Small footprint inspection techniques for Android

Damien Cauquil

Pierre Jaury

September 21, 2012

1 Reverse engineering and mo-
tivations

With mobile devices getting more complex everyday,
users tend to store huge amounts of data and access
so many services on potentially insecure networks and
systems that mobile security is one of the main con-
cerns faced by development companies and IT secu-
rity experts nowadays.

Meanwhile, both for security reasons and intel-
lectual property protection, developers are provided
with a panel of optimization and obfuscation tools [2]
that is getting powerful and fairly easy to include in
any release process. Reverse engineering binary pack-
ages has become a full time job for security consul-
tants, who are lacking some tools when dealing with
very specific issues.

In order to completely understand motivations for
small footprint inspection techniques, one first has to
compare reverse engineering with physics. Reverse
engineering s the physics of computers: experts are
collecting facts and observing behaviors to establish
laws and analyze system internals that could no be
observed directly. Those same experts are facing nu-
merous experimental issues, especially when studying
programs specifically designed against reverse engi-
neering techniques. One of them is very common to
physics and computers: experimental and measure
uncertainty.

When performing any run-time dynamic analysis,
reverse engineers modify the application behavior by
altering its environment: debugging meta-data, run-
time breakpoints, virtual machine overlay, physical
device emulator and even network traffic interception
may end up in a complete different response from

the target application. Studying the program nec-
essarily involves a bias; developers and specific anti-
debugging tools exploit this bias to slow down reverse
engineers or lead them to wrong conclusions.

Current tools available for the Android mobile
platform usually have many side effects: their foot-
print is so big that dynamic analysis of mobile ap-
plications is sometimes impossible. This observation
motivated various research projects for dynamic anal-
ysis — mostly inspection — techniques involving a min-
imal footprint.

2 Small footprint inspection

2.1 Android inspection state of the

art

Many tools are available for memory and execu-
tion path inspection of Android applications. The
most common one is DDMS (Dalvik Debug Moni-
tor Server), it is perfectly integrated with develop-
ment environments like Eclipse and allows developers
and auditors to place breakpoints, inspect both local
and global variables. Yet the application has to be
launched in debug mode (if not built with the debug
flag).

One of the latest tools released is APKIL. It pro-
vides auditors with a complete Dalvik byte-code
patching system that is able to inject monitoring in-
structions into application packages. Its main pur-
pose is the inspection of Android API calls, which — as
any system call — are usually perfectly relevant for an-
alyzing internal mechanisms. It is still easily beaten
by loading remote code at run-time or by spoofing
usual API calls.



2.2 Service injection

The techniques we used to circumvent annoying side
effects and anti-debugging protections are based on a
very simple principle that malware developer already
have widely explored [1]: Android applications are
built upon a modular architecture, declaring possi-
bly unrelated activities, services, etc. Thus, injecting
code into an application package does not necessarily
mean altering the existing Dalvik byte-code.

We tried and exploited many injection vectors,
from supposed static resources to fully equipped ser-
vices, and ended up dropping a service that remains
completely silent until it is enabled and queried by a
client application.

The injected piece of code communicates using
standard service calls as a covert channel in order
to grant users the ability to inspect the application
memory from the inside and execute any Dalvik in-
struction in the same process and virtual machine as
the target application. It is also able to load dynamic
classes at run-time — in a very similar fashion as Me-
terpreter — in order to extend its functionality while
keeping a minimal space footprint.

2.3 Introspection API and examples

The tool we eventually developed exposes a simple
service API that may be proxified over the network
and integrated in the same fashion as DDMS plugins.

It is able to perform complete activities and run-
ning services introspection, variables modification
and remote method invocation as well as download-
ing and invoking user-defined Java/Dalvik macros at
run-time.

It will be released together with example client ap-
plications. See figure 1 for the very first glimpse of
an introspection client for Android.

3 Presentation contents

The presentation would be held in English, last about
30 minutes and address the following topics:

e general considerations and real life examples

'g‘ Fino introspection

[Package: com.example.inspection
Path: Hello, world!

[Ty pe: javalang String

alue: Hello, world!

FIELDS
ASCII

Jprivate static final [C
[CASE_INSENSITIVE_ORDER
Jpublic static final java.util Comparater
REPLACEMENT_CHAR
Iprivate static final char
serialVersionUID

private static final long

value

private final [C

hashCode

private int

offset

orivate final int

count

orivate final int

METHODS
| getChars

Jvcid java lang String_getChars(int int,char(L.int)
charAt

[public native char java lang.String.char At(int)
codePointAt

Ibublic int java.lang.String.codePointAt(int)

Figure 1: Fino inspection client

about the importance of mobile security and re-
verse engineering on mobile platforms;

e existing inspection tools and examples of their
usual side effects;

e minimal footprint inspection principles and
overview of the technical implementation we
came up with;

e demonstration of the released tool abilities using
a couple of target applications and the Android
introspection client (as well as a DDMS-like plu-
gin if ready soon enough).

References

[1] Erika Chin, Adrienne Porter Felt, Kate Green-
wood, and David Wagner. Analyzing inter-
application communication in android. 2011.

[2] Patrick Schulz. Code protection in android. 2012.



