Finding the key in the haystack A practical guide to Differential Power Analysis

hunz Zn000h AT gmail.com

December 30, 2009

hunz Zn000h AT gmail.com Finding the key in the haystack

A ■

< E > < E >

Introduction

Measurement Setup Procedure Tunable parameters

Analysis Overview Intermediate values Power consumption models Recovering the key

hunz Zn000h AT gmail.com Finding the key in the haystack

< 注→ < 注→

A ■

æ

What's DPA?

- side channel attack
- introduced by Paul Kocher et al. 1998
- recover secret keys used for en/decryption algorithm needs to be known
- current consumption depends on data being processed
 current measurements give hints about internal data being processed
- ▶ key can't be found directly in the power consumption ⇒ some sort of extraction/recovery method necessary ⇒ DPA does this

- E - - E -

DPA - The basic idea

- in this talk we'll attack a particular AES-128 encrypt implementation
- bruteforce: 2¹²⁸ one needs to get all bits right at the same time
- using DPA we'll know once we got a single byte of the key right
- ▶ we can recover the key byte-for-byte
 ⇒ (2⁸) * 16 key guesses instead of 2¹²⁸
 ⇒ 4k keys to try!
- ▶ we need to encrypt several (10² up to 10⁶) plaintexts and measure power consumption

イロン イヨン イヨン イヨン

a few more notes...

- not a flaw of the AES crypto-algorithm!
- nearly every crypto-algorithm affected
- unless specific countermeasures realized in implementation
- no countermeasures in standard consumer hardware they're expensive
- because they're patented!
- that means: most consumer hardware vulnerable to PA attacks
- PA still not widespread in the hardware hacker community?

Procedure Tunable parameters

Measurement setup

Setup Procedure Tunable parameters

Measurement setup

DUA: Device Under Attack DSO: Digital Storage Oscilloscope

hunz Zn000h AT gmail.com Finding the key in the haystack

イロト イヨト イヨト イヨト

æ

Setup Procedure Tunable parameters

Measurement procedure

- 1. DUA: configure (prepare for en/decryption)
- 2. scope: setup trigger
- 3. DUA: start en/decryption
- 4. scope: read data
- 5. goto 1

イロト イヨト イヨト イヨト

Setup Procedure Tunable parameters

Measurement setup - a closer look

hunz Zn000h AT gmail.com Finding the key in the haystack

Setup Procedure Tunable parameters

Sensing resistor

$$I = \frac{\Delta U}{R}$$

- measure voltage drop ΔU , R known
- 1..10 Ω usually fine
- ► smaller values are usually better → less drop but higher measurement precision necessary increase supply voltage if drop to high
- use resistors with low inductance
- GND or Vcc sides are both fine

< ∃ >

Setup Procedure Tunable parameters

Digital Storage Oscilloscope

Samplerate ≥ 250 MS/s doesn't depend directly on DUA-clock or max. DUA-clock but: "max clock" of "interesting part" of the IC but: internal capacitance of IC blocks hi frequency

- sample buffer should be rather Mpts than kpts
- example: 4kpts @250MS/s with DUA @4MHz: $\frac{4096}{250M/4M} = 66$ cycles
- splicing traces possible with precise triggering

個 と く ヨ と く ヨ と

Setup Procedure Tunable parameters

Digital Storage Oscilloscope (2)

- ▶ Picoscope 5203 1.8k€ : 32Mpts, 250MHz, 1GS/s, ±100mV with 10x probe (250MHz): ± 1000mV that's 2V / 256 ≈ 8mV precision
- try to use full range of ADC by adjusting
 - $\blacktriangleright\,$ sensing resistor larger R \rightarrow larger ΔU
 - supply voltage but be careful
- ► if you're lucky enough to have a differential probe use it
- we're trying to build our own low-cost diff-probe we'd totally appreciate your help!

- 4 回 2 - 4 □ 2 - 4 □

Setup Procedure Tunable parameters

Voltage source

- disconnect on-board supply, use your own in case of multiple supplies: smallest is usually the right one
- lab power supplies often got more ripple than one would think!
- no step-down, short thick cables, capacitors close to target
- rechargeable batteries + low noise linear regulators example: LP3878-ADJ use fixed adjustment resistors though!
- slightly higher supply voltage often won't hurt also, there's the drop across the sensing resistor

個 と く ヨ と く ヨ と

Setup Procedure Tunable parameters

- remove on-board capacitors reduce clock if necessary for stability
- add ceramic fast-response capacitors with different capacities
- parallel to device AND reisitor
- seperate PCB if possible

< ∃ >

∢ ≣⇒

Setup Procedure Tunable parameters

Clock

- sinus clock signal avoids ringing (series resistor)
- use external clock source and sync with scope if possible otherwise there's jitter and drifting workaround: stretch cycles to fixed raster using software (align edges of current-peaks)
- higher clock \rightarrow better use of sample buffer
- \blacktriangleright slower clock \rightarrow more stability but wasting sample buffer

.

Setup Procedure Tunable parameters

Examples

bad:

(slower clock might help here)

good:

Setup Procedure Tunable parameters

Examples

bad:

(slower clock might help here)

good:

Setup Procedure Tunable parameters

Trigger & alignment

- proper alignment/syncronization of the power traces is crucial
- every instruction needs to be at constant sample offset
- precise triggering based on IO of the DUA
- pattern-matching to align the traces after recording (majority of dynamic current is not data- but instruction-dependent)
- ▶ least squares is a simple method → Wikipedia: Sum of squares (sum of squared differences between two traces)

個 と く ヨ と く ヨ と

Setup Procedure Tunable parameters

look for 10 AES rounds (7 shown here)

hunz Zn000h AT gmail.com Finding the key in the haystack

æ

Overview Intermediate values Power consumption models Recovering the key

How does DPA work?

- ► constant values (key) can't be recovered directly without profiling the device → template based power analysis
- DPA: recover unknown const data (key) by analyzing its influence on known, variable data (plain- or ciphertext)
- Original method introduced by Kocher: Difference of means
- here: Analysis using Pearson Correlation
 will spare you the formula here but wikipedia is your friend:
 Wikipedia: Pearson product-moment correlation coefficient

Overview Intermediate values Power consumption models Recovering the key

Analysis: short version

- 1. guess part of the key
- 2. use it to evaluate the en/decryption function to get suitable intermediate values
- 3. use power consumption measurements to verify the correctness of the intermediate values
- 4. if correct done else goto 1
- Ist question: What's a suitable intermediate value?

김 글 아이지 글 아

Overview Intermediate values Power consumption models Recovering the key

Intermediate values

look for intermediate values during en/decryption that

- depend on both key and plaintext
- depend only on small portions of the key (exhaustive search necessary on these portions)
- exhibit strong variation even for little input variation (S-Boxes!)
 otherwise wrong key guesses with few wrong bits seem to be

correct as well

- E - - E -

Overview Intermediate values Power consumption models Recovering the key

Example: AES Encryption

- round 1:
 - AddRoundKey: ival[0..15] := key[0..15] \oplus plain[0..15]
 - \blacktriangleright depends on key and plain \surd
 - depends on small portion of key $\sqrt{(8 \text{ bit})}$
 - but: no strong variation for little input variation :-((1 bit)
 - SubBytes: ival'[0..15] := SubByte(ival[0..15])
 - strong variations: $\sqrt{:}$ (due to sbox-properties)
- done.
- Next Question: How to verify ival' using the power consumption?

<ロ> <同> <同> <同> < 同> < 同>

Overview Intermediate values Power consumption models Recovering the key

Estimating data-dependent current consumption

C-MOS Inverter (source: wikipedia)

- usually Complementary (N- & P-) MOS logic
- capacity at Q
- ► switching causes (dis)charge- and short-circuit current ⇒ current increases with 0 ↔ 1 changes
- only approximations possible

Overview Intermediate values Power consumption models Recovering the key

Hamming Distance model

- HD(a, b) := number of bits changed from a to b example: HD(b101, b011) = 2
- fine for registers & hardware crypto units
- ▶ problem: previous value needs to be known → not always the case, implementation specific

★買♪ ★厘♪

Overview Intermediate values Power consumption models Recovering the key

Example: Hamming Distance model

- AddRoundKey: ival[0..15] := key[0..15] \oplus plain[0..15]
- SubBytes: ival'[0..15] := SubByte(ival[0..15])

```
► ⇒ HD(ival[i], sbox(ival[i]))
```

イロン イヨン イヨン イヨン

Overview Intermediate values Power consumption models Recovering the key

2nd example: Hamming Distance model

hardware AES implementation:

- dedicated register at output of S-Box
- holds last S-Box output
- ► ⇒ HD(sbox(ival[i]), sbox(ival[j])) for some i, j with i ≠ j
- but: you have to guess 2 bytes of the key at a time

Overview Intermediate values Power consumption models Recovering the key

Hamming Weight model

- HW(a) := number of '1'-bits example: HW(b101) = 2
- often helps if previous value of register isn't known
- works as long as previous value is constant
- fine for software crypto implementations (data busses being charged to '1')

★ 문 → ★ 문 →

Overview Intermediate values Power consumption models Recovering the key

Putting the pieces together

estimated current for keybyte[0] guess x00 (values in hex):

plaintext[0]=69 -> ival[0]=69
 -> sbox(ival[0])=f9 -> HD(23,42) = 2

Overview Intermediate values Power consumption models Recovering the key

x

イロト イヨト イヨト イヨト

Putting the pieces together

estimated current for keybyte[0] guess x00 (values in hex):

Overview Intermediate values Power consumption models Recovering the key

correlation key[0] guess x00

Overview Intermediate values Power consumption models Recovering the key

correlation key[0] guess x00

Overview Intermediate values Power consumption models Recovering the key

correlation key[0] guess x00

Overview Intermediate values Power consumption models Recovering the key

correlation key[0] guess x00

Overview Intermediate values Power consumption models Recovering the key

let's try key[0]=1

estimated current for keybyte[0] guess x01 (values in hex):

plaintext[0]=67 -> ival[0]=66
 -> sbox(ival[0])=e8 -> HD(23,42) = 4

plaintext[0]=69 -> ival[0]=68
 -> sbox(ival[0])=59 -> HD(23,42) = 4

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

Overview Intermediate values Power consumption models Recovering the key

4

æ

イロト イヨト イヨト イヨト

let's try key[0]=1

estimated current for keybyte[0] guess x01 (values in hex):

Overview Intermediate values Power consumption models Recovering the key

correlation key[0] guess x01

Overview Intermediate values Power consumption models Recovering the key

correlation key[0] guess x01

Overview Intermediate values Power consumption models Recovering the key

correlation key[0] guess x01

Overview Intermediate values Power consumption models Recovering the key

correlation key[0] guess x01

Overview Intermediate values Power consumption models Recovering the key

HD correlation example (correct key)

Overview Intermediate values Power consumption models Recovering the key

HD correlation example zoomed

(x: sample, y: correlation/power)

hunz Zn000h AT gmail.com Finding the key in the haystack

Overview Intermediate values Power consumption models Recovering the key

HW correlation example (correct key)

Overview Intermediate values Power consumption models Recovering the key

Short note on decryption

- cipher- instead of plaintext
- inverse round-order
- actual AES-key is roundkey of last round now
- can't be recovered directly
- requires knowledge of prior roundkeys
- recovery of each roundkey necessary

Overview Intermediate values Power consumption models Recovering the key

conclusion

- nearly all crypto implementations in consumer products vulnerable to PA attacks
- can be done at home, analysis is no rocket science
- adequate DSOs are expensive but should be affordable for hackerspaces
- be patient, play with the measurement setup
- write down your attempts and observations
- attack your own device before doing blackboxes

Overview Intermediate values Power consumption models Recovering the key

References

- Power Analysis Attacks: Revealing the Secrets of Smart Cards ISBN 0-387-30857-1
- M. Aigner, E. Oswald: Power Analysis Tutorial
- ▶ P. Kocher, J. Jaffe, B. Jun, "Differential Power Analysis"
- RijndaelFurious AVR AES Implementation
- ► Wikipedia: Advanced Encryption Standard
- Wikipedia: Sum of squares
- Wikipedia: Pearson product-moment correlation coefficient
- Sample code (Google code project)
- "DPA talk @26c3" at Google Wave

★ E ► < E ►</p>