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What this is about
● A personal rant / ”quest”
● The fun and huge presumpion of 

defining ”hacking” :-)
● An excuse for citing Phrack, Uninformed, 

Defcon/Recon/Shmoocon/Toorcon/...

● Realization that ”hacking” goes to the 
heart of fundamental Computer Science 
problems



  

Disclaimer

(added after the talk's Q&A)
● This is not a critique of academic CS or 

its methods or approaches
● Rather, I argue that ”hacking” is closer in 

essence to the core CS topics than one 
might think

● For the record, a number of academic labs 
produce first-class hacking & some academic 
CS conferences finally started recognizing 
hacker research – but we can do better.



  

Realization

”How come I learned more about the nature 
of computers & programming from hackers 
than from graduate school?”

    

         \cite{phrack58:9}

         \cite{bugtraq-gera-2000-10-30}
         ...

 



  

My answer & more questions

”Hacking” is a unique and distinct  
engineering/research discipline 
(though not yet formally defined as such)

– How defined?

– What major human need it deals with?

– Anything worth the name is difficult – what  
hurdles make it hard to do?

– Why is it mathematically / theoretically 
hard? 



  

What ”hacking”?

● Community perpetuates itself by its 
communications, just like other traditonal 
research/engineering communities:

● For several generations, new people join the 
community, learn the skills, advance & affect 
actual industrial security state-of-the-art

● No matter how people think of hacking, 
there is a reliable transmission of skills, 
intuitions & methods going on 



  

Major human need: TRUST

● Humans cannot function without trust
● Trust makes us more productive
● Cultures, economies and entire ways of life 

are defined by levels of trust
– ”High Trust” vs ”Low Trust” societies 

theory

– Personal: born & raised in the USSR, 
a very low trust society



  

Trust is crucial to human condition

Dante's ”Inferno”: 
betrayers of trust 
placed in the 9th 
Circle of Hell 



  

”Just trust our nice computers”

Hacking (n.):                                                      

the capability & skill set to expose and verify 

trust (security, control) assumptions 

expressed in software, hardware, and  

human-in-the-loop processes that use them 

Here's hoping for                 :)



  

The essence of InfoSec 

● FX, Bratzke @ SiS 2007:

Pragmatically, InfoSec is about 
”working towards computer systems 
we can finally trust”

● Also, cf. ”Defense is not dead” this CCC 



  

Teaching social engineering = 
practical manupulation of trust

● No comprehensive penetration test or 
security assessment is complete without it 

● But how many schools actually teach it?
● I am aware of just one such course

– Historical hacker case studies

– Techniques and literature review

– Ethics and getting it past the lawyers

– Surviving to tell the tale & the art of an 
executive summary  



  

What trust in computers means

● Sociological definition of trust: the trustee 
behaves as expected (despite potential 
capability to violate expectations)

● Computer system behaves as expected = 
only expected kinds of computations 
occur

– ”Uh-oh, my server process just dropped 
shell”



  

Brought to you by the letter ”C”

● Complexity
● Composition
● Computation

all core subjects
of academic CS



  

Why building trustworthy systems 
is so hard?

● Humans build complex systems by 
composing pre-existing pieces 

● Composition of computational systems 
has very bad mathematical properties

– gets undecidable, fast (”halting problem”)

– stay tuned for a rigorous example :)

Security does not get better until hacker tools 
establish a practical attack surface 
          –  Joshua Wright @ Toorcon 2009 



  

Computation in theory

● Many kinds, hierarchically arranged by 
power:

– Finite automata (~ regexps)

– ...

– Pushdown automata (~ recursion) 

– ...

– Turing Machines (~ everything 
we think of as computable) 



  

Computation in theory



  

Engineering is about composition



  

”Composition 
kills”

● Compose two well-
understood tools 
and/or processes

● Get a system with 
deadly properties



  

Computation in practice
● Real-life software and hardware quickly got 

too complex for theoretical analysis of their 
behaviors

● Actual systems more computationally 
powerful than intended/expected 

● Theory moved on to theoretically tractable 
”models” and ”prototypes”

– Intractable systems are hard to publish 
about  ( !publish => perish )

– AEG dispute (http://seclists.org/dailydave/2010/q4/)



  

Hacking to the rescue
● Hacker research stepped up to fill the need 

for practical trust analysis of actual 
behaviors of actual computer systems

Trust ~ Behavior ~ Computation

● ”What can the system really compute?”
● ”Can the system's human trust components 

be manipulated?”



  

”Hacker methodology”
● Finding reliable mechanisms for 

unexpected computations
● Cross-layer analysis of layered designs: 

finding the unexpected computational power
– Systems, OSI networking, now hardware

– Layer abstractions tend to ”leak” 

● ”Weird machines”: programming with 
unintended automata & Turing machines 
inside the target



  

”Cross-layer approach”

● Humans aren't good at handling complexity
● Engineers fight it by layered designs:

”main”

Libc, lib*

sys_call_table

VFS / sys_*

Driver interfaces



  

Layers are magical

● They just work, especially the ones below
● One layer has proper security => 

    the whole system is trustworthy  



  

Layers are magical

● They just work, especially ones below
● One layer has proper security => 

    the whole system is trustworthy  

NOT!  ;-)



  

Layers are magical

● ”They just work, especially ones below”
● ”One layer has proper security => 

    the whole system is trustworthy”  
● In real life,  engineering layer boundaries 

become boundaries of competence



  

Best OS course reading ever :) 

● Phrack 59:5, palmers@team-teso
  ”5 Short Stories about execve”, 
                                ”Deception in depth”

Loader, binfmt

Dynamic linker!

sys_call_table

VFS 

FS

sys_execve, ”The Classic”

do_execve,   ”The Obvious”

open_exec,   ”The Waiter”

load_binary,  ”The Nexus”

mmap/mprotect, ”The Lord”



  

”Cross-layer approach” in action

● ”Deception in depth” : 
   the main principle of rootkit engineering 

Loader, binfmt

Dynamic linker!

sys_call_table

VFS 

FS

sys_execve, ”The Classic”

do_execve,   ”The Obvious”

open_exec,   ”The Waiter”

load_binary,  ”The Nexus”

mmap/mprotect, ”The Lord”



  

Learning about ABI? Phrack!
● One (!) accesible ”non-hacker” book on ABI: 

– John Levine, ”Linkers & Loaders”

● Everything else worth reading and 
available is hacker sources. 

– Silvio Cesare (Phrack 56:7, etc.) 

– Phrack 61–63 (ELFSH > ERESI)

– ”Cheating the ELF”, the grugq

– ”ELF virus writing HOWTO”

– Uninformed.org (LOCREATE, ...)



  

 Weird Machines 

Any complex execution 
environment is actually 
many:

One intended machine, 
endless weird machines 

Exploit is ”code” that 
runs on a ”weird 
machine”, in its ”weird 
instructions” 



  

Exploitation is ...

● Programming a ”weird machine” inside 
target machine  (via crafted input)

● ”Weird assembly instructions”:
– target's bugs (e.g., memory corruptions) 

– features (in-band signaling)

● A.k.a.: reliable implicit data & control flows
– Hello SMT & theorem provers :)

– Can we automatically derive minimal 
descriptions of ”weird machines”?



  

ROP timeline
● Solar Designer, "Getting around non-executable stack”, 1997

● Rafal Wojtczuk, "Defeating Solar Designer non-executable 
stack patch", 1998

● 2000: Tim Newsham: frame chaining

● Phrack 58:4 (Nergal), 59:5 (Durden)

● Shacham et al., 2007-2008

– ”The geometry of innocent flesh on the bone”, 2007

– ”Return-Oriented Programming: Exploits Without 
Code Injection”, 2008

● Hund, Holz, Freiling, ”Return-oriented rootkits”, 2009

– Actual ”compiler” to locate and assemble re-target 
code snippets into programs

PaX non-exec, 
ASLR bypass



  

Phrack 58:4, 59:5 (Durden)
● Sequence stack frames (pointers & args) 

just so that existing code fragments are 
chained into programs of any length

– Just like TCL or FORTH  programs

– Pointers to functions can be provided by 
OS's  dynamic linker itself

●                       Another elementary
                 instruction of the ”weird
                 machine”, called through
                 PLT:
                   ”return-into-dyn-linker”  

DL



  

But wait...
● Bugtraq, 2000: Gerardo Richarte (gera):

”I present a way to code any program, or 
almost any program, in a way such that it 
can be fetched into a buffer overflow in a       
platform where the stack (and any other 
place in memory, but libc) is non-
executable”                         – Oct 30, 2000

● 2009: RoP compiler paper published by 
Hund, Holz & Freiling (USENIX 2009)

● 2010: Dino DaiZovi: RoP compiler (BH '10)



  

Memory corruption: ”creating extra 
computational power since 19xx”

● Haroon Meer,  BlackHat 2010:
”History of memory corruption”

– A timeline of memory corruption vulns

● Should be: ”history of memory corruption-
based programming”

– Memory corruption can turn an innocent 
finite automaton into a Turing-complete 
environment



  

 Security ~ computational 
equivalence

● Len Sassaman, Meredith Patterson: 
”Hacking the forest with trees”  
(PhNeutral, BlackHat 2010)

● Key insight: SSL security is formally 
predicated on computational equivalence 
of parsers at CA and client

● Yet verifying that two such parsers accept 
the same language is undecidable!



  

Composition + comp. equivalence 
=> undecidability

● Have two parsers – or any other 
data/protocol processors – in a distributed 
system; require exactly matching results

● If the protocol requires more than a Non-
deterministic Pushdown Automaton (~ 
deterministic context-free language), 
verifying equivalence is undecidable

– Parsers for nested recursive structures ([...]) 
are hard to get equivalent => differences 
will abound



  

Other non-equivalence examples 
● IDS evasion (Ptacek-Newsham, Paxson,...):

protocol parser/stream reassembly on IDS 
sees a different picture than the target

● Active fingerprinting: different computation 
by network stacks on crafted inputs exposes 
targets

● VM & hypervisor ”red pills”  



  

”OMG, it's Turing-complete!”

”OMG, it's 
Turing-complete!” 



  

Data flows and security
● Memory corruptions, in-band signaling turn 

implicit data flows into control flows
– cf. DJB, ”Some thoughts on security after 

10 years of qmail 1.0”:

– Much more useful than ”least privilege”

● Prove absence of data flows (formally),
generate flawless software (languages)
                         or
block them when they occur, with hardware 
(MMU) help: tagged architectures



  

The ”Orange Book” approach

● Mandatory access control
– Each principal is labeled

● All data is labeled
– ”Everything is a file”

● Labels are checked at each 
operation by a reference 
monitor

– Most trusted part of OS, 
”trusted code base”  

The ”Orange Book”
US DoD

”Rainbow Series”



  

Bell-LaPadula Formalism (1973)

Goal: control information flow, protect
         secrets from colluding malicious users

Secret

Public

● ”No read up” 
   (can't read higher 
     privs' data)

● ”No write down” 
   (can't willfully
     downgrade data)

a principal 



  

Biba integrity model (1977)

Goal: prevent integrity violations by and
          through lower level users

Most critical

Least critical

● ”No read down”
(let untrusted stuff  
  alone)

● ”No write up” 
   (can't clobber
     higher layers)

a principal 



  

”It's a lattice out there!”

● Partial order on all labels 
– Some are not comparable and will not 

interact directly

● Every pair has a unique ”join” and ”meet”

A
B

join(A,B)

meet(A,B)

Common admin context 
for A and B

Shared data/results 
of A and B



  

Once there was hardware...
● The general ”Orange Book” way:

– Memory objects labeled according to roles 
they play security-wise 

– Labeling enforced by OS and/or HW: illicit 
data flows get trapped by MMU 

● Tagged 
architectures

● MMU memory 
segmentation



  

and then there was x86...



  

PaX and OpenWall brought 
tagging back on x86, for ”NX”

● Well, sort of: the tags are page-granular, and 
spread across bits in x86 segment 
descriptors and PTEs

● PAGEEXEC: overload PTE's 
Supervisor bit, in conjunction 
with split TLB

● SEGMEXEC: map code and 
data twice, via different x86 
segments (instruction fetches 
from data-only segment trap)



  

CS

Data segms

ITLB

DTLB



  

Good design re-born through 
hacking

● ”Like (N)Xmas for trust engineering”
● ”Hackers keep the dream alive!”

● Labels (NX) are kept as close 
to their objects as possible – 
right where they belong!

● Enforcement is by trapping – 
as efficient as it gets

● Page fault handler is a part of 
the ”reference monitor”



  

Thanks to
● You for listening

● FX & Recurity, who listened to this first & encouraged it

● Len Sassaman & Meredith Patterson, who showed me 
the perfect, fundamental  example of composition => 
undecidability

● Shelley Keating, who designed & teaches 
a college course in social engineering

● ERNW for many discussions of trust/risk

● Ed Feustel, who introduced me to tagged architectures

● Greg Conti, Michael Locasto, Anna Shubina and my 
other co-authors on papers related to hacking

● Many, many others   
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