
Time is NOT on Your Side: ���
Mitigating Timing Side Channels on the Web	


Sebastian Schinzel	

	


Friedrich-Alexander Universität Erlangen-Nürnberg	

Lehrstuhl für Informatik 1	


IT-Sicherheitsinfrastrukturen	

	


Web: 	
 http://seecurity.org/	

Twitter: @seecurity	




About me	


2	


•  Academia: Postdoc researcher at University of Erlangen	


•  Offensive software security	


•  Side channel attacks	


•  Industry: Penetration tester, consultant, speaker, teacher	


•  Software security topics (design, implementation, test of software)	


•  Focus on SAP security (ABAP)	




Brief overview on timing attacks���
	


3	


Other examples for 
side channels:	


•  sound	


•  visuals	


•  emissions	


•  power consumption	


•  motion (mobiles)	


•  size of encrypted 
network packets	


T

Attacker (client) Server

pass
correct?

true

login(user, pass)t0

true

false“An error occured”t1

false“An error occured”t2

user
correct? 

  ⇒ user does not exist�

�   ⇒ user exists



Brief overview on timing attacks���
	


4	


Breaking XML Encryption	


•  Attacker eavesdrops on XML Encryption message	


•  Break RSA-encrypted session key with a few 100.000 requests using a Bleichbacher oracle	


Tibor Jager, Sebastian Schinzel, Juraj Somorovsky	

Bleichenbacher's Attack Strikes again: Breaking PKCS#1 v1.5 in XML Encryption	

17th European Symposium on Research in Computer Security (ESORICS 2012)	

http://www.nds.rub.de/research/publications/breaking-xml-encryption-pkcs15/	


Ckey ‘	


Web	

Service	


Attacker’s	

oracle	


Bleichenbacher’s	

Attacker	


XML request 	

(Ckey ‘)	


response	


„valid“ / „invalid“	


Ckey ‘	




Brief overview on timing attacks���
	


5	


Results: ���
Bleichenbacher���
timing oracle	


398,123 server requests	


Localhost: ���
à less than 200 minutes	


Internet: ���
à less than 1 week	


Tibor Jager, Sebastian Schinzel, Juraj Somorovsky	

Bleichenbacher's Attack Strikes again: Breaking PKCS#1 v1.5 in XML Encryption	

17th European Symposium on Research in Computer Security (ESORICS 2012)	

http://www.nds.rub.de/research/publications/breaking-xml-encryption-pkcs15/	


valid	


invalid	

valid	


invalid	




Brief overview on timing attacks���
	


6	


A generic side channel:	


!

if((secret % 2) == 0) {  
 

!do_thing1();  
 
} else {  
 

!do_thing2();  
 
}!

t1	


t2	
 (secret % 2) == 0	


?	




Brief overview on timing attacks���
	


7	


Determinism vs. statistics:	


•  Buffer overflow exploit works or not à shell code is executed or not	


•  Statistical methods always gives some result à result is 23.42	


•  “detect silent voices in a very noisy environment”	


•  but what means 23.42?	


•  coincidental or statistically significant?	




Brief overview on timing attacks���
	


8	


Attacker has only limited control over noise	


•  Choose high quality network entry point during idle times	


•  Crosby* results	


•  successfully measured 200 nanoseconds processing time difference over a 
local LAN with 1000 measurements	


•  successfully measured 30 microseconds processing time difference over the 
Internet with 1000 measurements	


•  measurement hardware matters!	

* Crosby, Riedi, Wallach,	

Opportunities and Limits of Remote Timing Attacks	

ACM Trans. Inf. Syst. Secur, 12(3), 2009	

http://www.cs.rice.edu/~dwallach/pub/crosby-timing2009.pdf	

	




Brief overview on timing attacks���
	


9	




Brief overview on timing attacks���
	


10	


Analyzing timing data sets	


•  Central limit theorem says that if you measure enough times a number of 
independent random values, then the resulting dataset will be normally 
distributed	


•  Often true for local measurements and hardware-near measurements	


•  Timing measurements over networks are usually not normally distributed (see 
Crosby 2009)	


•  Standard hypothesis tests don’t work well	




Brief overview on timing attacks���
	


11	


s=0 
s=1 

Analyzing timing data sets	


•  Crosby proposed the “Box 
test” as an alternative 
hypothesis test	


•  We implemented the Box 
test and published it at ���
http://www1.cs.fau.de/side-channels/	


•  Also used for this talk	




Brief overview on timing attacks���
	


12	


What about the accuracy of a timing 
attack?	


•  one-shot attack	


•  List of user names to try out	


•  50% accuracy means that 50% of the detected 
user names are actually correct	


•  … better than nothing	


Adaptive attack	


•  Current query depends on result 
of previous query	


•  A single wrong conclusion during the 
measurements might mess up measurement 
efforts of days or weeks	


•  See timing attack on XML Encryption (ESORICS 
‘12)	


•  0.1% error rate might still not be sufficient	




13	


	


	


Preventing Timing 
Side Channels	

	




Preventing Timing Side Channels	


14	


28c3: “Time is on my side: Exploiting Timing Side Channel Vulnerabilities on the Web”	


•  explained how to do timing attacks	


•  presented tools to (http://www1.cs.fau.de/side-channels/)	


•  perform timing measurements	


•  evaluate timing data sets for significant differences	


•  0day: practical timing attack to break XML Encryption ciphertexts	


•  à for details on timing attacks, watch the 28c3 talk	


•  In Q&A session people asked how to prevent timing attacks	

http://events.ccc.de/congress/2011/Fahrplan/events/4640.en.html	


http://www.youtube.com/watch?v=ykNt8pSQFZQ	




Preventing Timing Side Channels	


15	


A side channel:	


!

if((secret % 2) == 0) {  
 

!do_thing1();  
 
} else {  
 

!do_thing2();  
 
}!

Effective prevention of the side 
channel:	


do_thing1();!

do_thing2();!

if((secret % 2) == 0) {  
!use_result1(); ! 

} else {  
!use_result2();  

}!

à Drawback: slower	




Preventing Timing Side Channels	


16	


Preventing timing side channels	


•  Easiest is really to remove the timing side channel from the code	


•  But what if	


•  you don’t have the code (closed-source, “Eeeeeeeeeew!!”)	


•  you don’t have the know-how for fixing it	


•  you don’t know about the vulnerability in the first place	




Preventing Timing Side Channels	


17	


s=0 
s=1 

Pad to fixed delay: ���
	




Pad to fixed delay: ���
	


Preventing Timing Side Channels	


18	


s=0 
s=1 

150	

(WCET)	




Preventing Timing Side Channels	


19	


Random delay padding	


•  That’s what everybody is asking 
when I’m talking about side channels	


•  (not only timing but also storage 
side channels)	


Obfuscating the timing difference using 
random delays!

if((secret % 2) == 0) {  
!do_thing1();  

} else {  
!do_thing2();  

}!

int r = random() % t_max;!

nanosleep(r);!



Preventing Timing Side Channels	


20	


s=0 
s=1 

Random Delay���
	




Preventing Timing Side Channels	


21	


s=0 
s=1 

Random Delay���
	




0	


50	


100	


150	


200	


250	


300	


350	


1	
 10	
 100	
 1000	
 10000	
 100000	
 1000000	
10000000	


Delay	


No delay	


Preventing Timing Side Channels	


22	


Dan Kaminsky, Black Hat 2012:	


tc qdisc add dev eth0 root netem delay 
3ms 1ms!

	


File size No delay Delay 
1 B 4.09 ms 28.58 ms (7x) 

10 B 4.09 ms 28.66 ms (7x) 
100 B 4.08 ms 28.15 ms (7x) 
1 KB 4.09 ms 28.64 ms (7x) 

10 KB 4.27 ms 28.88 ms (7x) 
100 KB 5.63 ms 51.34 ms (10x) 

1 MB 18.66 ms 120.13 ms (7x) 
10 MB 153.43 ms 288.18 ms (2x) 

Performance reduction: factor ~7	


response size	


response time in miliseconds	




Preventing Timing Side Channels	


23	


Other timing delay padding strategies:	


•  reducing the precision of timing delays using “bucketing”	


Boris Köpf and Markus Dürmuth.	

A Provably Secure and Efficient Countermeasure against Timing Attacks.	

CSF, pp. 324-335, IEEE Computer Society, 2009.	




Preventing Timing Side Channels	


24	


Other timing delay padding strategies:	


•  use non-uniform random distributions	


Jean-Sébastien Coron and Ilya Kizhvatov	

An Efficient Method for Random Delay Generation in Embedded Software	

CHES 2009	




Preventing Timing Side Channels	


25	


Other timing delay padding strategies:	


•  create a stream of “events” with constant timings	


Aslan Askarov and Danfeng Zhang and Andrew C. Myers	

Predictive black-box mitigation of timing channels	

ACM Conference on Computer and Communications Security 2010	




Preventing Timing Side Channels	


26	


“Adding random padding ���
to hide the length of compressed/encrypted data ���
is like setting your [Toyota] Prius on fire���
because it doesn't pollute enough.” (tweet by Matthew Green)	


https://twitter.com/seecurity/status/259026201736253440	


à if possible, go fix your protocol / your code / (your hardware)	




Preventing timing attacks	


27	


My research questions for this talk:	


•  Does random delay padding effectively prevent timing side channels?	


•  What maximum size of random delay padding works, and how well does it 
work?	


•  Given a timing side channel with a random delay padding protection: what can 
an attacker still do?	




Preventing Timing Side Channels	


28	


Academia vs. real-world	


What are timing 
countermeasures 

that are 
provably secure? 

 
What 

guarantees do I 
get from a 

timing 
countermeasure? 

Can I exploit 
this timing side 
channel in real 

systems? 
 

Show me 
practical 

measurements! 
 

Give me tools! 



29	


	


	


“Butter bei die Fische”	

	




Preventing Timing Side Channels	


30	


Attacker scenario	


•  Ristenpart et al. *	


•  mapped the internal cloud infrastructure of the Amazon EC2 service	


•  instantiate new VMs until one is placed co-resident with the target	


•  “just a few dollars invested in launching VMs can produce a 40% chance of 
placing a malicious VM on the same physical server as a target customer”	


•  We want to show the efficiency of countermeasures, not attacks	


•  à For this talk, we need a very strong (but still practical) attacker (local)	

* Thomas Ristenpart and Eran Tromer and Hovav Shacham and Stefan Savage.	

Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds	

ACM Conference on Computer and Communications Security, pp. 199-212, ACM, 2009.	




Our Timing Measurement Dataset	


31	


localhost	


U
D

P 
cl

ie
nt
	


U
D

P 
se

rv
er
	
request	


⌛	

response	


t0	


t1	


Simple UDP-Ping-Pong protocol	


•  Measurement setup	


•  measurement on localhost	


•  idle Ubuntu machine, no GUI	


•  switched off Intel Speedstepping, C-States, 
all unnecessary services	


•  unplugged network cable	


•  …	


t	




Our Timing Measurement Dataset	


32	


•  20 different datasets	


•  Measured 1 mio. times per delay	


•  Minimum timing difference was 10 
nanoseconds	


•  Maximum timing difference was 5 
milliseconds	


•  Manually removed obvious outliers 
(50-100 per dataset)	


Timing difference	  
10 ns!
20 ns!
40 ns!
80 ns!

160 ns!
320 ns!
640 ns!

1,280 us!
2,560 us!
5,120 us!

10,240 us!
20,480 us!
40,960 us!
81,920 us!

163,840 us!
327,680 us!
655,360 us!

1,310720 ms!
2,621,440 ms!
5,242,880 ms!



Our Timing Measurement Dataset	


33	


Timing difference	   # required measurements	  
10 ns! ?!
20 ns! >300.000, p=?!
40 ns! >300.000, p=?!
80 ns! 31, p=0.14!

160 ns! 16, p=0.02!
320 ns! 16, p=0.02!
640 ns! 16, p=0.02!

1,280 us! 16, p=0.02!
2,560 us! 16, p=0.01!
5,120 us! 16, p=0.00!

10,240 us! 16, p=0.00!
20,480 us! 16, p=0.00!
40,960 us! 16, p=0.00!
81,920 us! 16, p=0.00!

163,840 us! 16, p=0.00!
327,680 us! 16, p=0.00!
655,360 us! 16, p=0.00!

1,310720 ms! 16, p=0.00!
2,621,440 ms! 16, p=0.00!
5,242,880 ms! 16, p=0.00!

Results with no time delay padding	


•  Delays <100 nanoseconds hardly 
distinguishable	


•  further research e.g. with other 
hardware, other hypothesis tests, more 
measurements	


•  Delays > 5 microseconds distinguishable 
with high confidence (p=0.00) with just 
~20 measurements	




34	


	


	


Random Delay 
Padding	

	




Random Delay Padding	


35	


Creating the random delay padding datasets:	


•  for each of the datasets, add a random uniform delay per 
entry (with nanosecond accuracy)	


•  random delays were: 1 microsecond, 10 microseconds, …, 
100 milliseconds (6 different delays)	


•  à 120 different datasets	


	


Timing difference	  
10 ns!
20 ns!
40 ns!
80 ns!

160 ns!
320 ns!
640 ns!

1,280 us!
2,560 us!
5,120 us!

10,240 us!
20,480 us!
40,960 us!
81,920 us!

163,840 us!
327,680 us!
655,360 us!

1,310720 ms!
2,621,440 ms!
5,242,880 ms!



Random Delay Padding	


36	


1 microsecond random delay 
padding	


Delay	   # measurements	   Random	  Delay	  1us	  
10 ns! ?! X!
20 ns! >300.000, p=?! X!
40 ns! >300.000, p=?! X!
80 ns! 31, p=0.14! X!

160 ns! 16, p=0.02! X!
320 ns! 16, p=0.02! X!
640 ns! 16, p=0.02! X!

1,280 us! 16, p=0.02! 32768, p=0.00!
2,560 us! 16, p=0.01! 16, p=0.01!
5,120 us! 16, p=0.00! 16, p=0.00!

10,240 us! 16, p=0.00! 16, p=0.00!
20,480 us! 16, p=0.00! 16, p=0.00!
40,960 us! 16, p=0.00! 16, p=0.00!
81,920 us! 16, p=0.00! 16, p=0.00!

163,840 us! 16, p=0.00! 16, p=0.00!
327,680 us! 16, p=0.00! 16, p=0.00!
655,360 us! 16, p=0.00! 16, p=0.00!

1,310720 ms! 16, p=0.00! 16, p=0.00!
2,621,440 ms! 16, p=0.00! 16, p=0.00!
5,242,880 ms! 16, p=0.00! 16, p=0.00!



10#

100#

1000#

10000#

100000#

1000# 10000# 100000# 1000000# 10000000#

1us#

0s#

Random Delay Padding	


37	


1 microsecond random 
delay padding	


•  Timing delay of ���
1 microsecond 
distinguishable with 
~32.000 measurements	


•  Timing delay of ���
2 microseconds 
distinguishable with ���
~16 measurements	


# measurements	


1us	
 10us	
 100us	
 1ms	
 10ms	


delay	

padding	




Random Delay Padding	


38	


Delay	   # measurements	   Random	  Delay	  1ms	  
10 ns! ?! X!
20 ns! >300.000, p=?! X!
40 ns! >300.000, p=?! X!
80 ns! 31, p=0.14! X!

160 ns! 16, p=0.02! X!
320 ns! 16, p=0.02! X!
640 ns! 16, p=0.02! X!

1,280 us! 16, p=0.02! X!
2,560 us! 16, p=0.01! X!
5,120 us! 16, p=0.00! 4096, p=0.00!

10,240 us! 16, p=0.00! 1024, p=0.05!
20,480 us! 16, p=0.00! 16384, p=0.03!
40,960 us! 16, p=0.00! 32768, p=0.00!
81,920 us! 16, p=0.00! 16384, p=0.03!

163,840 us! 16, p=0.00! 4096, p=0.04!
327,680 us! 16, p=0.00! 16, p=0.00!
655,360 us! 16, p=0.00! 16, p=0.00!

1,310720 ms! 16, p=0.00! 16, p=0.00!
2,621,440 ms! 16, p=0.00! 16, p=0.00!
5,242,880 ms! 16, p=0.00! 16, p=0.00!

1 millisecond random delay 
padding (Dan’s mitigation)	




Random Delay Padding	


39	


1 millisecond random 
padding (Dan’s mitigation)	


•  Timing delay of ���
5 microseconds 
distinguishable with 
~4.000 measurements	


•  Timing delay of ���
300 microseconds 
distinguishable with ���
~16 measurements	


# measurements	


1us	
 10us	
 100us	
 1ms	
 10ms	

delay	

padding	




Random Delay Padding	


40	


Delay	   # measurements	   Random	  Delay	  10ms	  
10 ns! ?! X!
20 ns! >300.000, p=?! X!
40 ns! >300.000, p=?! X!
80 ns! 31, p=0.14! X!

160 ns! 16, p=0.02! X!
320 ns! 16, p=0.02! X!
640 ns! 16, p=0.02! X!

1,280 us! 16, p=0.02! X!
2,560 us! 16, p=0.01! X!
5,120 us! 16, p=0.00! 15625, p=0.0!

10,240 us! 16, p=0.00! X!
20,480 us! 16, p=0.00! X!
40,960 us! 16, p=0.00! X!
81,920 us! 16, p=0.00! 992, p=0.00!

163,840 us! 16, p=0.00! 4096, p=0.02!
327,680 us! 16, p=0.00! 8192, p=0.04!
655,360 us! 16, p=0.00! 8192, p=0.00!

1,310720 ms! 16, p=0.00! 2048, p=0.05!
2,621,440 ms! 16, p=0.00! 16, p=0.00!
5,242,880 ms! 16, p=0.00! 16, p=0.00!

10 millisecond random delay 
padding	




Random Delay Padding	


41	


10 milliseconds random 
padding	


•  Timing delay of ���
5 microseconds 
distinguishable with 
~15.000 measurements	


•  Timing delay of ���
2 milliseconds 
distinguishable with ���
~16 measurements	


# measurements	


10#

100#

1000#

10000#

100000#

1000# 10000# 100000# 1000000# 10000000#

10ms#

0s#

delay	

padding	


1us	
 10us	
 100us	
 1ms	
 10ms	




Preventing timing attacks	


42	


10#

100#

1000#

10000#

100000#

1000000#

1000# 10000# 100000# 1000000# 10000000#

1us#

10us#

100us#

1ms#

10ms#

100ms#

0s#

delay	

padding	


10#

100#

1000#

10000#

100000#

1000000#

1000# 10000# 100000# 1000000# 10000000#

1us#

10us#

100us#

1ms#

10ms#

100ms#

0s#

Overview of 
random delay 
paddings.	


Important:	


- where does 
function start 
(distinguishable)?	


- where does 
function drop to 
base line (trivial)?	


1us	
 10us	
 100us	
 1ms	
 10ms	




Delay type	
 None	

Delay to 
WCET	


Random 
Delay	


Deterministic and 
Unpredictable Delay	


Impact on 
Performance	
 Best	
 Worst	
 tmax/2	
 t + tmax/2	


Impact on 
Security	
 Worst	
 Best	


Requires more 
probes to 

cancel out noise	


Offers best protection for fraction 
of 	


t(s) (adjustable via tmax)	


Preventing timing attacks	


43	


Summary random delay padding:	




44	


	


Deterministic and 
Unpredictable delay 
padding	

	
 Sebastian Schinzel, An Efficient Mitigation Method for Timing Side Channels on the Web,	


2nd International Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE 2011)	

http://sebastian-schinzel.de/_download/cosade-2011-extended-abstract.pdf	

	

Sebastian Schinzel, Unintentional and Hidden Information Leaks in Networked Software Applications	

PhD Thesis 2012, Universität Erlangen-Nürnberg - Lehrstuhl für Informatik 1	

http://www.opus.ub.uni-erlangen.de/opus/frontdoor.php?source_opus=3271	




Preventing timing attacks	


45	


“Deterministic and Unpredictable Delay 
(DUD)”	


•  Delay tg is deterministic for any given 
user input u	


•  Attacker cannot guess delay without 
knowing secret configuration value k	


•  Protects user-adjustable portion of all 
values from leaking	


	
Pseudo implementation:	


1 

t1 

t2 

t1 + tg tmin tmax 

t2 + tg tmin tmax 

T 

“Left Area” 
 

“Right Area” 
 

“Middle Area” 

Measurement Range 



Preventing timing attacks	


46	


 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 0  5  10  15  20  25  30  35  40  45  50

Fi
lte

re
d 

re
sp

on
se

 ti
m

e 
(m

ic
ro

se
co

nd
s)

u (user name)

Random delay

valid user name + random delay
invalid user name + random delay

valid user name (no delay)
invalid user name (no delay)

 0  5  10  15  20  25  30  35  40  45  50
u (user name)

Deterministic and Unpredictable Delay (DUD)

valid user name + DUD
invalid user name + DUD

valid user name (no delay)
invalid user name (no delay)

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 0  5  10  15  20  25  30  35  40  45  50

Fi
lte

re
d 

re
sp

on
se

 ti
m

e 
(m

ic
ro

se
co

nd
s)

u (user name)

Random delay

valid user name + random delay
invalid user name + random delay

valid user name (no delay)
invalid user name (no delay)

 0  5  10  15  20  25  30  35  40  45  50
u (user name)

Deterministic and Unpredictable Delay (DUD)

valid user name + DUD
invalid user name + DUD

valid user name (no delay)
invalid user name (no delay)

Comparison of filtered 
measurements:	

	

•  Timing difference: 250μs	

•  Maximum delay: ���

tmax = 1250μs	


•  same performance impact 
for both delay strategies	


•  DUD produces much 
more noise 
(independently of the 
amount of 
measurements)	




Delay type	
 None	

Delay to 
WCET	


Random 
Delay	


Deterministic and 
Unpredictable Delay	


Impact on 
Performance	
 Best	
 Worst	
 tmax/2	
 tmax/2	


Impact on 
Security	
 Worst	
 Best	


Requires more 
probes to 

cancel out noise	


Offers best protection for fraction 
of values (adjustable via tmax)	


4. An Efficient Mitigation Method for Timing Side Channels on the Web���
	


47	




Preventing timing attacks	


48	


Summary	


•  Local attacker are relevant in practice	


•  Attacker can distinguish ~160 nanoseconds with few measurements and low 
error rate	


•  Random delays are neither an effective, nor an efficient mitigation for timing 
side channels	


•  Others mitigation techniques work better, depending on the usage scenario	


•  Deterministic and unpredictable delay is one example	




Open Data Policy	


49	


Find information on measurement setups, the datasets, the code, and the scripts 
here (shortly after the talk):	


	


http://seecurity.org/29c3/	




50	


	


Thanks for your attendance!	


Questions? Discussion.	

	


Web: http://seecurity.org/	


Twitter: @seecurity	



