse-engineer(HAR 09, Camp 11)
 - Trial and error

Step 4: Connect to wires with probing needle

Some level of probing can even be done with simple optical microscopes and few extra components

- Microprobing background
- Probing with simple tools
- Advanced probing techniques

Focused Ion Beams prepare small feature-size chips for probing

Protection meshes create additional complexity for FIB probing

Meshes slow down attack, but do not prevent them

Mesh circumvention

- Either remove parts of mesh, then bridge/fix the mesh with FIB edits -or-
- Circumvent mesh alarm:
 - If defense is bulk-erase of non-volatile memory: Cut off the programming pumps
 - If chip it is logic reset: Exploit in the small time window before the reset triggers

Arms race around front-side FIB attacks makes back-side attacks more attractive

Take aways

- Device functionality is increasingly hidden in hardware and needs to be freed
- Software can be extracted from chips using fuse overwrites or linear code extraction
- Simple controllers can be attacked with cheap tools; smart cards require focused ion beams

Questions?

Philipp Maier <dexter@srlabs.de>
Karsten Nohl <nohl@srlabs.de>