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Abstract
Exploits are an interesting way to extend the functional-
ity of programs. This paper presents and explains differ-
ent attack vectors, namely stack-based and heap-based
code injection, arc attacks on the heap as well as on the
stack, format string attacks, arithmetic overflows, data
attacks, and mixed ISA attacks. These attacks can be
used (often in combination with other attacks) to exe-
cute arbitrary code.

From a security perspective we want to analyze how
the exploit is able to hijack and redirect the control flow
and what kind of malicious system calls are executed.
This paper presents an approach to software-based fault
isolation (SFI) that verifies every single instruction that
is executed. Guards guarantee that the threat of attacks
that alter the control flow, e.g., code injection, and arc
attacks is removed. An additional system call authoriza-
tion framework checks system calls and arguments and
verifies that they conform to a strict user-defined policy.
The combination of SFI and policy-based system call
authorization enables an additional layer of protection
for applications that runs completely in user-space.

1 Introduction
Software security is a challenging problem. Unman-
aged and untyped languages are prone to code injections
through stack-based or heap-based overflows. Even
managed and typed languges are open to attacks using
integer overflows or other data based attacks.

Attack development and attack protection is an arms
race between researchers finding new ways to exploit
programs and other researchers tying to come up with
additional safeguards that protect from these attacks.

The main reason why exploits on current systems
are so powerful is because every applications runs on
a coarse-grained user-privilege level. Whenever an at-
tacker controls an application he or she is in possession
of all the privileges that the user running the application
has. A tight security-model would limit the privileges
on a per-application and per-user level, e.g., each appli-
cation would only have access to the data of the appli-
cation that is in control of that specific user.

To develop security-hardening defenses one must first
understand the different attacks vectors. The goal of this
paper is to present important attack vectors and analyze

them in detail, including an assessment of viability and
potential in the wild. The information about the dif-
ferent attacks enables a detailed discussion of defense
mechanisms. These defenses can then be implemented
to safe-guard running applications.

Safe-guards are already implemented on different lev-
els (e.g., compiler level, operating system level, and
application level). Current compilers use some static
analysis to protect applications against different attacks,
e.g., stack-based buffer overflows and format string at-
tacks. Compiler-based safe-guards have the drawback
that they only have a limited, static view of a dynamic
application and are not able to protect against all forms
of exploits. Extensions to the operating system enable
policy based system call authorization, e.g., an appli-
cation is only allowed to execute a subset of the avail-
able system calls. System call authorization is limited
to a very coarse-grained form of security as only system
calls and their arguments can be checked. The control
flow inside the application remains unchecked.

A safe execution platform is able to check and vali-
date every single instruction that is executed by the ap-
plication. Every control flow transfer is verified to target
a valid location and system calls are checked so that only
a valid set of system calls, arguments, and locations is
allowed.

This paper presents current attack vectors and poten-
tial defenses. The contributions are:

1. analysis and categorization of different attack vec-
tors based on heap-based and stack-based code in-
jection, arc attacks, format string attacks, and data
attacks.

2. detailed protection schemes per attack vector that
disable each attack and harden the security of the
system.

3. trustVM as an user-space virtualization approach
to safe-guard and encapsulate running applications.

2 Attack vectors
This chapter introduces the different attack vectors and
discusses the necessary requirements for successful ex-
ploitation. All attack vectors have in common that they
redirect control flow to new or alternate locations that
would not be reached in an unaltered run. Control flow
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can be altered through buffer overflows, format string
attacks, or data attacks.

All attack vectors exploit the fact that the programmer
or the runtime system was unable to check the bounds of
a buffer or to detect a type overflow (e.g., integer over-
flow) to overwrite either data structures or code.

2.1 Code injection

Code injection attacks place new machine code in the
running application and redirect the control flow to the
newly placed code. This code then executes the mali-
cious payload.

2.1.1 Stack-based code injection

This attack exploits missing or incomplete bound checks
of a local array on the stack. The array is filled with
user-controlled code. Because the stack grows down-
wards it is possible to overwrite the variables that are
higher up on the stack, including the saved base pointer
and the saved return instruction pointer. The attack ad-
justs the return instruction pointer so that it points to the
code that was placed in the buffer. The function there-
fore does not return to the caller but to the code on the
stack.

Listing 1 shows a simple code sequence that is prone
to a stack-based overflow where code injection is pos-
sible. Figure 1 shows the stack layout before and after
an overflow. The length of the user supplied input over-
flows the length of the variable on the stack and over-
writes the base pointer and the return instruction pointer.
The new return instruction pointer then points to the be-
ginning of the temporary array on the stack. The exploit
code is executed when the function returns.

i n t i s f o o b a r ( char ∗cmp ) {
/ / a s s e r t ( s t r l e n ( cmp ) < MAX LEN )
char tmp [MAX LEN ] ;
s t r c p y ( tmp , cmp ) ; / / no bound check
re turn s t r c mp ( tmp , ” f o o b a r ” ) ;

}
. . .
/ / u s e r s t r i s > MAX LEN
i f ( i s f o o b a r ( u s e r s t r ) )
. . .

Listing 1: A potential stack-based overflow
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Figure 1: Stack before and after a stack-based code injection
exploit.

Constraints for this attack are that code on the stack
must be executable, a bound check for a buffer on the
stack must be missing or faulty, and the runtime system
may not verify the return instruction pointer.

2.1.2 Heap-based code injection

This form of attack places the malicious code in an ar-
ray on the heap and redirects control flow to the injected
code. The control flow redirection is achieved through
overwriting the return instruction pointer, overwriting
a function pointer (or vtable entry for C++), adjusting
GLIBC destructors, or fiddling with the memory alloca-
tor datastructures.

Listing 2 shows a simple code sequence with a vul-
nerable struct and a code sequence that enables a
heap-based code injection. Figure 2 shows the vulnera-
ble struct before and after an exploit. The buffer in the
vulnerable struct is filled with a user supplied nop-slide1

and exploit code. The function pointer is overwritten
and points somewhere into the nop-slide of the struct’s
buffer. The exploit code is executed when the function
pointer is called.

t y p e d e f s t r u c t v u l n s t r u c t {
char buf [MAX LEN ] ;
i n t (∗cmp ) ( char ∗ ) ;

} ;
i n t i s f o o b a r h e a p ( v u l n s t r u c t ∗s , char ∗ s t r ) {

/ / a s s e r t ( s t r l e n ( cmp ) < MAX LEN )
s t r c p y ( s−>buf , s t r ) ; / / no bound check
re turn s−>cmp ( s−>buf , ” f o o b a r ” ) ;

}
. . .
v u l n s t r u c t ∗ s t = \

( v u l n s t r u c t ∗ ) m a l lo c ( s i z e o f ( v u l n s t r u c t ) ) ;
/ / u s e r s t r i s > MAX LEN
i f ( i s f o o b a r h e a p ( s t , u s e r s t r ) )
. . .

Listing 2: A potential heap-based overflow
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Figure 2: Vulnerable struct before and after a heap-based code
injection exploit.

The location where the code is placed must be exe-
cutable and a bound check for a buffer must be faulty
or missing. Additionally the control flow must be redi-
rected to the code placed on the heap.

1A sequence of nop instructions is used if only a vague location is
known. The exploit transfers control somewhere into the nop-slide.
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2.2 Arc attacks

Arc attacks or return based programming uses already
existing code sequences to execute malicious payload.
A stack-based overflow is used to prepare the stack so
that tails of library functions are executed one after an-
other. These code sequences are aligned and prepared
in such a way that arbitrary code execution is possible.

A stack-based buffer overflow as in Listing 1 can be
used to prepare the stack for an arc attack. Figure 3
shows a simple arc attack that uses a buffer overflow
on the stack. The buffer and the saved base pointer
are overwritten with garbage data, the return instruc-
tion pointer is redirected to a function in the glibc
(system() in this case). The function pointer is fol-
lowed by the saved ebp that is used when the function
returns and the arguments to that function.
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Figure 3: Stack before and after a stack-based arc injection.

This attack relies on a stack-based overflow and that
the return instruction pointer is not verified before it is
dereferenced.

2.3 Format string attacks

A format string attack exploits the argument parsing
possibilities of the printf family. If an unchecked
user controllable string is passed to a printf function
then the attack can read and write arbitrary memory ad-
dresses and pop an arbitrary amount of data from the
stack.

Listing 3 shows code with a potential format
string exploit. Using a combination of %x to in-
crease the amount of printed characters and %n that
writes the number of already printed characters to a
given location it is possible to read and write arbi-
trary memory locations. Assume that in Listing 3
the return instruction pointer is at 0xffffd37c
and the text array is 11 words higher up on the
stack relative to the printf call. An input string of
(0xffffd37c)(0xffffd37e)%12$2043x.%12
$hn%11$32102x%11$hn will overwrite the return
instruction pointer with 0x0804856a by writing
two half words namely 0x0804 − 9 = 2043, and
0x856a− 2043 = 32102.

Depending on the environment a format string exploit
overwrites the return instruction pointer, the global off-

set table (GOT), or the list of destructors. All of these
variations alter the control flow at one point in time.

void foo ( char ∗ a r g ) {
char t e x t [ 1 0 2 4 ] ;
i f ( s t r l e n ( a r g ) >= 1024) re turn ;
s t r c p y ( t e x t , a r g ) ;
p r i n t f ( t e x t ) ;

}
. . .
foo ( u s e r s t r ) ;
. . .

Listing 3: A potential format string attack

The requirement is that the user string must contain
escape sequences like %n or %s that are then parsed and
expanded by printf.

2.4 Arithmetic overflow

Arithmetic data types always have specific bounds. An
1 byte data type can only store 256 different values. If
an operation (e.g., addition) exceeds these bounds then
the variable wraps around and continues on the other
end (e.g., 127 + 1 = −128 for an 1 byte, signed data
type, or 255 + 1 = 0 for an unsigned 1 byte data type).
These overflows can be used to bypass bound checks
(e.g., before memory is allocated).

Listing 4 shows a potential arithmetic overflow. If len
has the value 0x40000000 then len > 0 holds but the
result of the multiplication in the malloc call is 0. The
following memcpy will overwrite data structures on the
heap, resulting in a heap-based overflow.

void foo ( i n t l en , char ∗pack ) {
char ∗ r e s p o n s e ;
i f ( l e n > 0) {

r e s p o n s e = ma l l oc ( l e n ∗ s i z e o f ( char ∗ ) ) ;
memcpy ( r e s p o n s e , pack , l e n ) ;

}
}
. . .
foo ( u s e r l e n , u s e r p a c k e t ) ;
. . .

Listing 4: A potential arithmetic integer overflow

Requirements for an arithmetic overflow are lax or
implicit type conversions, sign errors, rounding errors,
type overflows due to arithmetic operations, and pointer
arithmetic.

2.5 Data attacks

A data attack exploits a missing or faulty bound check
to write data to an user-controlled address. This random
write is used to redirect control flow to injected code or
to set up a secondary attack.

void foo ( i n t pos , i n t va lue , i n t ∗ d a t a ) {
d a t a [ pos ] = v a l u e ;

}
. . .
foo ( u s e r p o s , u s e r v a l u e , d a t a ) ;
. . .

Listing 5: A potential data attack
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Listing 5 is prone to a potential data attack. The at-
tacker controls the position and the value that is written.
A simple calculation relative to the position of the data
array enables a random write to (almost) any memory
location. Most real programs have some checking that
limit the location and value that can be written.

Requirements for a data attack are unfiltered or only
partially filtered user input and missing or faulty bound
checks.

2.6 Mixing x86 64 and i386 code

Modern operating systems support x86 64 and i386
code in parallel. An application can even use both
modes interchangeably. Mixing x86 64 and i386 code
is used to trick static verifiers or to escalate privi-
leges. Most static verifiers and system call authorization
frameworks are limited to either x86 64 or i386 code.
An application that uses both instruction sets to execute
system calls or specific control transfers is able to es-
cape the control of the guards [10].

3 Protection
User-space software-based fault isolation (SFI) with ad-
ditional guards can protect a running application from
all the attacks described in Section 2. SFI separates a
running application into two user-space protection do-
mains, the virtualization layer and the application layer.
The virtualization layer controls every single control
flow transfer of the application and checks all instruc-
tions before they are executed. The virtualization sys-
tem caches executed code in a code cache to reduce
the overhead of virtualization. The virtualization sys-
tem adds additional guards to the translated code and
verifies static control flow transfers during the transla-
tion process. Indirect control flow transfers, where the
target is not known at translation time, are wrapped into
an additional runtime check.

3.1 Software-based fault isolation

Any dynamic binary instrumentation tool like HD-
Trans [22, 21], DynamoRIO [5], Pin [14], Valgrind [16],
or fastBT [18, 17] can be used to implement SFI. The bi-
nary translation framework must support the following
features:

1. return addresses on the stack and indirect jump tar-
gets must point to the original location. This fea-
ture separates the binary translator and the running
application and implements a protection domain in
user-space.

2. the full x86 64 and i386 ISA must be supported,
otherwise an exploit can target the missing instruc-
tions and escape the binary translator.

3. the translation and runtime overhead should be low.
The chances of wide adoption is low if the over-
head for SFI is high.

4. a small trusted computing base enables the verifi-
cation of the binary translator’s code.

We use fastBT, a low-overhead, small, dynamic bi-
nary translation system that supports the complete i386
and x86 64 ISA, to implement additional guards that
guarantee SFI. fastBT is the only binary instrumentation
framework that supports all features described above.
The SFI framework wraps application code into an addi-
tional layer of protection. The additional guards verify
all code locations. Only verified and translated code is
executed.

The additional guards execute safety checks during
the translation process of dynamic code for static targets
and add runtime checks where a static target verification
is not enough (e.g., for dynamic indirect control flow
transfers). Figure 4 gives an overview of the translation
process and shows the different stages where guards are
inserted.

● Translates individual basic blocks
● Verifies code source / destination
● Checks branch targets and origins

1 1'
2 2'
3 3'
… ...

Original code Code cacheMapping table

Translator

1

2

4
3

1'

2'

3'

R RX

Indirect control 
flow transfers 
use a dynamic 
check to verify 
target and origin

Figure 4: Overview of the translation process. The guards are
executed during the translation phase and whenever indirect
control flow transfers are dispatched.

All system calls are wrapped into an additional pro-
tection framework. This system call authorization
framework checks each system call based on system call
number, location of the system call, and given parame-
ters. These authorization parameters are specified using
a simple policy. The policy based authorization system
is extended by system call guards that execute specific
handler functions to examine the parameters of a system
call in detail (e.g., open system calls are checked for
path arguments, mprotect system calls are checked
for executable and writeable flags, and mmap system
calls are checked for already mapped regions and over-
laps).

Figure 5 shows the additional layer of protection that
is wrapped around the running application. The sand-
box protects the user and the system from bugs of the
application.

3.2 Code injection

The SFI framework records all code locations of the
original application and marks these locations as read
only. All executed code is translated first and the SFI
framework checks the location of translated code. If the
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Figure 5: Sandbox overview of an application running under
the control of user-space fault isolation.

translated code is not part of the original code regions
then the program is aborted.

Because all original code locations are marked read
only new code must be injected to data regions. These
data regions lack the executable bit and the translator
aborts when a control flow transfer to a data region is
detected.

This guard protects from all forms of code injection.
Only code that is available in the application is allowed
to execute.

3.3 Arc attacks

Arc based attacks redirect control flow to already ex-
isting code chunks in the application. Stack-based arc
attacks [20] use artificial stack frames to execute arbi-
trary code using function tails. Heap-based arc attacks
redirect control flow to unintended code (by, e.g., over-
writing a function pointer, or a vtable).

The SFI framework detects the redirection of the con-
trol flow into a function of a different module. Inter-
module control flow transfers must target exported func-
tions. If an inter-module control flow transfer targets a
non-exported symbol then the application is terminated.
This guard stops all arc attacks that redirect control flow
to code sequences inside functions.

3.4 Data attacks and arithmetic overflows

Data attacks and arithmetic overflows result in a (more
or less random) write to memory. Data driven attacks
that redirect control flow to injected code are caught by
the code verification guards from Section 3.2. Attacks
that only change data are not detected by the SFI frame-
work but are detected whenever a system call is exe-
cuted that is not part of the policy or if the arguments of
the system call exceed the policy’s privileges.

4 Related work
Security can be enforced on many different levels and
through different approaches. This section describes or-
thogonal or similar approaches to SFI as well as SFI
itself. Protection and verification is either done ahead of
time or dynamically at runtime. Ahead of time protec-
tion reduces the potential overhead but either restricts
the ISA or uses complicated static analysis. Dynamic

protection checks code during the execution using dy-
namic runtime safety checks. The granularity of pro-
tection differs widely between approaches. A virtual
machine operates at a very coarse-grained level of pro-
tection with additional overhead to provide a complete
system image per application. Protection mechanisms
on the system call level are less coarse-grained but only
user-space protection mechanisms enable the complete
control over all executed instructions, including control
flow transfers.

4.1 Compiler extensions

Compiler extensions are able to protect the code when
it is translated to machine code. The compiler adds ad-
ditional runtime checks for, e.g., format strings, buffer
allocations, and return instructions to guard the run-
ning application. Static verification reduces the amount
of necessary runtime checks. Examples for such sys-
tems are, e.g., StackGuard [9], FormatGuard [6], Propo-
lice [13], PointGuard [7], and libverify [3].

Each of these systems removes (or reduces) one at-
tack vector. The drawback of these approaches is that
they do not consider the complete picture and only con-
centrate on one single attack form, leaving other attack
vectors open.

4.2 System call authorization

System call authorization offers a coarse-grained form
of protection on the system call level. Individual sys-
tem calls of an application are enforced according to
a static or dynamic policy. Examples of such sys-
tems are AppArmor [4], Linux Security Modules [23],
Systrace [19], MAPbox [1], SubDomain [8], Switch-
blade [11], and Consh [2].

The drawback of these systems is that code exploits
inside of an application are still possible. The applica-
tion is only bound by the policy and can execute any
system calls and arguments that are allowed. An exploit
is able to circumvent these sandboxes if the system call
policy is not tight enough. A secure runtime system can
use system call authorization as a second line of defense,
but should not rely on system call authorization to catch
all possible exploits.

4.3 Static verification

Static verification processes the application’s code and
guarantees statically that no exploits are possible. These
static verifiers limit the ISA in several ways, e.g., they
pad instructions so that they do not cross 16 byte bound-
aries, they align indirect control flow transfers, and limit
the interaction possibilities with the operating system.
Such approaches are implemented in PittSFIeld [15] and
Google’s Native Client (NaCl) [24].

4.4 Software-based fault isolation

Software-based fault isolation uses dynamic binary
translation to add dynamic guards to the executed code.
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These guards guarantee the safe execution of applica-
tions and terminate the application in case of an error.
Vx32 [12] is a system that implements SFI.

A drawback of these systems is that they only cover
code based exploits and ignore data based exploits.
Only a combination of SFI and system call authoriza-
tion is able to cover all kinds of exploits.

5 Conclusion
Many different forms of attacks exist, like stack-based
and heap-based code injection attacks, arc attacks on the
stack and on the heap, format string attacks, arithmetic
overflows, data attacks, and mixed ISA attacks. These
attacks are often combined and used to exploit a run-
ning application. Our software-based fault isolation ap-
proach enables an additional layer of virtualization and
encapsulates the running application. Every machine
code instruction is verified and all control flow transfers
must target valid code. Additionally all system calls,
including the individual arguments, must conform to a
strict system call policy.

The combination of software-based fault isolation
and system call authorization is an important tool to in-
crease the level of security. Dynamic instrumentation is
an interesting tool to understand exploits and to protect
running applications against known and unknown forms
of attacks.

The source code of the fastBT virtualization frame-
work can be downloaded at http://nebelwelt.net/fastBT.
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