
Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Small footprint inspection techniques for Android

Damien Cauquil, Pierre Jaury

29C3
December 29, 2012

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 1 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Introduction

Damien Cauquil

Company Sysdream (head of research)

Twitter @virtualabs

Blog http://virtualabs.fr

Pierre Jaury

Company Sysdream

Twitter @kaiyou

Blog http://kaiyou.org

Sysdream, IT security services

Location Paris, France

Website http://sysdream.com

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 2 / 33

http://virtualabs.fr
http://kaiyou.org
http://sysdream.com


Table Of Contents

1 Reverse engineering and side effects

2 Reverse engineering on Android

3 Minimal footprint techniques

4 Fino approach and implementation

5 Demo



Reverse engineering and side effects

1 Reverse engineering and side effects
Why reverse engineering?
Static or dynamic analysis?
It is all a matter of physics
Side effects amplification

2 Reverse engineering on Android

3 Minimal footprint techniques

4 Fino approach and implementation

5 Demo



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Why reverse engineering?
Static or dynamic analysis?
It is all a matter of physics
Side effects amplification

Why reverse engineering?

Curiosity

Security assessment

Cracking

Interoperability

. . .

→ Exploring the internals

→ Understanding the program

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 5 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Why reverse engineering?
Static or dynamic analysis?
It is all a matter of physics
Side effects amplification

Static or dynamic analysis?

Static analysis

Look at the program

Explore the binary

Use disassembly tools

Read some low-level
bytecode

Make plenty of assumptions

Dynamic analysis

Monitor what is available

Run the program

Run the program, again

. . . (much like fuzzing)

Make some other
assumptions

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 6 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Why reverse engineering?
Static or dynamic analysis?
It is all a matter of physics
Side effects amplification

It is all a matter of physics
And those very annoying side effects

Generalizing about the internals given observations

Physics

Consider a system

Monitor the system

Apply various actions

Generalize a law

Measure uncertainty

Dynamic reverse engineering

Consider a program

Monitor the program

Apply various actions

Generalize about the
program

Side effects

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 7 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Why reverse engineering?
Static or dynamic analysis?
It is all a matter of physics
Side effects amplification

Side effects amplification
Anti-debugging and other very nice techniques

Side effects are bad, yet one might enjoy. . .

amplifying them on purpose

making them terrible in non-native environments

creating new sources of side effects

targetting tricky sources of side effects

putting analysts in terribly hairy situations

→ anti-debugging

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 8 / 33



Reverse engineering on Android

1 Reverse engineering and side effects

2 Reverse engineering on Android
State of the art
Android reverse cookbook
Why so unsatisfied?

3 Minimal footprint techniques

4 Fino approach and implementation

5 Demo



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

State of the art
Android reverse cookbook
Why so unsatisfied?

State of the art
(awe)?Some tools

Static analysis

Smali/Baksmali

APK-tool

dex2jar

jd-gui

. . .

Dynamic analysis

Android virtual machine

ARM emulators

DDMS

APKill

. . .

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 10 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

State of the art
Android reverse cookbook
Why so unsatisfied?

Android reverse cookbook
The daily life of a reverse analyst

Wake up

Run the application on a standard device

Run the application inside an emulator

Inspect the memory

Inspect network traffic

Fetch and disassemble the package

Read the dalvik dex bytecode and match it to behaviors

Inject some home-cooked hooks with Smali

. . .

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 11 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

State of the art
Android reverse cookbook
Why so unsatisfied?

Why so unsatisfied?
We remain bulls in china shops

No proper anti-anti-debugging tools

→ Spend hours patching Smali code to bypass protections

Heavy debugging tools that are easily detected

Many unexpected side effects due to virtulization

More side effects due to execution path/memory inspection

Patches adding even more side effects

→ Biased reports

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 12 / 33



Minimal footprint techniques

1 Reverse engineering and side effects

2 Reverse engineering on Android

3 Minimal footprint techniques
Why go minimal?
Measuring the footprint
Minimizing the footprint

4 Fino approach and implementation

5 Demo



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Why go minimal?
Measuring the footprint
Minimizing the footprint

Why go minimal?

Side effects are bad

Be faster (less overhead)

Be stealthier

Go further

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 14 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Why go minimal?
Measuring the footprint
Minimizing the footprint

Measuring the footprint
How much do these side effects really annoy you?

Side effects are bad. How bad?

Most of the time

Time overhead (slow down
the program)

Space overhead (use more
memory)

Concurrency constraints

Worst case scenario

State inconsistencies,
deadlocks

Access conflicts

Application crashing

Device freezing

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 15 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Why go minimal?
Measuring the footprint
Minimizing the footprint

Minimizing the footprint
(((Anti-){2})+)debugging techniques, and more

Many technical responses:

minimizing the space footprint

→ go modular!

minimizing the time overhead

→ live aside, do not hook!

avoiding state inconsistencies

→ always prefer pure functions!

avoiding concurrency conflicts

→ always check the current thread!

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 16 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Why go minimal?
Measuring the footprint
Minimizing the footprint

Minimizing the footprint
(((Anti-){2})+)debugging techniques, and more

A general approach:

no patch of existing bytecode

simple and modular payload

no interaction with unknown threads

as little memory interaction as possible

stick with pure functions and read access as far as possible

communication only through covert channels

no unintended user interaction (no graphical popup, . . . )

→ remain as silent as possible

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 17 / 33



Fino approach and implementation

1 Reverse engineering and side effects

2 Reverse engineering on Android

3 Minimal footprint techniques

4 Fino approach and implementation
Minimal from scratch
Dead code injection
Covert communication
Entry point discovery
Fino

5 Demo



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Minimal from scratch
Dead code injection
Covert communication
Entry point discovery
Fino

Minimal from scratch
Because patching is great, but. . .

Usual solution for debuggers:

1 write some sketchy debugging code

2 add plenty of modules for execution and memory inspection

3 note the many side effects and anti-debugging snippets

4 patch the debugger, then go to 2

A somehow different approach:

1 put avoiding side effects as a core design choice

2 write a modular debugging framework

3 add less modules because of the design constraints

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 19 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Minimal from scratch
Dead code injection
Covert communication
Entry point discovery
Fino

Dead code injection
What does an Android application look like?

A
n

d
ro

id
 a

p
p

li
ca

ti
o

n

Activities
Activities
Activities

ServicesServices
Services

ServicesServices

Broadcast
receivers

AndroidManifest.xml

XML resources
Resources

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 20 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Minimal from scratch
Dead code injection
Covert communication
Entry point discovery
Fino

Dead code injection
. . . which appears to be undead

Dead code injection

Inject some code in the
application

The code is never referenced

Invoked by a system
mechanism

→ event handler

→ broadcast receiver

→ bound service

Service injection

Service injected in the APK

Never referenced in the code

Action filtered declared

Invoked by the system with
service binding

→ Silent until invoked

→ Launched in the application
thread

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 21 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Minimal from scratch
Dead code injection
Covert communication
Entry point discovery
Fino

Dead code injection
What does it look like once injected?

A
n

d
ro

id
 a

p
p

li
ca

ti
o

n

Activities
Activities
Activities

ServicesServices
Services

ServicesServices

Broadcast
receivers

AndroidManifest.xml

XML resources
Resources

Inspection 
service

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 22 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Minimal from scratch
Dead code injection
Covert communication
Entry point discovery
Fino

Covert communication
You really do not want side effects, do you?

How to communicate with the injected code?

Through network sockets: system/device dependant

Same goes for local sockets

Through the graphical interface: out of the question

→ Through plain service remote procedure calls

→ Only native types as arguments and returns

→ A client or a proxy is necessary

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 23 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Minimal from scratch
Dead code injection
Covert communication
Entry point discovery
Fino

Covert communication
Client? Proxy?

Inspected application

Inspection service

Inspection API

Legit 
components

Android client

Android proxy

TCP API

Python
client

Object API

Python shell
Python scripts

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 24 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Minimal from scratch
Dead code injection
Covert communication
Entry point discovery
Fino

Entry point discovery
The story of a poor lonesome service

Communication with some dead code

Goal: memory inspection, function call, . . .

Mean: mostly Java reflection API

→ Necessary to get some entry points

→ Application.ActivityLifecycleCallbacks

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 25 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Minimal from scratch
Dead code injection
Covert communication
Entry point discovery
Fino

Fino
’cause we finally built some tool

Fino Low footprint inspection service

Gadget Android-side API proxy

Client Python object oriented API and
interactive shell

Inspected application

Inspection service

Inspection API

Legit 
components

Android client

Android proxy

TCP API

Python
client

Object API

Python shell
Python scripts

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 26 / 33



Demo

1 Reverse engineering and side effects

2 Reverse engineering on Android

3 Minimal footprint techniques

4 Fino approach and implementation

5 Demo
Demo 1
Demo 2
Demo 3
Conclusion



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Demo 1
Demo 2
Demo 3
Conclusion

Demo 1
Reminder

Inspected application

Inspection service

Inspection API

Legit 
components

Android client

Android proxy

TCP API

Python
client

Object API

Python shell
Python scripts

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 28 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Demo 1
Demo 2
Demo 3
Conclusion

Demo 1

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 29 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Demo 1
Demo 2
Demo 3
Conclusion

Demo 2

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 30 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Demo 1
Demo 2
Demo 3
Conclusion

Demo 2

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 31 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Demo 1
Demo 2
Demo 3
Conclusion

Demo 3

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 32 / 33



Reverse engineering and side effects
Reverse engineering on Android

Minimal footprint techniques
Fino approach and implementation

Demo

Demo 1
Demo 2
Demo 3
Conclusion

Conclusion

Damien @virtualabs

Pierre @kaiyou

Fino http://github.com/sysdream/fino

Gadget http://github.com/sysdream/gadget

Client http://github.com/sysdream/gadget-client

Questions?

Damien Cauquil, Pierre Jaury Small footprint inspection techniques for Android 33 / 33

http://github.com/sysdream/fino
http://github.com/sysdream/gadget
http://github.com/sysdream/gadget-client

	Reverse engineering and side effects
	Reverse engineering on Android
	Minimal footprint techniques
	Fino approach and implementation
	Demo

