

Hacking & Computer Science

Sergey Bratus
(with many contributions from others)

PKI/Trust Lab
Dartmouth College

Where I'm from

Dartmouth College, New Hampshire, USA

What this is about
● A personal rant / ”quest”
● The fun and huge presumpion of

defining ”hacking” :-)
● An excuse for citing Phrack, Uninformed,

Defcon/Recon/Shmoocon/Toorcon/...

● Realization that ”hacking” goes to the
heart of fundamental Computer Science
problems

Disclaimer

(added after the talk's Q&A)
● This is not a critique of academic CS or

its methods or approaches
● Rather, I argue that ”hacking” is closer in

essence to the core CS topics than one
might think

● For the record, a number of academic labs
produce first-class hacking & some academic
CS conferences finally started recognizing
hacker research – but we can do better.

Realization

”How come I learned more about the nature
of computers & programming from hackers
than from graduate school?”

 \cite{phrack58:9}

 \cite{bugtraq-gera-2000-10-30}
 ...

My answer & more questions

”Hacking” is a unique and distinct
engineering/research discipline
(though not yet formally defined as such)

– How defined?

– What major human need it deals with?

– Anything worth the name is difficult – what
hurdles make it hard to do?

– Why is it mathematically / theoretically
hard?

What ”hacking”?

● Community perpetuates itself by its
communications, just like other traditonal
research/engineering communities:

● For several generations, new people join the
community, learn the skills, advance & affect
actual industrial security state-of-the-art

● No matter how people think of hacking,
there is a reliable transmission of skills,
intuitions & methods going on

Major human need: TRUST

● Humans cannot function without trust
● Trust makes us more productive
● Cultures, economies and entire ways of life

are defined by levels of trust
– ”High Trust” vs ”Low Trust” societies

theory

– Personal: born & raised in the USSR,
a very low trust society

Trust is crucial to human condition

Dante's ”Inferno”:
betrayers of trust
placed in the 9th
Circle of Hell

”Just trust our nice computers”

Hacking (n.):

the capability & skill set to expose and verify

trust (security, control) assumptions

expressed in software, hardware, and

human-in-the-loop processes that use them

Here's hoping for :)

The essence of InfoSec

● FX, Bratzke @ SiS 2007:

Pragmatically, InfoSec is about
”working towards computer systems
we can finally trust”

● Also, cf. ”Defense is not dead” this CCC

Teaching social engineering =
practical manupulation of trust

● No comprehensive penetration test or
security assessment is complete without it

● But how many schools actually teach it?
● I am aware of just one such course

– Historical hacker case studies

– Techniques and literature review

– Ethics and getting it past the lawyers

– Surviving to tell the tale & the art of an
executive summary

What trust in computers means

● Sociological definition of trust: the trustee
behaves as expected (despite potential
capability to violate expectations)

● Computer system behaves as expected =
only expected kinds of computations
occur

– ”Uh-oh, my server process just dropped
shell”

Brought to you by the letter ”C”

● Complexity
● Composition
● Computation

all core subjects
of academic CS

Why building trustworthy systems
is so hard?

● Humans build complex systems by
composing pre-existing pieces

● Composition of computational systems
has very bad mathematical properties

– gets undecidable, fast (”halting problem”)

– stay tuned for a rigorous example :)

Security does not get better until hacker tools
establish a practical attack surface
 – Joshua Wright @ Toorcon 2009

Computation in theory

● Many kinds, hierarchically arranged by
power:

– Finite automata (~ regexps)

– ...

– Pushdown automata (~ recursion)

– ...

– Turing Machines (~ everything
we think of as computable)

Computation in theory

Engineering is about composition

”Composition
kills”

● Compose two well-
understood tools
and/or processes

● Get a system with
deadly properties

Computation in practice
● Real-life software and hardware quickly got

too complex for theoretical analysis of their
behaviors

● Actual systems more computationally
powerful than intended/expected

● Theory moved on to theoretically tractable
”models” and ”prototypes”

– Intractable systems are hard to publish
about (!publish => perish)

– AEG dispute (http://seclists.org/dailydave/2010/q4/)

Hacking to the rescue
● Hacker research stepped up to fill the need

for practical trust analysis of actual
behaviors of actual computer systems

Trust ~ Behavior ~ Computation

● ”What can the system really compute?”
● ”Can the system's human trust components

be manipulated?”

”Hacker methodology”
● Finding reliable mechanisms for

unexpected computations
● Cross-layer analysis of layered designs:

finding the unexpected computational power
– Systems, OSI networking, now hardware

– Layer abstractions tend to ”leak”

● ”Weird machines”: programming with
unintended automata & Turing machines
inside the target

”Cross-layer approach”

● Humans aren't good at handling complexity
● Engineers fight it by layered designs:

”main”

Libc, lib*

sys_call_table

VFS / sys_*

Driver interfaces

Layers are magical

● They just work, especially the ones below
● One layer has proper security =>

 the whole system is trustworthy

Layers are magical

● They just work, especially ones below
● One layer has proper security =>

 the whole system is trustworthy

NOT! ;-)

Layers are magical

● ”They just work, especially ones below”
● ”One layer has proper security =>

 the whole system is trustworthy”
● In real life, engineering layer boundaries

become boundaries of competence

Best OS course reading ever :)

● Phrack 59:5, palmers@team-teso
 ”5 Short Stories about execve”,
 ”Deception in depth”

Loader, binfmt

Dynamic linker!

sys_call_table

VFS

FS

sys_execve, ”The Classic”

do_execve, ”The Obvious”

open_exec, ”The Waiter”

load_binary, ”The Nexus”

mmap/mprotect, ”The Lord”

”Cross-layer approach” in action

● ”Deception in depth” :
 the main principle of rootkit engineering

Loader, binfmt

Dynamic linker!

sys_call_table

VFS

FS

sys_execve, ”The Classic”

do_execve, ”The Obvious”

open_exec, ”The Waiter”

load_binary, ”The Nexus”

mmap/mprotect, ”The Lord”

Learning about ABI? Phrack!
● One (!) accesible ”non-hacker” book on ABI:

– John Levine, ”Linkers & Loaders”

● Everything else worth reading and
available is hacker sources.

– Silvio Cesare (Phrack 56:7, etc.)

– Phrack 61–63 (ELFSH > ERESI)

– ”Cheating the ELF”, the grugq

– ”ELF virus writing HOWTO”

– Uninformed.org (LOCREATE, ...)

 Weird Machines

Any complex execution
environment is actually
many:

One intended machine,
endless weird machines

Exploit is ”code” that
runs on a ”weird
machine”, in its ”weird
instructions”

Exploitation is ...

● Programming a ”weird machine” inside
target machine (via crafted input)

● ”Weird assembly instructions”:
– target's bugs (e.g., memory corruptions)

– features (in-band signaling)

● A.k.a.: reliable implicit data & control flows
– Hello SMT & theorem provers :)

– Can we automatically derive minimal
descriptions of ”weird machines”?

ROP timeline
● Solar Designer, "Getting around non-executable stack”, 1997

● Rafal Wojtczuk, "Defeating Solar Designer non-executable
stack patch", 1998

● 2000: Tim Newsham: frame chaining

● Phrack 58:4 (Nergal), 59:5 (Durden)

● Shacham et al., 2007-2008

– ”The geometry of innocent flesh on the bone”, 2007

– ”Return-Oriented Programming: Exploits Without
Code Injection”, 2008

● Hund, Holz, Freiling, ”Return-oriented rootkits”, 2009

– Actual ”compiler” to locate and assemble re-target
code snippets into programs

PaX non-exec,
ASLR bypass

Phrack 58:4, 59:5 (Durden)
● Sequence stack frames (pointers & args)

just so that existing code fragments are
chained into programs of any length

– Just like TCL or FORTH programs

– Pointers to functions can be provided by
OS's dynamic linker itself

● Another elementary
 instruction of the ”weird
 machine”, called through
 PLT:
 ”return-into-dyn-linker”

DL

But wait...
● Bugtraq, 2000: Gerardo Richarte (gera):

”I present a way to code any program, or
almost any program, in a way such that it
can be fetched into a buffer overflow in a
platform where the stack (and any other
place in memory, but libc) is non-
executable” – Oct 30, 2000

● 2009: RoP compiler paper published by
Hund, Holz & Freiling (USENIX 2009)

● 2010: Dino DaiZovi: RoP compiler (BH '10)

Memory corruption: ”creating extra
computational power since 19xx”

● Haroon Meer, BlackHat 2010:
”History of memory corruption”

– A timeline of memory corruption vulns

● Should be: ”history of memory corruption-
based programming”

– Memory corruption can turn an innocent
finite automaton into a Turing-complete
environment

 Security ~ computational
equivalence

● Len Sassaman, Meredith Patterson:
”Hacking the forest with trees”
(PhNeutral, BlackHat 2010)

● Key insight: SSL security is formally
predicated on computational equivalence
of parsers at CA and client

● Yet verifying that two such parsers accept
the same language is undecidable!

Composition + comp. equivalence
=> undecidability

● Have two parsers – or any other
data/protocol processors – in a distributed
system; require exactly matching results

● If the protocol requires more than a Non-
deterministic Pushdown Automaton (~
deterministic context-free language),
verifying equivalence is undecidable

– Parsers for nested recursive structures ([...])
are hard to get equivalent => differences
will abound

Other non-equivalence examples
● IDS evasion (Ptacek-Newsham, Paxson,...):

protocol parser/stream reassembly on IDS
sees a different picture than the target

● Active fingerprinting: different computation
by network stacks on crafted inputs exposes
targets

● VM & hypervisor ”red pills”

”OMG, it's Turing-complete!”

”OMG, it's
Turing-complete!”

Data flows and security
● Memory corruptions, in-band signaling turn

implicit data flows into control flows
– cf. DJB, ”Some thoughts on security after

10 years of qmail 1.0”:

– Much more useful than ”least privilege”

● Prove absence of data flows (formally),
generate flawless software (languages)
 or
block them when they occur, with hardware
(MMU) help: tagged architectures

The ”Orange Book” approach

● Mandatory access control
– Each principal is labeled

● All data is labeled
– ”Everything is a file”

● Labels are checked at each
operation by a reference
monitor

– Most trusted part of OS,
”trusted code base”

The ”Orange Book”
US DoD

”Rainbow Series”

Bell-LaPadula Formalism (1973)

Goal: control information flow, protect
 secrets from colluding malicious users

Secret

Public

● ”No read up”
 (can't read higher
 privs' data)

● ”No write down”
 (can't willfully
 downgrade data)

a principal

Biba integrity model (1977)

Goal: prevent integrity violations by and
 through lower level users

Most critical

Least critical

● ”No read down”
(let untrusted stuff
 alone)

● ”No write up”
 (can't clobber
 higher layers)

a principal

”It's a lattice out there!”

● Partial order on all labels
– Some are not comparable and will not

interact directly

● Every pair has a unique ”join” and ”meet”

A
B

join(A,B)

meet(A,B)

Common admin context
for A and B

Shared data/results
of A and B

Once there was hardware...
● The general ”Orange Book” way:

– Memory objects labeled according to roles
they play security-wise

– Labeling enforced by OS and/or HW: illicit
data flows get trapped by MMU

● Tagged
architectures

● MMU memory
segmentation

and then there was x86...

PaX and OpenWall brought
tagging back on x86, for ”NX”

● Well, sort of: the tags are page-granular, and
spread across bits in x86 segment
descriptors and PTEs

● PAGEEXEC: overload PTE's
Supervisor bit, in conjunction
with split TLB

● SEGMEXEC: map code and
data twice, via different x86
segments (instruction fetches
from data-only segment trap)

CS

Data segms

ITLB

DTLB

Good design re-born through
hacking

● ”Like (N)Xmas for trust engineering”
● ”Hackers keep the dream alive!”

● Labels (NX) are kept as close
to their objects as possible –
right where they belong!

● Enforcement is by trapping –
as efficient as it gets

● Page fault handler is a part of
the ”reference monitor”

Thanks to
● You for listening

● FX & Recurity, who listened to this first & encouraged it

● Len Sassaman & Meredith Patterson, who showed me
the perfect, fundamental example of composition =>
undecidability

● Shelley Keating, who designed & teaches
a college course in social engineering

● ERNW for many discussions of trust/risk

● Ed Feustel, who introduced me to tagged architectures

● Greg Conti, Michael Locasto, Anna Shubina and my
other co-authors on papers related to hacking

● Many, many others

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

