
Evolving Custom
Communication Protocols

by Wes Faler of Part-Time Scientists
for 28C3, Berlin Germany, 2011

wf@ptscientists.com

<presentation>

 Why

 What

 How

 Code and Details

 Results

 Your turn!

Why

 Part-Time Scientists needed a
communication protocol between our
Earth stations and our rover on the moon.

What

 Given:
◦ A fixed set of hardware components for a
packet transmitter and receiver.

◦ Video and telemetry streams that must go
from the moon to Earth.

◦ A stream of commands that must go from
Earth to the rover on the moon.

 Create:
◦ A finite state machine that provides the
network and application layer control of a
transceiver used on both earth and the moon.

What - Complications

 Must be a published open protocol.

 Cannot use encryption.

 Long latency.

 High packet cost and value.

 Bandwidth is limited and saturated.

 May tunnel through another protocol.

 TCP/IP is not an option.

Easy as 1…

 DesignN=DebateN [DesignN-1]

 + α DebateN-1[DesignN-1]

Easy as 1…2…

 Create parameterized algorithm

 One-at-time simulation

Easy as 1…2…3…

 Parameter sweep

 int driver_movesPerTransaction[] = { 1, 20 };
int driver_wheelTicksPerCommand[] = { 512, 4096 };
int driver_commandsPerPacket[] = { 1, 25 };
int driver_moveCommandsPerCameraCommand[] = { 0, 10 };
float earth_packetTimeout[] = { 5, 30 };
int earth_maxAllowedBacklogCount[] = { 10 };
float burst_upstreamBurstErrorChance[] = { 0, 0.05 };
float burst_downstreamBurstErrorChance[] = { 0, 0.05 };
float rover_naggleDuration[] = { 0.5 };
int rover_packetQueueSize[] = { 10, 0 };
int rover_shouldFinishMoveQueueBeforeCommRecovery[] = { 1, 0 };
float rover_commRecoveryDuration[] = { 5, 30 };
float rover_moveCommandCommOutageChance[] = { 0.01, 0 };
float rover_steerCommandCommOutageChance[] = { 0.01, 0 };

Easy as 1…2…3…4.

 GPU

 Before: 1 simulation/second

 Port unoptimized C++ code to GPU
◦ Least programming effort possible

◦ Just for parameter sweeps

 After: 700 seconds for 5200 simulations
◦ 7.4 simulations/second

 Run a million simulations

Results – Distance Travelled

Just a few small changes…

What, rev.2

 Given:
◦ A fixed set of hardware components for a packet

transmitter and receiver.

◦ Video and telemetry streams that must go from the
moon to Earth.

◦ A stream of commands that must go from Earth to
the rover on the moon.

◦ Changing requirements from stakeholders.

 While(!Launched yet)
◦ Create:

 A finite state machine that provides the network and
application layer control.

Can you pass the data?

http://xkcd.com/974/
“The General Problem”

http://xkcd.com/974/

Invention – GP

 Given:
◦ A partial existing system structure

 Inputs

 Output(s)

 Formula structure

◦ Test cases

◦ Constraints

 Create:
◦ The optimal set of parameters

◦ An equation or algorithm

Invention - GP

How – CGP

 Cartesian Genetic Programming (CGP)
◦ Generates equations like circuits.
◦ Parallelizable results.
◦ FPGA friendly.
◦ Operators for simple math and logic.
 Constant

 Add, Subtract, Negative

 Add Constant, Subtract Constant

 NOP, !, &&, ||,

 > Constant, >= Constant,== Constant

 >, >=, ==

How – CGP

 Make a random “circuit”.

+

*

+

&&

-

>

How – CGP

 Score the circuit.

+

*

+

&&

-

> Test #1: Terrible
Test #2: Terrible
Test #3: Terrible

Score: Terrible*3

How – CGP

 Make random changes and rescore.

+

*

+

+

-

/ Test #1: Terrible
Test #2: Terrible-4
Test #3: Terrible

Score: Terrible*3-4

How - CGP

 Start with 1 parent.

500

How - CGP

 Start with 1 parent.

 Make mutant children.

500 500

How - CGP

 Start with 1 parent.

 Make mutant children.

 Score everyone.

500 500

500

725

How - CGP

 Start with 1 parent.

 Make mutant children.

 Score everyone.

 Promote the best child that isn’t worse
than the parent.
◦ Must promote anything equal to the parent!

500 500

500

725

500

How - CGP

 Start with 1 parent.

 Make mutant children.

 Score everyone.

 Promote the best child that isn’t worse
than the parent.
◦ Must promote anything equal to the parent!

500 500

500

725

500

85

97

85

Terminology

Ni

No

Nr

Nc

+
Operator type
Constant
Input indexes

Gene

Runtime Optimization

+

*

+

&&

-

>

Code – CGP Core

 Individual

 Executor and Optimizer

 Mutator

 Population

 Support
◦ Threadsafe, GPU-friendly random numbers

◦ Save, Load

◦ Images

How – Attacker’s Goals

 Mission Enders
◦ Make rover execute attacker’s commands

◦ Prevent rover execution of real commands

◦ Prevent acceptance of video data

 High Risk
◦ Make mission control accept false telemetry

◦ Delay rover execution of real commands

How – Simulation structure

 Discrete Event System simulation
◦ Priority queue of events ordered by time

◦ Set of Actors creating and handling events

 Packet is control flag array and payload

 Outer Space as random Actor
◦ Lose

◦ Replay

◦ Echo

◦ Corrupt

How – Simulation structure

 Transceiver as set of Actors
◦ Data Ready To Transmit

◦ Data Received

◦ Packet Expired in Transmit History

 Attacker as Actor

 Actors == Chromosomes
◦ Scored separately

◦ Promoted separately

◦ Combines partial solutions for next generation

How - Attacker

 Coevolved

 Full knowledge of packet structure

 Can crack private keys

 Sees all packets

 Cannot prevent packet delivery
◦ No “man in the middle” attacks

 Able to send to anyone

 Risk when transmitting

How – Attacker Structure

 Stateful and large for complex strategy

 Single Chromosome in feedback loop

Packet
In

Packet
Out

Timer
Attacker

State

How - Fitness

 Generational fitness
 Best fitness
 Validated fitness

 Penalties/Rewards

◦ Accepted bad signature
◦ Accepted attacker packet
◦ Accepted unknown data
◦ Accepted data more than once
◦ Never accepted data
◦ Accepted data with wrong data type
◦ Command packet accepted successfully

Tip – Validate Fitness

R² = 0.8807

Spearman's Rank (p) = 0.9188

0

100000

200000

300000

400000

500000

600000

700000

0 50000 100000 150000 200000 250000 300000 350000

V
a
li
d

a
te

d
 F

it
n

e
s
s

Fitness

Validated Fitness vs. Fitness

How - Questions to answer

 Can the control logic be automatically created
by Cartesian Genetic Programming (CGP)?

 If so, is the logic robust?
◦ Can it work with poor signal quality?

◦ Can it work with an attacker?

 Should the control logic be created:
◦ In isolation?

◦ Considering only poor signal quality cases?

◦ Considering an attacker?

 Can an attacker’s control logic be created at
a faster pace than the network logic?

Code – Simulation Core

 Experiment

 Worlds
◦ Data schedule

◦ Actors

 Execution

 Fitness
◦ Generational fitness

◦ Best fitness

◦ Validated fitness

Can CGP make control logic?

Can CGP make control logic?

More Tips

 Randomize everything!

 Reduce randomness in fitness

 Threadsafe random numbers

 Incentivize
◦ “Mute” attackers

 Increase population size

 Dust-off your statistics books

Population Size Effects

Population 4 Population 8

Fitness
Evaluations

2x

Run time 3x

Same
generations

Much better
fitness

Same run time Equal fitness Equal fitness

Does an attacker help?

0

20000

40000

60000

80000

100000

120000

140000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Generation fitness without an attacker

fitness

bestFitness

validatedFitness

Does an attacker help?

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Generation fitness with an attacker

fitness

bestFitness

validatedFitness

Does an attacker help?

 Does an attacker’s presence produce a
better transceiver?

No attacker With attacker

Best fitness 18316 23208

Validated fitness 134542 137494

Active genes +50%

Fitness:Generation
correlation

Medium Near Zero

Other Fitness:Generation Medium Medium

Val. Fitness:Gen. Slope 2x

Results - Questions answered

 Can the control logic be automatically created
by Cartesian Genetic Programming (CGP)?

 If so, is the logic robust?
◦ Can it work with poor signal quality?

◦ Can it work with an attacker?

 Should the control logic be created:
◦ In isolation?

◦ Considering only poor signal quality cases?

◦ Considering an attacker?

 Can an attacker’s control logic be created at
a faster pace than the network logic?

Future

 CGP on GPU

 Worlds on GPU

 Finer-grain Chromosomes

 New “best” selection with an attacker

 Islands

 Freezing transceiver or attacker

 Attacker detection and countermeasures

</presentation>

 Danke!

 <shameless recruiting ad>

◦Join us at ptscientists.com!
 </shameless recruiting ad>

 Wes Faler of Part-Time Scientists
◦ wf@ptscientists.com

Resources

 Code and presentation
◦ http://wp.me/pGgFl-V

 Julian Miller (inventor of CGP)
◦ http://sites.google.com/site/julianfrancismiller/prof

essional

 “Cartesian Genetic Programming” book
◦ http://www.springer.com/computer/theoretical+co

mputer+science/book/978-3-642-17309-7

 “Evolved to Win” e-book
◦ http://www.moshesipper.com/etw/

 “Communication Protocol Engineering” book
by Miroslav Popovic

http://wp.me/pGgFl-V
http://wp.me/pGgFl-V
http://wp.me/pGgFl-V
http://wp.me/pGgFl-V
http://sites.google.com/site/julianfrancismiller/professional
http://sites.google.com/site/julianfrancismiller/professional
http://sites.google.com/site/julianfrancismiller/professional
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.moshesipper.com/etw/
http://www.moshesipper.com/etw/

