

The Atari 2600
Video Computer System

The Ultimate Talk

The history, the hardware
and how to write programs

by Sven Oliver ('SvOlli') Moll

28c3 - Behind enemy lines - 2011-12-27 - 12:45 - Saal 3

Motivation for this talk (1)

The motivation came from two different aspects

Michael Steil's talks about the C=64 and 6502
inspired me to start a talk about retro computing

Motivation for this talk (2)

Why the Atari 2600 Video Computer System?

Or better: why start coding on the 2600 today?

The CPU is well known and very well documented

The video chip is too, and it differs from all others

I read the programmer's manual and thought:
"Wow, the 2600 is the most f***ed up 6502
compatible system I've ever seen, I've got to give
this one try!"

The Atari 2600 has a huge homebrew scene running
since the 90's

I learned a lot from other people, who pioneered
homebrew on the Atari 2600:

Fred Quimby, Thomas Jentzsch, Paul Slocum, Duane
Alan Hahn, Manuel Polik, Eckhard Stolberg, Andrew
Davie, Ed Federmeyer, Glenn Saunders, Nukey Shay,
Chris Wilkson, Erik Mooney and many others.
Sorry I've forgotten to include your name!

Acknowledgements

Thanks

Thanks to the following sites for providing me with
information, supporting me and / or letting me use
their content for this talk

http://www.alienbill.com/2600/
http://www.atariage.com/
http://www.atarimania.com/
http://www.biglist.com/lists/stella/
http://www.ccmuseum.de/
http://www.qotile.net/minidig/
http://www.randomterrain.com/
http://en.wikipedia.org/wiki/Atari_2600

Part 1:

The history

Atari history
Founded 1972 by Nolan Bushnell and Ted Dabney

Best known for the arcade hit "Pong" (1972)

Recognized as the first worldwide popular video
game, though it was not the first overall
(http://en.wikipedia.org/wiki/First_video_game)

Same for the Atari 2600 VCS (1977)

Between 1972 and 2001 Atari released several well-
known arcade games, several of them were re-
implemented for the Atari 2600

Design history (1)

Atari's first home release was "Home Pong"

In 1975, Atari decided to produce a home game
console based on a programmable design

Code named "Stella" after the bicycle of an engineer

3 processor designs were considered:

– Intel 8080

– Motorola 6800

– MOS 6502 (bought by Commodore before release)

Price was one of the key issues, should be cheap

Design history (2)

The basic design was set up in two days
by a core engineering team together
with Chuck Peddle of MOS

CPU and chipset were off-the-shelf
components

Price for CPU + chipset was $12
(Intel and Motorola: $150 - $200)

A week after Motorola learned that they didn't get
the deal, they sued MOS for patent infringements

Design history (3)

Chip for video and audio was still needed

Nothing suitable was available

Designed by Jay Miner

Using breadboard technology

Expensive design phase

Finished design was transferred
into a chip, that chip was cheap
to produce

Named "Television Interface Adapter (TIA)"

Breadboard example

Image courtesy of Hoenny, Wikipedia, public domain

TIA die shot

Image courtesy of visual6502.org, used by permission

Part of pop culture

Though not first on market, first home video game
system that achieved broad distribution

Released in 1977, constantly revised, both internally
and in appearance, still being 100% compatible

At the beginning of the 80's "Atari" was a synonym
for home video gaming

Discontinued at the end of 1991

Still remains the game console that has been the
longest in production, with a games catalog of 500+
different games in estimated 10000+ variations

Revision Overview (1)

6 switch model, wood design (1977) (PAL: 1978)

Image courtesy of www.ccmuseum.de, used by permission

Revision Overview (2)

4 switch model, wood design (1980)

Image courtesy of Ewan-Alan, Wikipedia, public domain

Revision Overview (3)

4 switch model, black design (1982)

Image courtesy of Ewan-Alan, Wikipedia, public domain

nick named
"Darth Vader"

Revision Overview (4)

Atari 2600 Jr (1984)

Image courtesy of Ewan-Alan, Wikipedia, public domain

Revision Overview (5)

Flashback 2+ (2: 2005, 2+: 2010)

Flashback 2+ shares the same hardware,
but has a slightly different games collection

Inspirations for games (1)

"Analog" games (board games, etc.)
 3D Tic-Tac-Toe (Atari, 1978)

 Casino (Atari 1978)

 Hangman (Atari, 1978)

 Othello (Atari, 1978)

 Slot Machine (Atari, 1979)

 Video Checkers (Atari, 1978)

 Video Chess (Atari, 1978)

 Video Pinball (Atari, 1981)

Game impressions (1)

Hangman (Atari, 1978) Video Checkers (Atari, 1978)

Video Pinball (Atari, 1981)Slot Machine (Atari, 1979)

Inspirations for games (2)

Sports games
 Basketball (Atari, 1978)

 Boxing (Activision, 1981)

 Bowling (Atari, 1978)

 Decathlon (Activision, 1983)

 Double Dunk (Atari, 1989)

 Polo (Atari 1978)

 Pelé's Soccer (Atari, 1981)

 Real Sports Soccer (Atari, 1983)

 Real Sports Boxing (Atari, 1987)

Game impressions (2)

Basketball (Atari, 1978) Double Dunk (Atari, 1989)

Real Sports Soccer (Atari, 1987)Pelé's Soccer (Atari, 1981)

Inspirations for games (3)

Licensed franchise games
 E.T. (Atari, 1982)

 Indiana Jones: Raiders Of The Lost Ark (Atari, 1982)

 Muppets: Pigs In Space (Atari, 1983)

 Peanuts: Snoopy And The Red Baron (Atari, 1983)

 Smurfs (2 Titles, Coleco, 1982 - 1983)

 Spider-Man (Parker Brothers, 1982)

 Superman (Atari, 1978)

 Star Wars (5 Titles, Parker Brothers, 1982 - 1983)

 Chuck Norris Superkicks (Xonox, 1983)

Game impressions (3)

Spider-Man (Parker Bros, 1982) Empire Strikes Back (Parker Bros, 1982)

Smurf's Rescue in ... (CBS, 1982)Raiders Of The Lost Ark (Atari, 1982)

Inspirations for games (4)

Arcade "ports"
 Amidar (Parker Bros, 1983)

 Asteroids (Atari, 1981)

 Berzerk (Atari, 1982)

 Breakout (Atari, 1978)

 Combat / Tank (Atari, 1977)

 Defender (Atari, 1981)

 Dig Dug (Atari, 1983)

 Donkey Kong (Coleco, 1982)

 Galaxian (Atari 1983)

 Gyruss (Parker Bros, 1984)

 Kangaroo (Atari, 1983)

 Pac Man (Atari, 1981)

 Pole Position (Atari, 1983)

 Popeye (Parker Bros, 1983)

 Q-Bert (Parker Bros, 1983)

 Phoenix (Atari, 1983)

 Space Invaders (Atari, 1978)

 Zaxxon (CBS, 1982)

Not really ports, but
reimplementations of
the game's basic ideas

Game impressions (4)

2600: Donkey Kong (Coleco, 1982) Arcade: Donkey Kong (Nintendo,
1981)

Arcade: Popeye (Nintendo, 1982)2600: Popeye (Parker Bros, 1983)

Inspirations for games (5)

Original titles
 Adventure (Atari, 1978)

 Atlantis (Imagic, 1982)

 Demon Attack (Imagic, 1982)

 Fathom (Imagic, 1983)

 Haunted House (Atari, 1982)

 H.E.R.O. (Activision, 1984)

 Pitfall! (Activision, 1982)

 Solaris (Atari, 1986)

 Yar's Revenge (Atari, 1982)

Most original titles were
 yet another release

for a successful genre

Game impressions (5)

Yar's Revenge (Atari, 1982) Atlantis (Imagic, 1982)

Solaris (Atari, 1986)Pitfall (Activision, 1982)

Adventure (1)

Why Adventure as an example?

The ancestor of all action adventures, e.g. Zelda

Still a fine game to play

The author Warren Robinett created small website
about Adventure:
http://www.warrenrobinett.com/adventure/

This includes slides for a lecture he gave about the
game and Atari 2600 development in general

Adventure (2)

You

are an adventurer and
start in front of a yellow
castle

Your quest is to bring the
enchanted chalice

back to that castle

Adventure (3)

The world of Adventure is divided into 29 screens like
the starting screen

3 castles (yellow, white, black)

3 mazes (consisting of several non-linear screens)

Several "connecting" rooms

Some dead ends that might contain objects

Adventure (4)

Objects interact by overlapping
(touching)

3 dragons to chase you

A bat that moves objects on its own

3 keys to the castles

A sword to kill dragons

A bridge to cross horizontal walls

A magnet to attract objects

The enchanted chalice

Adventure (5)

The is one more object

One pixel in size and colored like the background

Hidden in a room only accessible using the bridge

Take this "dot" to a certain room

Add another object and the wall is gone

Adventure (6)

Walk though that removed wall and witness the first
ever easter-egg of video gaming:

The revenge of a disgruntled video game programmer

Development (1)

Programming in 1977:

Code assembled on a computer running a
proprietary OS

Connected to a special cartridge

When the software crashed, stripes top down would
be displayed

For debugging a logic analyzer was used, which
could display steps leading to a special condition

Development (2)

Programming today:

Code assembled on a computer running almost any
OS (Windows, Mac OS X, Linux / Unix, ...)

Run inside an emulator with very sophisticated
debugging options

Once it works in the emulator as expected, it is
transferred to a special cartridge like Supercharger
(1983), or Harmony Cart (2009)

Supercharger

Image courtesy of www.ccmuseum.de, used by permission

Stella Debugger

Piracy (1)

In the design phase copy protection was no issue

The hardware was too sophisticated

Suddenly there was competition: Activision

Activision was founded by four Atari developers who
were told: "You are no more important than the guy
who puts the cartridge in the box."

Atari filed a lawsuit to prohibit third party game
development and lost

Other companies like Tigervision, Parker Bros, and
Imagic started unauthorized game development

Piracy (2)

In the early 80's ordinary
piracy became an issue

Why code a new game, when
you just can replace the
company's logo?

There was even an option to
copy games at home:

Unimex Duplicator SP 280

Atari filed a lawsuit to
prohibit distribution and won

Homebrew (1)

Even with the 2600 being out of production for
decades, new titles are released every year

Developed by a homebrew community

AtariAge and others sell cartridges of these releases

100+ titles have been released

A lot of the homebrew games outperform the
"original" software from 1977 - 1991

Homebrew (2)

Two different assemblers can be recommended:

DASM: de-facto standard of the 2600 homebrew
community

CC65: full featured cross device 6502 tool chain,
including C compiler (subset), assembler and linker
targeting Apple, Atari and Commodore and other 8
bit computers

For an easy introduction there is batari Basic
→ BASIC-like language that compiles to

assembler source code for DASM

Homebrew (3)

You don't want to write a new game from scratch?

Go hacking and modding other games

– Just change the graphics

– For a few games there are even editors
(Combat, Adventure)

– Disassemble a game and modify it

Homebrew (4)

Example
for hacking
game ROMs:

Pac Man

Part 2:

The hardware

Hardware block diagram

Atari 2600 ROM Module

- 4k addressable memory

- game code
- kernel code
- graphics

Input Devices
- Joystick
- Paddle
- Driving Controller
- Keypad
- Trackball

6507

CPU

6532: RIOT
Input / Output: 2 ports x 8 bit
RAM: 128 bytes (!), Timer

TIA
Output: video, 2 voices audio
Input: collision, pots Output Device

- Television

6507: the CPU (1)

The 6507 is a stripped down version of the 6502

Described in depth by Michael Steil on 27c3

Here's only a very brief overview of the 6502

Designed by Chuck Peddle, who also worked on the
Motorola 6800 team

8 bit architecture, little endian

Instructions take 1 - 3 bytes and 2 - 7 clock cycles

Clocked at ~1.19MHz

Cheap in production, competitive in speed

6507: the CPU (2)

6 registers

A: multi-purpose accumulator (8 bit)

X: index register (8 bit)
Y: index register (8 bit)

PC: program counter (16 bit)

SP: stack pointer (8 bit) (offset to $0100)

ST: processor status (8 bit)

6507: the CPU (3)

Let's compare the 6507 to the 6502:

Smaller chip package (28 pins instead of 40 pins)

What's missing?

3 address lines (64k internal, but only 8k external)

Both interrupt lines are hardwired to +5V internally

1 clock line (phi1), 1 VSS, Sync, S0

3 "n.c." pins ;-)

Even cheaper, popular for embedded applications

6532: RAM, I/O and Timer

Very common companion chip to the 6502 family

128 bytes of RAM

2 I/O ports (8 bit)

 – 1 I/O port used for the 5 console switches

 – 1 I/O port used for both joysticks
(only directions, read-write)

Timer that is optionally capable of sending
interrupts

(6507 is not capable of receiving interrupts, though)

Memory map (1): overview

External address space of 6507 is 8k

Mirrored 8 times in 64k internal address space

Starting at:
$0000, $2000, $4000, $6000, $8000, $A000, $C000, $E000

$0000 - $0FFF IO, timer and RAM

$1000 - $1FFF ROM (module)

Typically used in two ways:

$0000 - $1FFF
$0000 - $0FFF and $F000 - $FFFF

Memory map (2): TIA

Exact mapping: xxx0 xxxx 0xNN NNNN

Usually accessed at $0000 - $003F

Available at 32 different positions inside 8k area:
$0000, $0040, $0100, $0140, ..., $0F00, $0F40

"Space" for 64 registers

14 "read only" registers
Mirrored 4 times inside the 64 bytes address space

45 "write only" registers

Memory map (3): RIOT (1)

Exact mapping: xxx0 xxMx 1NNN NNNN
M: mode (0: RAM 1: I/O+Timer)

RAM: usually accessed at $0080 - $00FF

IO and TIMER: usually accessed at $0280 - $029F

Available 8 times in 8k space, alternating
RAM: $0080, $0180, $0480, $0580, ..., $0C80, $0D80
IO: $0280, $0380, $0680, $0780, ..., $0E80, $0F80

IO-Ports: $0280 - $0283

Timer: $0284 - $028C, $0294 - $0297, $029C - $029F

Memory map (4): RIOT (2)

RAM: 128 bytes

Needed at two locations

– $0080 - $00FF: "variables"
– $0180 - $01FF: stack

Keep in mind that the stack uses a mirror

Quote from development manual:

"The microprocessor stack is normally located from
FF on down, and variables are normally located from
80 on up (hoping the two never meet)."

Memory map (5): ROM

Cartridge port has 24 connectors

Resembling 24 pins of an 32k bit ROM / EPROM

Power: 3 lines: 1x +5V VCC, 2x GND

D0-D7: 8 data lines

A0-A12: 13 address lines

What's missing?

– Chip select: per definition CS is high active A12

– Read / Write: only defined as ROM port (design fail)

ROM
(addressable space: 4k)

Working around the barriers (1)

At the start (1977) only 2k or 4k ROM modules

At 1981 first 8k ROM modules available

How to fit 8k in a 4k address space?

Bank switching!

Bank 0
(4k)

Bank 1
(4k)

$1FF8
($FFF8)

$1FF9
($FFF9)

Type: F8
(Atari)

Bankswitching 16k

What if you need more ROM?

Simple: add more banks!

ROM
(addressable space: 4k)

Bank 0
(4k)

Bank 1
(4k)

Bank 2
(4k)

Bank 3
(4k)

$1FF6
($FFF6)

$1FF9
($FFF9)

$1FF8
($FFF8)

$1FF7
($FFF7)

Type: F6
(Atari)

Working around the barriers (2)

Now that there's enough ROM, how do we get more
RAM?

Remember:
no read / write line available on game module

Solution: use different addresses

Write-port: $1000 - $107F
Read-port: $1080 - $10FF

Read $1080 to get value written to $1000

Variation of F8: F8SC, and F6: F6SC (Atari)

"Mega-Cartridge"
ROM

(4k address space + 2 bytes I/O) Type: 3E
(Tigervision)

$1000 - $17FF
(2k)

Mapped

$1800 - $1FFF
(2k)
fixed

to last bank

ROM Bank 0 (2k)

ROM Bank 1 (2k)

...

ROM Bank 255 (2k)

RAM Bank 0 (1k)

...

RAM Bank 31 (1k)

Write
ROM bank #

to $003F

Write
RAM bank #

to $003E
RAM mode:
Read: $1000 - $13FF
Write: $1400 - $17FF

Working around the barriers (3)

Conclusion:

There are many ways to get more ROM and even
RAM into a cartridge

All include some kind of bank-switching scheme

5 real-life cartridge configurations
(F8,F6,F8SC,F6SC,3E) have been introduced

Stella knows 25 different

Defining new schemes is easy nowadays using
micro controllers in cartridges

Part 3:

How to write
programs

Frame

Scanlin es (262 N
TSC

 / 312 PA
L)

Overscan (30 NTSC / 36 PAL)

Display

Vertical sync + vertical blank (40 NTSC / 48 PAL)

228 color clock cycles

Horizontal blank
(68 Color clocks)

"Drawable area"
(160 color clock cycles)

(192 lines NTSC / 228 lines PAL)

76 CPU clock cycles (228 / 3)

No Framebuffer

When the Atari 2600 was designed in 1975, RAM
was very expensive

To convert the graphics capabilities to a dumb
framebuffer you'll need about 30k of 7-bit words

Not only too expensive, but also not addressable by
6507 (8k)

A completely different approach: program the video
chip while the image is displayed

Advantage: cheap and very flexible

Disadvantage: CPU is "occupied" during display

"Racing the beam" (1)

Instead of "running" the graphics frame by frame,
the image is drawn line by line

If nothing is changed, the next line is drawn like the
one before

There are no registers for Y-components

Example: sprite size is 8 bit wide and as high as the
screen

You need to tell the TIA what to paint while it is
painting! This is called "Racing the beam"

"Racing the beam" (2)

Write registers of the TIA:

VSYNC VBLANK WSYNC RSYNC NUSIZ0 NUSIZ1

COLUP0 COLUP1 COLPF COLBK CTRLPF REFP0

REFP1 PF0 PF1 PF2 RESP0 RESP1

RESM0 RESM1 RESBL AUDC0 AUDC1 AUDF0

AUDF1 AUDV0 AUDV1 GRP0 GRP1 ENAM0

ENAM1 ENABL HMP0 HMP1 HMM0 HMM1

HMBL VDELP0 VDELP1 VDELBL RESMP0 RESMP1

HMOVE HMCLR CXCLR Sync Graphics

4 registers for syncing, 34 for graphics display

Graphics capabilities

Background color

2 player sprites (8 bit), each with its own color

Playfield with own color
– can also re-use player colors

2 missile sprites (1 bit), re-using player colors

1 ball sprite (1 bit), re-using playfield color

Requirements: run "Combat" and "Pong"

Colors

4 Color registers: background, playfield, 2 players

Each color can be picked out of a palette of 128

Playfield graphics (1)

Resolution: 40 bits – 4 color clock cycles per bit

Registers responsible for playfield generation:

COLUPF: color

PF0, PF1, PF2: data

How to squeeze this 40 bit resolution into 3 bytes?

CTRLPF: control register

– Bit 0: 1=reflect playfield, 0=repeat playfield

– Bit 1: 1=use player colors, 0=use playfield color

– Bit 2: 1=playfield over sprites, 0=sprites over playfield

Playfield graphics (2)

The data registers in depth:

– PF0: ABCD
– PF1: EFGH IJKL
– PF2: MNOP QRST

So the playfield data are only 20 bits that can be
Mirrored: DCBAEFGHIJKLTSRQPONMMNOPQRSTLKJIHGFEABCD

Repeated:DCBAEFGHIJKLTSRQPONMDCBAEFGHIJKLTSRQPONM

Changed: DCBAEFGHIJKLTSRQPONMdcbaefghijkltsrqponm

Note: Intuitive and straight forward to code for, well this isn't

Real life playfield examples

Examples from games:

Combat (mirrored)

Defender (repeated)

Tutankham (alternating)

Sprites

The TIA has 5 sprites:
– 2 player sprites (8 bit data)
– 2 missile sprites (1 bit on/off)
– 1 ball sprite (1 bit on/off)

Missile sprite positions can be
linked to player positions or
positioned independently

Hardware was designed for
running

Combat

Pong (Video Olympics)

Sprites placement (1)

How are sprites placed on the screen?

Y: enable before beam reaches position

X: more complicated, though

RESP0, RESP1, RESM0, RESM1, RESBL

Reset the sprite position, no value taken

"Reset" has a slightly different interpretation here:

Not reset to position 0, but to current X position of
beam

Sprites placement (2)

TIA clock 3 times as fast as CPU clock

Fine-tuning the position:

HMP0, HMP1, HMM0, HMM1, HMBL:
4 bit signed motion register
can move -8 to +7 color clock cycles
negative moves right, positive left

HMOVE:
apply motion register settings

HMCLR:
clear all HMxx registers at once

Keeping in sync

Since the timing of writing to the registers is
essential, it is crucial to know where the beam is

To accomplish this, there are three rules:

1) Count the cycles: of every opcode
the time it takes to execute is known

2) Use a write to WSYNC to stop the CPU
until the start of a new scanline is reached

3) If you can't predict how long some code will
take, start the timer and wait for it to timeout
after the work is done

Real life sprites examples (1)

How get more sprites?

Can be done in software

Air-Sea Battle (1977)

Hardware helps a bit

Combat (1977)

Sprites: size and repetition

The player sprites can be
repeated or stretched in 7
different ways

Mirroring of player sprites
is also possible

Ball and missile sprites
can be defined being in
size of 1, 2, 4 or 8 clock
cycles

Real life sprite examples (2)
Outlaw (1978):

2 player sprites
2 missile sprites

Circus Atari (1978):

Both player sprites used
for clowns, seesaw is a
missile moved half of its
size each scanline

Real life sprites examples (3)

Berzerk (1982):

Vanguard (1982):

Both make sure in
gameplay that enemies
are not on the same
scanline.

Real life sprites examples (4)

Pac-Man (1981):

Uses interlace: only one
of the 4 ghosts is drawn
per frame

Space Invaders (1978):

Uses sprite triplication
for both sprites to draw
aliens

Real life sprites examples (5)

Dig Dug (1983):

Uses interlace only when
more than 2 sprites are
on the same scan line

Video Chess (1978):

Draws sprites only every
other line

Detecting collisions (1)

Collision detection is essential for gameplay

Hardware is full featured here

The read registers of the TIA:
CXM0P CXM1P CXP0FB CXP1FB CXM0FB CXM1FB

CXBLPF CXPPMM INPT0 INPT1 INPT2 INPT3

INPT4 INPT5 Collision Controller

8 registers for collision detection (15 bits used)
6 registers for controller input

Registers will keep bits until CXCLR is triggered

Detecting collisions (2)

What is a collision?

There are two options:

A: when pixels touch

B: when drawing areas
 touch

On the TIA the correct
answer is A, so this is
not a collision

Adventure (1978)

Audio (1)

The TIA has 2 voices each having 3 registers

AUDV0, AUDV1: Volume 4 bit

AUDF0, AUDF1: Frequency 5 bit

 Base frequency divided by (AUDFx + 1)

AUDC0, AUDC1: Control 4 bit

 11 unique settings

 Most of the settings are not used for music,
but for sound effects like motor noise, shots, ufos...

Audio (2)

Sound generation can be looked at in two steps:

Step 1: basic signal is generated by setting the audio
line high or low: basic output is a rectangle

Base frequency = color clock / 114
NTSC: 3579575 Hz / 114 = 31399.78 Hz
PAL: 3546894 Hz / 114 = 31113.10 Hz

AUDC0, AUDC1 define the bit pattern

Sound generated by shifting out the bit pattern

Audio (3)

AUDCx: keys for settings 4 and 12

Images courtesy of www.randomterrain.com, used by permission

Possible basic waveforms
AUDCx = 0 & 11

AUDCx = 1

AUDCx = 2

AUDCx = 3

AUDCx = 4 & 5

AUDCx = 6 & 10

AUDCx = 7 & 9

AUDCx = 8

AUDCx = 12 & 13

AUDCx = 14

AUDCx = 15

Audio (4)

Step 2: basic signal is multiplied with AUDVx

AUDCx bit pattern "0" is useful: when activated 4 bit
digital audio can be played by writing data to the
corresponding volume register AUDVx.

Most impressive example for this kind of sound
generation is Berzerk VE (Voice Enhanced), a hack
which features the voice of the arcade version!

Next steps (1)

Play a game!

Get an emulator, games are available for download

I have not covered any homebrew games, leaving
them for you to discover

There are a lot of them, and they are usually "better
coded" than most of the games from the '70s or '80s

Take a look at them and try to figure them out with
what you've learned here

Next steps (2)

Play with the system: code something!

Tools are available for free

A lot of examples for different tricks are around

Stella has excellent debugging support

If you already know 6502 assembler, something like
a playfield scroller can be coded in an afternoon

Next steps (3)

Prepare a talk for the next congress!

There are a lot of other cool systems that we would
like to learn about: (these are just suggestions)

Consoles:

ColocoVision
Game Boy
Game Boy Advance
Intellivision
NES (Famicom)
SNES (Super Famicom)

Computers:

Amiga
Amstrad CPC (Schneider)
Apple II
Atari 400/800 XL
Spectrum
ZX-81

Thank you for your attention!

Questions?

