
Introduction
Measurement

Analysis

Finding the key in the haystack
A practical guide to Differential Power Analysis

hunz
Zn000h AT gmail.com

December 30, 2009

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Introduction

Measurement
Setup
Procedure
Tunable parameters

Analysis
Overview
Intermediate values
Power consumption models
Recovering the key

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

What’s DPA?

I side channel attack

I introduced by Paul Kocher et al. 1998

I recover secret keys used for en/decryption
algorithm needs to be known

I current consumption depends on data being processed
⇒ current measurements give hints about internal data being
processed

I key can’t be found directly in the power consumption
⇒ some sort of extraction/recovery method necessary
⇒ DPA does this

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

DPA - The basic idea

I in this talk we’ll attack a particular AES-128 encrypt
implementation

I bruteforce: 2128 - one needs to get all bits right at the same
time

I using DPA we’ll know once we got a single byte of the key
right

I we can recover the key byte-for-byte
⇒ (28) ∗ 16 key guesses instead of 2128

⇒ 4k keys to try!

I we need to encrypt several (102 up to 106) plaintexts
and measure power consumption

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

a few more notes...

I not a flaw of the AES crypto-algorithm!

I nearly every crypto-algorithm affected

I unless specific countermeasures realized in implementation

I no countermeasures in standard consumer hardware
they’re expensive

I because they’re patented!

I that means: most consumer hardware vulnerable to PA
attacks

I PA still not widespread in the hardware hacker community?

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Measurement setup

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Measurement setup

DUA: Device Under Attack
DSO: Digital Storage Oscilloscope

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Measurement procedure

1. DUA: configure (prepare for en/decryption)

2. scope: setup trigger

3. DUA: start en/decryption

4. scope: read data

5. goto 1

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Measurement setup - a closer look

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Sensing resistor

I I = ∆U
R

I measure voltage drop ∆U, R known

I 1..10 Ω usually fine

I smaller values are usually better → less drop
but higher measurement precision necessary
increase supply voltage if drop to high

I use resistors with low inductance

I GND or Vcc sides are both fine

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Digital Storage Oscilloscope

I samplerate ≥ 250 MS/s
doesn’t depend directly on DUA-clock or max. DUA-clock
but: ”max clock” of ”interesting part” of the IC
but: internal capacitance of IC blocks hi frequency

I sample buffer should be rather Mpts than kpts

I example: 4kpts @250MS/s with DUA @4MHz:
4096

250M/4M = 66 cycles

I splicing traces possible with precise triggering

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Digital Storage Oscilloscope (2)

I Picoscope 5203 1.8ke : 32Mpts, 250MHz, 1GS/s, ±100mV
with 10x probe (250MHz): ± 1000mV
that’s 2V / 256 ≈ 8mV precision

I try to use full range of ADC by adjusting
I sensing resistor - larger R → larger ∆U
I supply voltage - but be careful

I if you’re lucky enough to have a differential probe use it

I we’re trying to build our own low-cost diff-probe
we’d totally appreciate your help!

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Voltage source

I disconnect on-board supply, use your own
in case of multiple supplies: smallest is usually the right one

I lab power supplies often got more ripple than one would think!

I no step-down, short thick cables, capacitors close to target

I rechargeable batteries + low noise linear regulators
example: LP3878-ADJ
use fixed adjustment resistors though!

I slightly higher supply voltage often won’t hurt
also, there’s the drop across the sensing resistor

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Capacitors

I remove on-board capacitors
reduce clock if necessary for stability

I add ceramic fast-response capacitors with different capacities

I parallel to device AND reisitor

I seperate PCB if possible

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Clock

I sinus clock signal avoids ringing (series resistor)

I use external clock source and sync with scope if possible
otherwise there’s jitter and drifting
workaround: stretch cycles to fixed raster using software
(align edges of current-peaks)

I higher clock → better use of sample buffer

I slower clock → more stability but wasting sample buffer

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Examples

bad:

(slower clock might help here)

good:

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Examples

bad:

(slower clock might help here)

good:

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

Trigger & alignment

I proper alignment/syncronization of the power traces is crucial

I every instruction needs to be at constant sample offset

I precise triggering based on IO of the DUA

I pattern-matching to align the traces after recording
(majority of dynamic current is not data- but
instruction-dependent)

I least squares is a simple method→ Wikipedia: Sum of squares
(sum of squared differences between two traces)

hunz Zn000h AT gmail.com Finding the key in the haystack

http://en.wikipedia.org/wiki/Sum_of_squares

Introduction
Measurement

Analysis

Setup
Procedure
Tunable parameters

look for 10 AES rounds (7 shown here)

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

How does DPA work?

I constant values (key) can’t be recovered directly without
profiling the device → template based power analysis

I DPA: recover unknown const data (key) by analyzing its
influence on known, variable data (plain- or ciphertext)

I Original method introduced by Kocher: Difference of means

I here: Analysis using Pearson Correlation
will spare you the formula here but wikipedia is your friend:
Wikipedia: Pearson product-moment correlation coefficient

hunz Zn000h AT gmail.com Finding the key in the haystack

http://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Analysis: short version

1. guess part of the key

2. use it to evaluate the en/decryption function to get suitable
intermediate values

3. use power consumption measurements to verify the
correctness of the intermediate values

4. if correct done else goto 1

I 1st question: What’s a suitable intermediate value?

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Intermediate values

look for intermediate values during en/decryption that

I depend on both key and plaintext

I depend only on small portions of the key
(exhaustive search necessary on these portions)

I exhibit strong variation even for little input variation
(S-Boxes!)
otherwise wrong key guesses with few wrong bits seem to be
correct as well

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Example: AES Encryption

I round 1:
I AddRoundKey: ival[0..15] := key[0..15] ⊕ plain[0..15]

I depends on key and plain
√

I depends on small portion of key
√

(8 bit)
I but: no strong variation for little input variation :-((1 bit)

I SubBytes: ival’[0..15] := SubByte(ival[0..15])
I strong variations:

√
:-) (due to sbox-properties)

I done.

I Next Question: How to verify ival’ using the power
consumption?

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Estimating data-dependent current consumption

I usually Complementary (N- & P-) MOS logic

I capacity at Q

I switching causes (dis)charge- and short-circuit current
⇒ current increases with 0 ↔ 1 changes

I only approximations possible

hunz Zn000h AT gmail.com Finding the key in the haystack

P-MOS

N-MOS

C-MOS Inverter
(source: wikipedia)

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Hamming Distance model

I HD(a, b) := number of bits changed from a to b
example: HD(b101, b011) = 2

I fine for registers & hardware crypto units

I problem: previous value needs to be known
→ not always the case, implementation specific

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Example: Hamming Distance model

8-Bit AVR AES implementation:
(source: Rijndaelfurious from
http://point-at-infinity.org/avraes/)

encrypt:
ldi I, 10

encryp1:rcall addroundkey ; AddRoundKey
ldi ZH, high(sbox<<1) ; S-Box LUT addr. hi byte
mov ZL, ST11 ; S-Box LUT addr. lo byte
lpm ST11, Z ; ST11 := sbox[ST11]

I AddRoundKey: ival[0..15] := key[0..15] ⊕ plain[0..15]
I SubBytes: ival’[0..15] := SubByte(ival[0..15])

I ⇒ HD(ival[i], sbox(ival[i]))

hunz Zn000h AT gmail.com Finding the key in the haystack

http://point-at-infinity.org/avraes/

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

2nd example: Hamming Distance model

hardware AES implementation:

I dedicated register at output of S-Box

I holds last S-Box output

I ⇒ HD(sbox(ival[i]), sbox(ival[j]))
for some i, j with i 6= j

I but: you have to guess 2 bytes of the key at a time

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Hamming Weight model

I HW(a) := number of ’1’-bits
example: HW(b101) = 2

I often helps if previous value of register isn’t known

I works as long as previous value is constant

I fine for software crypto implementations
(data busses being charged to ’1’)

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Putting the pieces together

estimated current for keybyte[0] guess x00 (values in hex):

plaintext[0]=67 -> ival[0]=67
-> sbox(ival[0])=85 -> HD(23,42) = 4

plaintext[0]=c6 -> ival[0]=c6
-> sbox(ival[0])=b4 -> HD(23,42) = 4

plaintext[0]=69 -> ival[0]=69
-> sbox(ival[0])=f9 -> HD(23,42) = 2

plaintext[0]=73 -> ival[0]=73
-> sbox(ival[0])=8f -> HD(23,42) = 6

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Putting the pieces together

estimated current for keybyte[0] guess x00 (values in hex):

plaintext[0]=67 -> ival[0]=67
-> sbox(ival[0])=85 -> HD(23,42) = 4

plaintext[0]=c6 -> ival[0]=c6
-> sbox(ival[0])=b4 -> HD(23,42) = 4

plaintext[0]=69 -> ival[0]=69
-> sbox(ival[0])=f9 -> HD(23,42) = 2

plaintext[0]=73 -> ival[0]=73
-> sbox(ival[0])=8f -> HD(23,42) = 6

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

correlation key[0] guess x00

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

correlation key[0] guess x00

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

correlation key[0] guess x00

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

correlation key[0] guess x00

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

let’s try key[0]=1

estimated current for keybyte[0] guess x01 (values in hex):

plaintext[0]=67 -> ival[0]=66
-> sbox(ival[0])=e8 -> HD(23,42) = 4

plaintext[0]=c6 -> ival[0]=c7
-> sbox(ival[0])=2c -> HD(23,42) = 1

plaintext[0]=69 -> ival[0]=68
-> sbox(ival[0])=59 -> HD(23,42) = 4

plaintext[0]=73 -> ival[0]=72
-> sbox(ival[0])=cb -> HD(23,42) = 3

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

let’s try key[0]=1

estimated current for keybyte[0] guess x01 (values in hex):

plaintext[0]=67 -> ival[0]=66
-> sbox(ival[0])=e8 -> HD(23,42) = 4

plaintext[0]=c6 -> ival[0]=c7
-> sbox(ival[0])=2c -> HD(23,42) = 1

plaintext[0]=69 -> ival[0]=68
-> sbox(ival[0])=59 -> HD(23,42) = 4

plaintext[0]=73 -> ival[0]=72
-> sbox(ival[0])=cb -> HD(23,42) = 3

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

correlation key[0] guess x01

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

correlation key[0] guess x01

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

correlation key[0] guess x01

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

correlation key[0] guess x01

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

HD correlation example (correct key)

(x: sample, y: correlation)
hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

HD correlation example zoomed

(x: sample, y: correlation/power)

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

HW correlation example (correct key)

(x: sample, y: correlation)
hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

Short note on decryption

I cipher- instead of plaintext

I inverse round-order

I actual AES-key is roundkey of last round now

I can’t be recovered directly

I requires knowledge of prior roundkeys

I recovery of each roundkey necessary

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

conclusion

I nearly all crypto implementations in consumer products
vulnerable to PA attacks

I can be done at home, analysis is no rocket science

I adequate DSOs are expensive but should be affordable for
hackerspaces

I be patient, play with the measurement setup

I write down your attempts and observations

I attack your own device before doing blackboxes

hunz Zn000h AT gmail.com Finding the key in the haystack

Introduction
Measurement

Analysis

Overview
Intermediate values
Power consumption models
Recovering the key

References

I Power Analysis Attacks: Revealing the Secrets of Smart Cards
ISBN 0-387-30857-1

I M. Aigner, E. Oswald: Power Analysis Tutorial

I P. Kocher, J. Jaffe, B. Jun, ”Differential Power Analysis”

I RijndaelFurious AVR AES Implementation

I Wikipedia: Advanced Encryption Standard

I Wikipedia: Sum of squares

I Wikipedia: Pearson product-moment correlation coefficient

I Sample code (Google code project)

I ”DPA talk @26c3” at Google Wave

hunz Zn000h AT gmail.com Finding the key in the haystack

http://www.dpabook.org/
http://www.iaik.tugraz.at/content/research/implementation_attacks/introduction_to_impa/dpa_tutorial.pdf
http://www.cryptography.com/resources/whitepapers/DPA.pdf
http://point-at-infinity.org/avraes/rijndaelfurious.asm.html
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Sum_of_squares
http://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://code.google.com/p/poweranalysis/source/checkout
http://wave.google.com

	Introduction
	Measurement
	Setup
	Procedure
	Tunable parameters

	Analysis
	Overview
	Intermediate values
	Power consumption models
	Recovering the key

